SEAT: Similarity Encoder by Adversarial Training for Detecting
Model Extraction Attack Queries

Zhanyuan Zhang Yizheng Chen David Wagner
UC Berkeley UC Berkeley UC Berkeley
zhang_zhanyuan@berkeley.edu 1z@berkeley.edu daw@cs.berkeley.edu

ABSTRACT

Given black-box access to the prediction API, model extraction at-
tacks can steal the functionality of models deployed in the cloud. In
this paper, we introduce the SEAT detector, which detects black-box
model extraction attacks so that the defender can terminate mali-
cious accounts. SEAT has a similarity encoder trained by adversarial
training. Using the similarity encoder, SEAT detects accounts that
make queries that indicate a model extraction attack in progress and
cancels these accounts. We evaluate our defense against existing
model extraction attacks and against new adaptive attacks intro-
duced in this paper. Our results show that even against adaptive
attackers, SEAT increases the cost of model extraction attacks by
3.8 times to 16 times.

CCS CONCEPTS

« Security and privacy; - Computing methodologies — Arti-
ficial intelligence;

KEYWORDS

Model Extraction; Black-box Attacks; Adversarial Machine Learn-
ing; MLaaS; Intellectual Property

ACM Reference Format:

Zhanyuan Zhang, Yizheng Chen, and David Wagner. 2021. SEAT: Similarity
Encoder by Adversarial Training for Detecting Model Extraction Attack
Queries. In Proceedings of the 14th ACM Workshop on Artificial Intelligence
and Security (AlSec "21), November 15, 2021, Virtual Event, Republic of Korea.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3474369.3486863

1 INTRODUCTION

Deep Neural Networks (DNNs) have seen tremendous success in
many applications such as image recognition, language translation,
and voice assistants. Many cloud platforms (e.g., Microsoft Azure,
Google Cloud Platform, Amazon Web Services, Clarifai) provide
Machine Learning as a Service to make these models more acces-
sible to users: they train a model, and allow their customers to
submit an image and obtain the model’s classification of that image.
Researchers have demonstrated that model extraction attacks allow
malicious customers use this service to learn a model with similar
performance as the cloud provider’s model, effectively stealing the
valuable intellectual property of the model owner. These attacks

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

AlSec 21, November 15, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8657-9/21/11.

https://doi.org/10.1145/3474369.3486863

need only the ability to query the model (i.e., submit images and
obtain their classification), without requiring knowledge of the full
training set, model architecture, or other hyperparameters.

We study how to detect model extraction attacks. We especially
focus on Jacobian-based Augmentation (JBA) attacks [22, 37, 50],
one important approach for model extraction. In a JBA attack, the
attacker uses data augmentation to iteratively expand a set of seed
samples into a substitute training set. In each iteration of data
augmentation, the attacker constructs new data samples near the
model’s decision boundary by augmenting existing samples, queries
the model in the cloud to label the augmented samples, and then
trains a substitute model on these data points. Research shows that
JBA attacks can be effective, even when the attacker has very little
training data of their own.

In this paper, we propose SEAT (Similarity Encoder by Adversarial
Training), an algorithm to detect the queries generated by model
extraction attacks. Our intuition is, since JBA attackers augment ex-
isting samples to synthesize new samples, they inevitably generate
similar pairs of samples. Therefore, to detect attacks in progress, we
compare the similarity of each incoming query to historical queries
made by the same account. Specifically, we train a similarity en-
coder that can detect similar pairs of samples. Then, our detector
produces an alert if an account has issued more than K pairs of
similar queries. We assume that the cloud provider will terminate
any account that has been detected in this way as involved in mali-
cious activity. Since it is not trivial for the adversary to create a new
account, we can increase the cost of model extraction attacks by
requiring them to obtain many accounts in order to extract a highly
accurate model. We show that we can achieve a false positive rate
of 0.01% for benign queries, ensuring we do not harm the utility of
the protected model for benign users.

We evaluate the effectiveness of SEAT against state-of-the-art
model extraction attacks. We focus on settings where the attacker
has access to only a small number of labelled training samples
(e.g., 1% of the size of the victim’s training set). In this setting, we
thoroughly evaluate the effectiveness of the SEAT detector against
multiple JBA attacks. Our experiments demonstrate that SEAT
detector effectively detects malicious accounts sending JBA-based
model extraction queries. Furthermore, we evaluate our method
against data-free model extraction attack [45] and show that SEAT
detector is also able to detect these attacks as well.

We also examine whether adaptive attacks can defeat SEAT. We
consider both query blinding (QB) attacks, previously introduced by
Chen et al. [7], and a novel attack we introduce called query filtering
(QF). In a query filtering attack, the attacker tries to predict which
queries will trigger the SEAT defense and sends only queries that
are predicted to not raise any alarms. Specifically, the attacker trains
their own substitute similarity encoder using training data available

https://doi.org/10.1145/3474369.3486863
https://doi.org/10.1145/3474369.3486863

to them and emulates the SEAT detector on each query before
submitting it to the cloud. The intuition is that if the attacker’s
substitute encoder is similar enough to the defender’s encoder,
then this may help the attacker evade detection. Our experiments
show that these adaptive attacks are not able to defeat SEAT. Even
when using the adaptive QF attack, the attacker would need 33 fake
accounts to successfully extract the model when it is defended by
SEAT, compared to only one account for an undefended model. QB
attacks are somewhat more successful, but an attacker using QB
would still need 23 fake accounts to successfully extract the model.

We show that SEAT is more effective than other existing detec-
tors. We compare against state-of-the-art model extraction attack
detectors that can operate in an account-based setting, specifically,
the out-of-distribution detector (OOD) [1] and PRADA [22]. Our
experimental results show that SEAT increases the fake accounts
needed by adaptive attackers to successfully extract a model by
3.8-16X, compared to state-of-the-art detectors.

In summary, we make the following contributions:

e We propose SEAT, a new method to detect black-box model
extraction attacks. We show it can detect Jacobian-based
augmentation attacks and data-free model extraction attacks.

e We show that Jacobian-based augmentation attacks are most
effective when the attacker has access to only a very small
set of samples from the original training set.

e We propose a new adaptive attack, the query filtering attack,
that is specifically designed to evade the SEAT detector. Our
results show that the SEAT detector is still effective against
this adaptive attack.

In the rest of the paper, we introduce the threat model and re-
lated works (section §2), explain our SEAT detector (section §3),
evaluate its security against adaptive attacks, and finally presents
experimental results demonstrating that SEAT is both effective and
robust (section §4).

2 BACKGROUND & RELATED WORKS

In this section, we give an overview on model extraction attack
algorithms and existing defenses from prior works.

2.1 Notations

In this paper, we denote the victim’s model as Fy, the extracted
model as F4, the victim’s training set as Xy'.

2.2 Threat Model

2.2.1 Adversary’s Goal. The adversary aims to obtain an extracted
model that performs well on the victim’s task. Specifically, the ad-
versary wants to maximize the accuracy of the extracted model on
the victim’s test set, which we denote as the extraction accuracy.
Other goals [21], such as obtaining high prediction agreement be-
tween the victim model and the extracted model [8, 21, 22, 37, 44]
or exactly recovering the victim’s weights [2, 4, 28, 31, 44], are not
the focus of this paper.

2.2.2 Account-Based Defense. We focus on the account-oriented
setting. We assume a user must create an account to query the
prediction API The account could be associated with a credit card,

a valid phone number, or a mobile device ID, so if we detect mis-
behavior, we can block the user’s account and it is not trivial to
create a new account. An attacker could create multiple fake ac-
counts [7, 11, 27, 49], and with enough fake accounts any defense
could be circumvented, but we assume the cost of doing so scales
with the number of fake accounts. Every time our system detects
that an account is behaving maliciously, the account making the
queries is blocked and the attacker must create a new account to
continue the attack. Thus, we measure the effectiveness of a de-
fense scheme by the number of fake accounts an attacker would
need to successfully extract an accurate model. We aim to increase
this number to design a successful detection system, even when
attackers have knowledge of the defense and perform adaptive
attacks.

2.2.3 Seed Samples. We assume the attacker has access to a limited
number of data samples. We call these the seed samples. These
may be a subset of the training set used by the cloud provider or
samples from the same distribution; or they may be from some
other publicly available dataset with a different distribution. We
assume the number of seed samples is strictly limited: e.g., from 1%
to 10% of the size of the victim’s training set.

2.2.4 Black-box Hard-label Attack. We assume the adversary has
black-box query access to the victim’s model via the prediction
API We assume the API only provides hard label response, i.e., the
API returns the predicted label without prediction probabilities.
Removing prediction probabilities makes attacks harder, thereby
requiring more queries for successful model extraction, or reduces
the extracted model’s accuracy [44].

As an exception, when we evaluate SEAT against data-free at-
tacks, we give the attacker more advantage by providing the predic-
tion probabilities (section §2.4), demonstrating that SEAT can detect
data-free attacks even when prediction probabilities are returned.

2.2.5 Query Budget. We assume that there is a limit to how many
queries an attacker can make to the prediction API, which we denote
as the query budget B.

2.2.6 Query-based Attacks. We focus on detecting model extrac-
tion attacks that work by making queries to the prediction API.
Other attacks, such as functionally-equivalent extraction attacks [4,
21] and hardware side channel attacks [48], are out of the scope of
this paper. There are three main categories of query-based attacks,
which we discuss next.

2.3 Jacobian-based Augmentation Attacks

Many existing model extraction attacks fall into the category of
Jacobian-based Augmentation (JBA) attack [22, 37, 50].

2.3.1 Attack Algorithm. The JBA attacker constructs a surrogate
training set by iteratively expanding the seed query set based on
information returned from the victim model’s prediction APL
Algorithm 2 presents the details of JBA attack. The algorithm
takes what the attacker has access to as input: a seed query set X,
prediction API of the victim’s model Fy, and the query budget B. In
addition, the attack also requires an augmentation algorithm Aug,
and parameters to indicate the number of training epochs within

Algorithm 1 Augmentation Algorithm

Algorithm 2 Jacobian-based Augmentation Attacks

Input: Original data x;
Extracted Fgu;
Loss function £;
Number of Steps k;
Step Size o
Output: Synthesized data x/
forstepin 1,2,...,k do
2 x' —x" —a-sign(Vy(L(x, F5(x))))
end for
4 return x’

each augmentation round (n) and after all rounds (N). As output,
Algorithm 2 returns the extracted model F4.

First, the attacker queries the victim model to obtain the labels
for the seed query set, and initializes the surrogate training set Dt
with labeled seed samples (step 1 and step 2). This uses m queries
out of the total query budget B. Then, the attacker initializes and
trains the extracted model for n epochs (step 3). From step 4 to
step 11, the attacker iteratively uses an augmentation algorithm
to generate new samples, queries the new samples, expands the
surrogate training set, and retrains the extracted model F4 for n
epochs, until the query budget is exhausted. Finally, the attacker
obtains a surrogate model by reinitializing F4 and training it on
the full augmented query set (step 11).

The augmentation algorithm is essential to the JBA attack (step 7,
Algorithm 2), since the adversary relies on augmented data to ex-
plore some important properties (i.e. decision boundary) of the
victim’s model. The augmentation algorithm takes the existing sur-
rogate training samples D7 and the current version of the extracted
model F4, and outputs the set of augmented samples. Since the
adversary has only black-box access, the current F4 serves as a
proxy to approximate the gradients of the victim’s model. Algo-
rithm 1 shows the procedure to perturb each data point x within
Dr to generate a new augmented sample x’, via the guidance of
the Jacobian calculated from some loss function .£(x, Fa(x)).

2.3.2 Attack Variants. Different Jacobian-based extraction algo-
rithms mainly differ in their loss functions £, which are usually
designed based on the loss functions for crafting adversarial exam-
ples.

Papernot et al. [37] and Juuti et al. [22] proposed loss functions
similar to those used by targeted and non-targeted Projected Gra-
dient Descent attack (PGD)[29]. Yu et al. [50] investigated using
loss functions from the Carlini-Wagner ¢, attack (CW_¢,) [5] and
the Feature Adversary Attack[42]. Yu et al. [50] also proposed Fea-
ture Fool (FF), which constructs the loss function as the £, distance
between the original data x and augmented data x” plus a triplet
margin loss [46].

2.4 Data-free Model Extraction Attacks

Data-free model extraction (DFME) attacks construct a surrogate
training set by synthesizing samples and querying the victim for
the labels of these samples, without requiring access to a seed query
set. For example, the adversary can synthesize samples using line
search, or by training some generative models.

Input: Seed query set Xp = {x1,x2,...,Xm};
Prediction API of the victim’s model Fy;
Query budget B;
Augmentation Algorithm Aug;
n training epochs for each augmentation round;
N training epochs after all rounds

Output: Extracted Model Fy

1: Yy « Fy(Xo) (Send queries to Fy)

22 Dr « {(Xo, Yo)}

3: Initialize F4 and train it on Dt for n epochs

4: while Number of queries < B- m do

5. Initialize Xg as a set

6: for for all x in Dt do

7: Xq — Aug(x, Fy; L, k, @) (Generate new query)
8: yq < Fy(xq) (Send queries to Fy)

9: D « D1 U {(x¢,yg)}

10: end for

11: Reinitialize F4 and train it on Dt for n epochs
12: end while

13: Reinitialize F4 and train it on D7 for N epochs
14: return Fy

Tramér et al. [44] proposed an algorithm to extract shallow neu-
ral networks. They first generate some random data points, and
then synthesize additional data using line search among these ran-
dom points. In their implementation!, line search is essentially
binary search to find the middle point between two samples.

Truong et al. [45] proposed a data-free model extraction attack
based on Generative Adversarial Networks (GANSs) [13]. The ad-
versary trains a generator G to generate samples that maximize
the disagreement between the victim’s model Fy and the extracted
model F4, and also trains F4 to minimize such disagreement. The
disagreement is captured by a loss function L. The adversary’s
objective function is

n}ianaXEz~N(0,l) [L(Fv(G(2)), Fa(G(2)))] 1)

The adversary alternates between training G and training Fy4,
until the query budget is exhausted. Note that equation (1) involves
Fy, but the adversary only has black-box access to the victim’s
model, so they need extra queries to approximate the gradient
VxFy (x) by the Forward Differences method [12]. Specifically, they
compute the gradient by independently sampling m directions Z;
from the standard normal distribution:

m

VrwpFy (x) = % Z Fylete: fi) v () Z; (2

i=1

2.5 Sampling-based Extraction Attacks

Researchers have also proposed model extraction attacks that use
specialized sampling techniques. Unlike JBA and DFME attacks,
sampling-based attacks do not generate data, but rather, they learn
some sampling strategy to sample informative data from their query
sets, and construct a surrogate dataset by using the victim model
to label the data. The adversary then trains the extracted model on

!https://github.com/ftramer/Steal-ML/blob/master/neural-nets/utils.py#L296

the surrogate dataset. Researchers have proposed several ways to
learn the sampling strategy.

Correia-Silva et al. [8] proposed CopyCat, which randomly sam-
ples from datasets that may or may not be in the same problem
domain as the victim, and queries the victim for these samples.
People often call this strategy the random sampling strategy, and it
usually serves as a baseline to compare against for other strategies.

Orekondy et al. [34] proposed KnockoffNet, which uses an adap-
tive strategy to select samples to query. The reward function for
learning the strategy encourages selecting high-confidence samples,
diverse samples, and samples that reveal the difference between
the victim model and the extracted model.

Pal et al. [36] proposed the Uncertainty, K-center, DFAL, and
DFAL+K-center strategies in their ActiveThief. These strategies
evaluate all the samples in the adversary’s query set and collect the
best k samples by their evaluation functions.

Detecting sampling-based attacks is not the focus of this paper,
since sampling-based attacks only query natural images and require
many seed images and thus fall outside our threat model.

2.6 Detection Schemes

In this section, we introduce existing defenses or detection schemes
against model extraction attacks.

2.6.1 PRADA. Juuti et al.[22]’s PRADA detects model extraction
attacks based on the observation that the ¢, distance among be-
nign queries follows normal distribution. PRADA monitors the
distribution of min, epistory l|X — Xnew queryll2 and checks the nor-
mality of this distribution with the Shapiro-Wilk normality test.
Unfortunately, Chen et al. [7, § 5.3] show that an attacker using
a query blinding attack can avoid being detected by PRADA, and
Yu et al. [50, § VI.A] show that the attacker can bypass PRADA by
manipulating the query distribution.

2.6.2 Out-of-distribution Detector. Atli et al. [1] and Kariyappa et
al. [24] proposed out-of-distribution (OOD) detectors. Atli et al.
train a binary classifier to distinguish whether a query comes from
the same distribution as the victim’s training set. Kariyappa et al.
fine-tune the protected model such that it tends to output high top-1
prediction confidence on in-distribution data, whereas the top-1
prediction confidence for OOD data is uniformly distributed from
0 to 1. While Atli et al. do not propose what the defender should do
when OOD queries are detected, in Adaptive Misinformation [24],
the defender returns inconsistent labels to those detected OOD
queries. Essentially, Adaptive Misinformation assumes all OOD
queries are adversarial. In comparison, we assume all the natural
data are benign in this paper.

2.7 Other Defenses

2.7.1 Prediction Poisoning/Modification. Orekondy et al. [35] pro-
pose prediction poisoning, which perturbs the prediction probabili-
ties returned by the victim model. Specifically, given a loss function
L, they add perturbation €* to a output y while maintaining API
utility, where €* is:

€ = max £(Vp,L(Fa, y +€), Vi, L(Fa, y))

In other words, €* represents misinformation that gives a wrong
direction to adversaries when they use this contaminated output to
train F4 on some loss L. One critical weakness is that an attacker
can easily post-process the output into a one-hot vector, and ignore
the probabilities, and mount any hard-label model extraction attack.

Kariyappa et al. [23] defend against model extraction attacks
by detecting queries that do not come from the same distribution
as the training data and treating them as malicious. They train an
Ensemble of Diverse Models (EDM) to produce accurate predictions
on in-distribution data, but yield inconsistent prediction on out-
of-distribution (OOD) data. Each query is assigned to one of these
models based on a secret hash.

2.7.2 Detectors against Black-box Attacks. Black-box adversarial
example attacks [3, 6, 19, 32] send a sequence of queries to the
victim model in order to craft adversarial examples. Our similarity-
based detector is inspired by Chen et al.’s Stateful Detector (SD) for
detecting adversarial example attacks [7]. SD maps each query to a
feature vector using a similarity encoder and stores the vectors for
all past queries. For each query, it computes the average distance to
its k-nearest neighbors; if this distance is below some threshold, it
treats the query as malicious and cancels the account that issued the
query. In Section §4.8, we show that SD is not effective at detecting
model extraction attack queries, and our SEAT detector is more
suitable for this task.

Blacklight by Li et al. [27] is another method for detecting black-
box adversarial example attacks. Blacklight also measures the simi-
larity among adversarial queries, measuring similarity using the L
distance rather than using perceptual similarity measures. We do
not use Ly distance in our defense because it can be evaded with
query blinding attacks.

3 METHODOLOGY

In this section, we introduce the SEAT (Similarity Encoder trained
by Adversarial Training) detector to defend against black-box model
extraction attacks. We monitor incoming queries and terminate
the user’s account if any suspicious behavior is detected from the
account.

The SEAT detector has two components: 1) a similarity encoder
helps detect similar queries (Section §3.1) and 2) a detection scheme
monitors the number of similar pairs (Section §3.2).

3.1 SEAT

We train a similarity encoder to detect similar images, such as
might be generated by a model extraction attack. We observe that
JBA attacks augment queries in ways that are similar to crafting
adversarial examples. Motivated by this observation, we train a
similarity encoder to recognize these queries, using adversarial
training.

To train our similarity encoder, we start from taking the victim
model without the last classification layer as a pre-trained similarity
encoder, and then fine-tune the model using adversarial training.
During fine-tuning, we minimize a contrastive loss that encourages
a small distance between the embeddings of similar pairs of samples,
and a large distance between embeddings of different pairs. We
construct similar pairs of samples using the projected gradient
descent (PGD) attack [29] that generates adversarial examples.

Our contrastive loss function follows previous works that train
a similarity encoder to recognize visually similar images [7, 15]:

L(x0,54,%-, f) = I (x0) = f (x5

3
+max{0, m* ~ || f (x0) ~ f(x-)lI3} ©

In equation (3), m is a constant, f is a similarity encoder, x is a
natural image, x; is a positive sample which f should consider
closed to x¢, and x_ is a negative sample, a different natural image
from x that f should consider far away from xo. While Chen et
al. [7] show that generating x; by image random transformations
(e.g. rotation, scaling, cropping, etc.) is sufficient for detecting black-
box adversarial examples, we empirically find that this is insufficient
for detecting model extraction attacks (more details in section §4.5).
Instead, we generate x, by projected gradient descent (PGD) attack
and show that using adversarial training significantly improves the
effectiveness of the similarity encoder to detect model extraction
queries. We find that setting m = V10 is sufficient.

3.2 Similar Pairs

The second component of our detector is a detection scheme based
on similar pairs. JBA model extraction attacks generate many pairs
of similar images: they take each seed image x;, and augment it to a
perturbed image x;, so during a JBA attack we expect to see many
pairs (x;, x]) of similar queries to the victim model. Therefore, we
count the number of similar pairs of queries.

We use the similarity encoder to encode all queries from an
account and log them all. For each new query, the defender checks
whether this new query is similar to any historical query from the
same account. A similar pair (g;, q;) is a pair of queries where the
£, distance between their feature vectors f(g;) and f(q;) is less
than some threshold 8, i.e., £(f(q;), f(g;)) < 6. Once the number
of similar pairs exceeds some threshold of tolerance Nypyesh, our
detector will raise an alarm and we will cancel that account. The
defender can tune Nyesh and § to control the false positive rate
(FPR). We choose to keep Nipresh fixed to 50 and tune §. The smaller
d is, the more sensitive the detector will be, and thus the higher its
FPR. We use binary search to find the best § such that FPR ~ 0.01%
for benign queries.

Note that our strategy differs from that used by SD [7] for de-
tecting adversarial examples. Attacks for generating adversarial
examples typically produce one large cluster where all queries are
similar to each other, so SD raises an alarm if the k-nearest neighbor
distance of a query is below some threshold. In contrast, model
extraction attacks produce a large number of small clusters, one
cluster per seed image (with each cluster containing possibly as few
as 2 images). This makes counting the number of similar pairs more
appropriate for detecting model extraction attacks. See Figure 1 for
a visual comparison.

3.3 Adaptive Attacks

An effective detector should be robust enough to detect adaptive
attacks, where the attacker is aware about the defense technique
and employs adaptive strategies to evade the detection. In this
section, we first introduce query filtering, a new adaptive attack
designed to target the SEAT detector (section §3.3.1). Then, we

Figure 1: Illustration of detection schemes. Left: SD [7] mea-
sures ravg, the average #; distance to the k nearest queries,
and cancels the account if it is below some threshold. Right:
SEAT counts the number of similar pairs (circled in green),
i.e., pairs whose ¢, distance is less than some threshold. Since
similar pairs of queries in model extraction attacks do not
necessarily form a single cluster, SEAT is better suited for
detecting model extraction attacks.

summarize another adaptive attack proposed by Chen et al. [7],
query blinding (section §3.3.2).

Both of these adaptive attacks can be used by any model extrac-
tion attack. The attacker can use query filtering before sending
the queries to the victim’s model Fy (e.g., step 7 in Algorithm 2)
to eliminate or modify queries that may be caught by the SEAT
detector.

3.3.1 Query Filtering. We propose query filtering (QF), a new adap-
tive attack strategy designed to evade the SEAT detector. In this
attack, the attacker locally emulates the detector and removes those
queries that are predicted to raise the detector’s alarm. For instance,
if the attacker knows that the defender is using a similarity encoder
to detect similar queries, the attacker can build a substitute detector
Dgyp by training a substitute similarity encoder Eg,p, and tuning a
substitute detection threshold Jgp,. Then, the attacker can remove
those queries which Dgy}, believes are suspicious. Depending on the
threat model, the attacker can train this Dy}, on either a subset of
Fy’s training set Xy, or a publicly accessible dataset that is descrip-
tively similar to Xy . We believe QF is a very strong adaptive attack
since it allows the attacker to take advantage of full knowledge of
how the victim sets up the defense.

3.3.2 Query Blinding. Query blinding (QB), proposed by Chen et
al. [7], is another adaptive attack strategy against similarity-based
detectors. OB hides an actual query x by apply some random trans-
formation function ¢. In particular, the adversary sends x” = ¢(x;r)
to Fy, where r is a parameter that controls the amount of distor-
tion introduced. The transformation is designed so that Fy (x”) will
hopefully be similar to Fy (x), yet x” will be very different from x.
With QB, step 7 in Algorithm 2 becomes Y1 « Fy (+(X7;r)) and
the rest of the algorithm remains unchanged.

Following [7], we choose a wide range of random image transfor-
mations (e.g. rotation, scaling, random noise, etc.) and apply their
default r values for the query blinding attacks. We also follow the
setting and architecture in [7] to examine an auto-encoder blinding
function. We train the auto-encoder blinding function tayto such
that for a model F we have F(fauto(x,7)) =~ F(x). As illustrated

Figure 2: Left: Original input images; Right: Images after
query blinding is applied. We use an auto-encoder that
learns to allocate random noise to positions in the input that
have minimal impact on the model output.

in figure 2, a well-trained auto-encoder blinding function can re-
distribute the input noise so that it has minimal impact on model
outputs. An adaptive attacker can train an auto-encoder ¢4y, and
substitute model F using either a subset of Fy’s training set Xy, or
a publicly available dataset that is closed to Xy, depending on the
threat model.

4 EXPERIMENTS

In this section, we evaluate the SEAT detector from the following as-
pects. We will first study the effect of different threat models where
the attacker has different levels of access to seed samples (Sec-
tion §4.2). Then, we describe how we train the similarity encoder to
make SEAT as effective as possible (Section §4.5), and evaluate its
false positive rate (Section §4.4). We show that the SEAT detector
can effectively detect non-adaptive attacks (Section §4.5), as well as
adaptive query filtering and adaptive query blinding attacks (Sec-
tion §4.6). Moreover, SEAT detector can also detect data-free model
extraction attacks (Section §4.7). Lastly in Section §4.8, we compare
the SEAT detector to other baseline defenses, and in Section §4.9,
we conduct a ablation study to show that the pair-based detection
scheme in SEAT detector outperforms a cluster-based one as used
in SD.

4.1 Experiment Settings

4.1.1 Model Architectures. In all experiments for random sampling
(RS) and JBA attacks, the victim model is VGG16 [43] with batch nor-
malization [20]. We use a pre-trained CIFAR10 classifier as victim
model?, which has 93.38% accuracy on the test set. For simplicity,
we denote it as VGG16 in the rest of the paper. We allow the attacker
to use the same model architecture as the victim for the extracted
model, and to start training from weights pre-trained on ImageNet
[10].

Zpre-trained weights can be downloaded here:
https://github.com/tribhuvanesh/prediction-poisoning#victim-models

Similarity encoder in SEAT. We train a similarity encoder by
starting from the victim’s model (i.e. same architecture and weights)
without the last classification layer, and then fine-tune the encoder
by adversarial training, as described in section §3.

Surrogate similarity encoder. For our experiments with Query
Filtering (section §3.3.1), the attacker trains a surrogate similarity
encoder. We show the experiment results by two architectures for
the surrogate encoder: VGG16 without the last layer (the same archi-
tecture as the victim’s encoder), and the 5-layer CNN architecture
applied in [7] (which we denote as 5-layer).

4.1.2 Model Extraction Attack Algorithms. We run three types of
model extraction attack algorithms: random sampling (RS), different
variants of the Jacobian-based Augmentation (JBA) attack, and data-
free model extraction (DFME) attack.

Random Sampling (RS): The RS attack randomly selects some
samples from a dataset that the attacker has access to, and queries
the victim model to label the samples (Section §2.5). Using the la-
beled samples, the attacker trains an extracted model. In our exper-
iments the attacker has either 500 or 5,000 samples. We experiment
with 9 different datasets as described in Section §4.2.

JBA: As discussed in section §2.3, the JBA attack can use any
algorithm to craft adversarial examples. We experiment with three
different variants, JB-top3, JBA-PGD and JBA-CW_12, named ac-
cording to the technique used to generate adversarial examples.
In each iteration of the attack, we choose the top-3 predictions
of the extracted model rather than the victim’s to craft targeted
adversarial examples using some augmentation algorithms.

JB-top3: Following [35], we rename [-FGSM [22] to JB-top3. We
adapt the implementation and hyperparameters from Orekondy et
al. [35].

JBA-PGD and JBA-CW_12: We use PGD [29] and CW ¢, at-
tacks, as implemented by Foolbox3 [40, 41] in PyTorch [38]. Unless
specified otherwise, we use the default settings in Foolbox3 Py-
Torch. In JBA-PGD we use targeted foo PGD with default settings
and e = 8/255 (unless specified otherwise). In JBA-CW_12, we use
targeted CW ¢; attack [5], with 150 steps and 5 binary search steps.

Data-free model extraction (DFME): We use the official im-
plementation of DFME?. Both the victim and adversary use Resnet34-
8x [16]; the victim model achieves 95.54% accuracy on the CIFAR10
test set?,

All the accuracy scores (in %) are rounded to their nearest inte-
gers, and vary within +1%.

4.2 Seed Query Set

We experiment with 9 different seed query sets to simulate different
dataset access an attacker might have, listed in the first column
of Table 1. They include the subset of victim’s training set CIFAR10,
and 8 other publicly available datasets of different complexity ([9, 10,
14, 25, 26, 33, 39, 47]). Some datasets are descriptively similar to the
victim’s training set, such as CINIC10; whereas, other datasets are
very different from the victim’s training set, e.g., SVHN, Indoor67,
and CUBS200. We reshape images to 32 X 32 to be consistent with
inputs to the victim’s model trained on CIFAR10. We compare

Shttps://github.com/cake-lab/datafree-model-extraction
4The pre-trained weights of the victim can be found at https://github.com/VainF/Data-
Free-Adversarial-Distillation#0-download-pretrained-models-optional

Table 1: Accuracy of CIFAR10 models extracted by RS (random sampling baseline), JB-top3, JBA-PGD attackers, when they have
access to different seed query sets. We compare 500 seed samples vs 5,000 seed samples randomly selected from 9 different
datasets. Given access to 500 samples from the original CIFAR10 training set, the JBA-PGD attacker improves the extraction
accuracy by 7% compared to the RS baseline, significantly higher than 2% gain in the 5,000 seed samples setting.

Number of Seed Samples 500 ‘ 5,000 ‘ 50,0007
. | RS | JB-top3 | JBA-PGD* | RS | JB-top3 | JBA-PGD* RS

Seed Set S
eed Query Se 1ze Acc | Acc ‘ Gain | Acc ‘ Gain | Acc | Acc ‘ Gain | Acc ‘ Gain Acc
CIFAR10 [25] 50,000 | 66% | 69% | +3% | 73% | +7% 8% | 87% | +2% | 87% | +2% N/A
CINIC10[9] 70,000 | 58% | 64% +6% | 69% | +11% 78% 84% +6% 84% +6% 89%
TinyImageNet[26] 100,000 | 46% | 57% | +11% | 61% | +15% | 69% 78% +9% 78% +9% 84%
ImageNetlk[lO] 1,281,167 | 44% | 57% | +13% | 62% | +18% | 67% 78% | +11% | 78% | +11% 85%
CIFAR100 [25] 50,000 | 43% | 55% | +12% | 58% | +15% | 68% 78% | +10% | 78% | +10% 84%
Caltech256[14] 30,607 | 44% | 49% +5% | 58% | +14% | 63% 77% | +14% | 77% | +14% 78%
Indoor67[39] 14,280 | 33% | 44% | +11% | 51% | +18% | 50% | 70% | +20% | 71% | +21% 63%
CUBS200[47] 6,033 | 20% | 23% +3% | 31% | +11% 31% | 46% | +15% | 54% | +23% 36%
SVHN][33] 23,380 | 19% | 24% +5% | 32% | +13% 24% | 40% | +16% | 43% | +19% 36%
Number of Queries | 500 | 50,000 50,000 | 5,000 | 50,000 50,000 50,000

* JBA-PGD uses € = 8/255. i Caltech256, Indoor67, CUBS200, and SVHN have fewer than 50,000 images in the datasets,
so the RS attacker does not use up all the 50,000 query budget.

the effectiveness of different attacks given 500, 5,000, or 50,000
seed samples, which are 1%, 10%, or 100% of the query budget
respectively. In particular, we run the random sampling (RS) attack
as the baseline attack, since the attacker only queries the seed
samples and does not use any data augmentation technique. We
evaluate the gain of extraction accuracy of JB-top3 and JBA-PGD
attacks over the RS baseline, shown in the Gain columns in Table 1.

Our first observation is, JBA-PGD and JB-top3 attacks are not
very effective compared to RS if the attacker already has access to
5,000 images (10% of training samples) from the victim’s training
set. By examining the row of CIFAR10 in Table 1, we notice that
when the attacker has 5,000 seed samples, the gain of JBA-top3
and JBA-PGD attacks is only 2% improvement over the extraction
accuracy of RS. However, if the attacker has only 500 seed samples,
the extraction accuracy gain of JBA-PGD increases to 7%, which is
more significantly than the 5,000 seed samples scenario. Therefore,
for the rest of the paper, we decide to focus on the threat model
where the attacker has access to only 500 of seed samples.

We are also interested in the performance of JBA attacks when
the distribution of the seed query set is different from the victim’s
training set. In practice, a realistic attacker may not have access
to any of the original training samples, but instead may be able
to collect publicly available datasets from a different distribution.
Different rows of Table 1 show the extraction accuracy of different
attackers when they have access to the seed samples from the
corresponding datasets. Among the 8 datasets other than CIFAR10,
CINIC10 is most similar to CIFAR10, so the extraction accuracy is
the highest. Even though TinyImageNet is larger than CINIC10,
the extraction accuracy using seed samples from TinyImageNet is
lower than using CINIC10, this means the similarity to the victims
dataset is very important to extract an accuracy model. Across all
seed query sets, the extraction accuracy of JBA-PGD is consistently
higher than JB-top3, when the attacker has access to only 500 seed
samples.

As reference, we show the extraction accuracy of RS when the
attacker has 50K seed samples in the last column of Table 1, which
simulates the situation where the attacker has access to a large
amount of natural images. Using seed samples from all but three
datasets (Indoor67, CUBS200, and SVHN), the RS attack outper-
forms JBA attacks. Note that Indoor67, CUBS200, and SVHN have
less than 50K data in their training set. Therefore, the RS attacker
only queries all available samples from these dataset, without con-
suming the full 50K query budget. However, JBA attacks can make
additional queries and thus outperforms the RS attack using these
three datasets.

Summary: We will focus on the threat model where the attacker
has access to only 500 seed samples, since the extraction accuracy
gain for JBA attacks in CIFAR10 is more significant in this setting.
Moreover, JBA-PGD attack is more effective than JB-top3 given
access to different types of seed query sets.

4.3 Training SEAT

Table 2: Against the SEAT detector with four different sim-
ilarity encoders, we show the number of accounts required
for the attacker to extract the model. The best SEAT detector
is trained using PGD attacks with ¢ = 8/255.

JBA-PGD | RT SEAT (Ours) with ¢
€ 8/255 16/255 24/255
8/255 13 65 43 28
16/255 9 52 32 22
24/255 7 41 25 18
32/255 6 33 20 15
40/255 4 28 17 12

To train the similarity encoder in our SEAT detector, we experi-
ment with different methods to generate similar pairs and choose

the strongest detector. We train three similarity encoders by ad-
versarial training with PGD attack for 30 epochs: for each natural
image, PGD generates a positive sample by perturbing it for 40
iterations with random start and € = 8/255, 16/255, or 24/255.
Moreover, following the Stateful Detector [7], we train a fourth
similarity encoder using random transformations (RT), by slightly
distorting and transforming images to generate positive pairs. The
details of the distortion parameters are in Table 12 in Appendix B.
Then, we tune the similarity threshold § to meet the requirement of
0.01% false positive rate on benign queries, using both the training
and test samples in CIFAR10 and CINIC10.

The best detector should be able to cancel the most victim’s ac-
counts. Therefore, we run the JBA-PGD attacks given 500 CIFAR10
images as the seed query set, with € = 8/255, 16/255, 24/255, 32/255,
and 40/255. Table 2 shows the number of accounts the attacker
needs to extract the model when four different SEAT detectors
are deployed. Each column in the table corresponds to a different
training method. When the similarity encoder is trained by PGD
with € = 8/255, the attacker needs the highest number of accounts,
no matter what e the attacker uses. For the rest of the paper, we
will use the SEAT detector trained by PGD with € = 8/255 in the
experiments.

4.4 False Positive Rate

In table 3, there are 13 experiments, each with benign queries from
a different dataset, and false positive rates are estimated by the
percentage of benign queries raising alarms. 12 of these datasets
(all except CIFAR10) are hold-out sets, and they have not been used
for training the defense. Table 3 shows that the false positive rate
(FPR) of our SEAT detector is very low when benign users send
queries from different query sets. Across 13 different datasets, the
FPR of benign queries are all under 0.05%. In particular, to show
that our detector maintains low FPR even when a user is sending
naturally similar queries, we select 4 datasets: KaggleFrames® for
video frames, GTSRB[17] for traffic sign recognition, LFW[18] for
face recognition, and VGGFlower17 © for flower recognition. Kag-
gleFrame is a video frame dataset, and the other three datasets have
naturally similar samples within the same class/category (e.g., face
and traffic sign recognition). The FPR for these datasets remains
low. In Section §4.8, we will show that we achieve better FPRs in
comparison to existing detection schemes. For example, the FPR of
KaggleFrames is 0.05% for our detector, but 0.9% FPR for PRADA
and 0.2% of FPR for the stateful detector (Table 9).

4.5 Effectiveness of SEAT Detector

Without deploying the SEAT detector, the attacker only needs one
account to query the victim’s prediction API. To evaluate the effec-
tiveness of SEAT detector, we measure the number of fake accounts
an attacker needs to query the protected model, which increases
the cost for non-adaptive attackers to extract a model.

Table 4 summarizes the number of fake accounts and the extrac-
tion accuracy for different variants of JBA attackers after deploying
the SEAT detector. The JBA attackers have access to 500 seed sam-
ples from CIFAR10. The JB-top3 attacker and JBA-CW_¢; attackers

SKaggleFrames: https://www.kaggle.com/akshaybapat04/frames-from-video
SVGGFlower17: https://www.robots.ox.ac.uk/~vgg/data/flowers/17/

Table 3: False Positive Rate of SEAT Detector

Query Set FPR
CIFAR10 0.012%
TinyImageNet 0.007%
ImageNet1k 0.010%
CIFAR100 0.013%
SVHN 0.026%
CINIC10 0.009%
Indoor67 0.006%
CUBS200 0.017%
Caltech256 0.027%
KaggleFrames 0.050%
GTSRB 0.010%
LFW 0.012%

VGG-Flower17 0.037%

Table 4: The number of accounts needed by different vari-
ants of JBAs (with 500 CIFAR10 seed samples) to extract the
CIFAR10 model protected by the SEAT Detector, with the
corresponding extraction accuracy.

JBA # Accounts Ex. Acc.
JB-top3 122 69%
JBA-CW_¢£, 109 62%
JBA-PGD € = 8/255 65 73%
JBA-PGD € = 16/255 52 74%
JBA-PGD € = 24/255 41 75%
JBA-PGD € = 32/255 33 72%
JBA-PGD € = 40/255 28 71%

need more than 100 accounts, and the extraction accuracy is lower
than models obtained by the JBA-PGD attackers. This is consistent
with our finding in Section §4.2 that JBA-PGD outperforms JB-top3.

For different JBA-PGD attackers, Table 4 shows that the number
of fake accounts decreases as € increases, since a larger € makes
the augmented samples dissimilar. However, as € increases, the
extraction accuracy first increases and then decreases, and € =
24/255 has the highest extraction accuracy. Given this result, we
choose € = 24/255 as the setup for JBA-PGD attack in the rest of
the paper.

Table 5: The number of accounts and extraction accuracy for
JBA-PGD attack (¢ = 24/255) to extract the model protected
by SEAT Detector, given access to different types of seed set.

Seed Set # Accounts Ex. Acc.
CIFAR10 41 75%
TinyImageNet 29 62%
ImageNet1k 35 58%
CIFAR100 43 61%
SVHN 48 33%
CINIC10 30 70%
Indoor67 29 55%
CUBS200 41 34%
Caltech256 65 61%

Although we train the similarity encoder using PGD attacks
on the victim’s CIFAR10 training set, SEAT can also detect JBA

https://www.kaggle.com/akshaybapat04/frames-from-video
https://www.robots.ox.ac.uk/~vgg/data/flowers/17/

attacks that use seed samples from other datasets. Table 5 shows
the number of accounts required by the SEAT detector for different
types of seed sets, including 8 datasets other than CIFAR10. The
results show that we increase the accounts needed by the attacker
by at least 29 times, to as high as 65 times.

4.6 Adaptive Attack Evaluation

An effective and robust defense scheme should work even when
the attacker has full knowledge of the defense. In this section, we
try to bypass our SEAT detector using the two adaptive attacks
introduced in Section §3.3: query filtering (QF, Section §3.3.1) and
query blinding (QB, Section §3.3.2). The adaptive attackers have
access to 500 CIFAR10 seed samples as the seed query set.

Table 6: Number of fake accounts for adaptive QF and QB at-
tackers to extract a model protected by SEAT detector, along
with the extraction accuracy. Compared to the non-adaptive
attacker, we make the best numbers of adaptive attackers in
bold.

Adaptive Schemes

Strategies # Accounts Ex. Acc.

Non-adaptive N/A 41 75%
Query Filtering VGG16 + CINIC10 42 75%
5-layer + CIFAR10 seed 33 75%

Crop 21 71%

Brightness 38 61%

Scale 24 73%

Rotate 41 75%

Query Blinding Contrast 14 61%
Uniform 64 62%

Gaussian 65 60%

Translate 23 73%

Auto-encoder 31 60%

The QF attacker trains a surrogate similarity encoder to locally
filter queries before sending them to the victim model. We experi-
ment with two configurations of encoder architecture + similarity
training set. The first configuration uses VGG16 with batch norm,
the same as the victim’s architure, and the attacker adversarially
trains the simialrity encoder using surrogate dataset CINIC10 that
is close to CIFAR10. In the second figuration, the attacker uses a
5-layer CNN architecture as in [7], and adversarially trains the sim-
ilarity encoder using 500 CIFAR10 seed samples. Table 6 shows that
the “5-layer + CIFAR10 seed” QF attacker is more effective than the
other configuration, since the samples used for training is part of
the victim’s training set, and the small CNN architecture can learn
an effective surrogate similarity encoder given the limited number
of samples. However, SEAT detector still requires this QF attacker
to use 33 fake accounts in order to extract a model.

We also experiment with the QB attack using a variety of ran-
dom transformation strategies listed in Table 6. The details of the
distortion parameters are in Table 12 in Appendix B. Among these
QB attackers, contrast and crop transformations make the attacker
use the fewest accounts, 14 and 21, respectively. However, their
extraction accuracy is low, only 61% and 71%, respectively. The QB
attacker using translate strategy achieves the second highest extrac-
tion accuracy, 73%, and reduces the number of accounts from 41 to
23, compared to the non-adaptive attacker. Therefore, we conclude

that, against the QB attacker, the SEAT detector still requires the
attacker to use 23 accounts to extract an accurate model.

In appendix table 11, we demonstrate that our detector still
works when the attacker is able to collect 5,000 natural images from
CIFAR10, which implies less chance to generate similar pairs.

4.7 Detecting DFME Attack

Our SEAT detector can also detect queries generated by the DFME
attack. Following the setting in previous work [45], we grant 20M
queries to DFME attacker. Also, we observe that the extraction accu-
racy of DFME converges around 20M queries. While its extraction
accuracy is much higher than JBAs with 500 seed images, DFME
needs way more queries than JBAs and are very easy to be detected
by SEAT detector, shown in Table 8.

4.8 Comparison with Existing Defenses

In this section, we compare our SEAT detector to four different
baseline detectors to demonstrate that our detector is more effective
and more robust.

The first baseline is a random detector, where we cancel a user’s
account for every 10,000 queries, which allows us to keep the false
positive rate around 0.01%. Since the attacker is granted 50,000
query budget, one baseline detector will detect the attack 5 times
in total, which means that the attacker needs 5 fake accounts to
successfully extract a model. We mark this baseline detector as
Random in tables 7 and 9.

In addition, we choose the following three baseline detectors:
out-of-distribution detector (OOD)[1], stateful detector (SD)[7], and
PRADA [22]. Among existing model extraction defenses described
in Section §2.6 and Section §2.7, the OOD detector and PRADA
can work under the account setting, i.e., we can set up the defense
to detect whether an account holder is adversarial and cancel the
account after each detection. The other baseline, SD, does not de-
tect model extraction attacks, but it detects adversarial examples.
However, SD also tracks the historical queries and compare the
similarity among the queries. Therefore, we choose to compare our
SEAT detector against SD as well. We tune the thresholds for theses
detectors on the same tuning set as ours (CIFAR10 and CINIC10) to
have FPR 0.01%.

We experiment with three JBA-PGD attacks (e = 24/255) that
use 500 seed images sampled from CIFAR10, TinylmageNet, and
CINIC10, respectively. This simulates the threat models where the
attacker has access to subset of victim’s training set (CIFAR10), a
more general dataset (TinylmageNet), and a highly similar surro-
gate dataset (CINIC10). In Table 7, we show the number of accounts
for non-adaptive attacks in the “Vanilla” columns. The OOD and
SD detectors are not effective, and they underperform the random
baseline. On the other hand, both PRADA and SEAT detector can
increase the number of accounts by order of magnitude.

Furthermore, we run adaptive query blinding (QB) attacks with
random translation to compare PRADA against SEAT detector. As
shown in the “Adaptive” columns in Table 7, the query blinding
attack reduces the number of accounts for PRADA to at most 5, but
it still needs 16 to 23 accounts for SEAT detector. PRADA compares
images by f£;-distance, which is highly vulnerable to query blinding

Table 7: Number of attacker accounts against baseline detectors and our SEAT detector. “Vanilla”: non-adaptive attack. “Adap-

tive”: adaptive query blinding attack with random translation.

Random | OOD[1] | SD[7] PRADA[22] SEAT (Ours)
Seed Images Vanilla Vanilla | Vanilla | Vanilla Adaptive | Vanilla Adaptive
CIFAR10 5 5 1 203 2 41 23
TinyImageNet 5 5 1 218 5 29 19
CINIC10 5 1 1 66 1 70 16

Table 8: Number of accounts for non-adaptive and adaptive
DFME (20M Queries) attackers to extract a model protected
by SEAT.

Adaptive Scheme Strategies # Accounts Ex. Acc.
Non-adaptive N/A 57010 89%
Query Filtering 5-layer + CIFAR10 seed 57601 89%
Uniform 57707 87%

Gaussian 58443 88%

Scale 57014 87%

Query Blinding Brightness 58042 86%
Rotate 57002 89%

Contrast 57826 73%

Crop 57013 86%

Translate 56981 88%

attacks, (as shown in table 7): it is easy to construct a similar im-
age with a large #;-distance (e.g., brighten the image). In contrast,
SEAT uses a similarity encoder to measure image similarity, which
is robust against query blinding attacks. Overall, when the seed
images are from CIFAR10, the SEAT detector increases the number
of accounts needed by the attacker by 23 times (from 1 to 23); and
given TinylmageNet seed images, the SEAT detector increases the
number of accounts by 3.8 times (from 5 to 19).

Table 9: FPRs of the random detector, three existing defenses
(PRADA, OOD, SD), and our SEAT detector.

Query Set Random PRADA[22] OOD[1] SD[7] SEAT (Ours)
CIFAR10 0.01% 0.000% 0.013% 0.008% 0.012%
TinyImageNet 0.01% 0.000% 0.005% 0.006% 0.007%
CINIC10 0.01% 0.000% 0.009% 0.009% 0.010%
KaggleFrames 0.01% 0.900% 0.000% 0.200% 0.050%
GTSRB 0.01% 0.004% 0.002% 0.004% 0.010%
LFW 0.01% 0.012% 0.002% 0.000% 0.012%
VGG-Flower17 0.01% 0.074% 0.000% 0.000% 0.037%

Table 9 shows the FPR of different detectors when a user queries
benign images from different datasets. The underlined numbers
suggest that PRADA and SD become too sensitive if a benign user
sends queries from KaggleFrames video frame dataset, where their
FPR is much higher than our SEAT detector.

4.9 Ablation Study

We conduct an ablation study to demonstrate that our similar-pair-
based detection scheme outperforms the cluster-based detection
scheme. In this experiment, both detectors apply the same similarity
encoder, and the only difference is their detection schemes. Table 10
summarizes the results and show that similar-pair-based scheme is
about 2X better than cluster-based.

Table 10: Number of attacker accounts against cluster-based
v.s. pair-based detection scheme in SEAT detector

Cluster-based Pair-based (Ours)

Vanilla Adaptive | Vanilla Adaptive
CIFAR10 13 10 41 23
TinyImageNet 9 7 29 19
CINIC10 12 7 70 16

5 LIMITATIONS

5.1 False Positive Rate

Although our SEAT detector achieves 0.01% false positive rate, it
is worth mentioning that in reality, the number of benign queries
is much larger than the adversarial ones. Therefore, a 0.01% FPR
might still be too high for practical deployment because of the base
rate problem.

5.2 Other Adaptive Attacks

An anonymous reviewer suggested Query Partitioning (QP), an
adaptive attack against our detector: the attacker avoids similar
pairs sent from the same account by carefully partitioning queries
and assigning them to different accounts. Suppose the attacker
has m seed images, is granted a budget of B queries, and has Ny
accounts. If Ny = B/m, then in each round, the attacker could
sample m images, augment them, and query them, using a different
account for each round. Because no two images derived from the
same seed image are queried by the same account, SEAT is unlikely
to detect this attack. For the parameters we focus on in this paper,
this would require N4 = 50000/500 = 100 accounts, which is more
than a query blinding attack—thus this specific query partitioning
attack is less effective than other attacks. We leave it to future
work to determine whether some other partitioning might be more
effective. For instance, it might be more effective to use account i
to query images from rounds i, i + 20,1 + 40,

5.3 Pair Search Runtime

One performance bottleneck of the SEAT detector is the running
time to search for similar pairs. The running time for each query is
linear in the number of previous queries from the same account, but
not the total number of previous queries. This might be acceptable
for accounts that don’t make too many queries, and perhaps high-
traffic accounts could be subject to other mitigations (e.g., additional
identity verification). It might be possible to speed up similar-pair
search using locality-sensitive hashing; we have not explored this
direction.

6 CONCLUSION

In this paper, we have presented SEAT detector, a new detector for
detecting Jacobian-based model extraction attacks. SEAT detector
consists of a Similarity Encoder trained by Adversarial Training
and similar-pair-based detection scheme. Our experiments have
shown that SEAT outperforms existing detection schemes while
maintaining high utility for benign users.

7 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive and valu-
able feedback. This research was supported by generous gifts from
Open Philanthropy, Google, and Berkeley Artificial Intelligence
Research (BAIR).

REFERENCES

[1] Buse Gul Atli, Sebastian Szyller, Mika Juuti, Samuel Marchal, and N. Asokan.
2020. Extraction of Complex DNN Models: Real Threat or Boogeyman?
arXiv:1910.05429 [cs.LG]

[2] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2018. CSI Neu-
ral Network: Using Side-channels to Recover Your Artificial Neural Network
Information. arXiv:1810.09076 [cs.CR]

[3] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2018. Decision-Based Ad-
versarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models.
arXiv:1712.04248 [stat. ML]

[4] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. 2020. Cryptanalytic
Extraction of Neural Network Models. arXiv:2003.04884 [cs.LG]

[5] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of
Neural Networks. arXiv:1608.04644 [cs.CR]

[6] Jianbo Chen, Michael I Jordan, and Martin J. Wainwright. 2020. HopSkipJumpAt-
tack: A Query-Efficient Decision-Based Attack. arXiv:1904.02144 [cs.LG]

[7] Steven Chen, Nicholas Carlini, and David Wagner. 2019. Stateful Detection of
Black-Box Adversarial Attacks. arXiv:1907.05587 [cs.CR]

[8] Jacson Rodrigues Correia-Silva, Rodrigo Berriel, Claudine Santos Badue, Al-
berto Ferreira de Souza, and Thiago Oliveira-Santos. 2018. Copycat CNN: Stealing
Knowledge by Persuading Confession with Random Non-Labeled Data. 2018
International Joint Conference on Neural Networks (IJCNN) (2018), 1-8.

[9] Luke N. Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey. 2018.
CINIC-10 is not ImageNet or CIFAR-10. arXiv:1810.03505 [cs.CV]

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248-255. https://doi.org/10.1109/CVPR.
2009.5206848

[11] John (JD) Douceur. 2002. The Sybil Attack. In Proceedings of 1st International
Workshop on Peer-to-Peer Systems (IPTPS) (proceedings of 1st international work-
shop on peer-to-peer systems (iptps) ed.). https://www.microsoft.com/en-
us/research/publication/the-sybil-attack/

[12] John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono.
2012. Finite Sample Convergence Rates of Zero-Order Stochastic Optimization
Methods.. In NIPS. Citeseer, 1448-1456.

[13] Ian]J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. arXiv:1406.2661 [stat.ML]

[14] Greg Griffin, Alex Holub, and Pietro Perona. 2006. Caltech256 Image Dataset.

(2006). http://www.vision.caltech.edu/Image_Datasets/Caltech256/

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality Reduction by Learning

an Invariant Mapping. In 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR06), Vol. 2. 1735-1742. https://doi.org/10.

1109/CVPR.2006.100

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. arXiv:1512.03385 [cs.CV]

[17] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Chris-
tian Igel. 2013. Detection of Traffic Signs in Real-World Images: The German
Traffic Sign Detection Benchmark. In International Joint Conference on Neural
Networks.

[18] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. 2007. La-

beled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained

Environments. Technical Report 07-49. University of Massachusetts, Amherst.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. 2018. Black-box

Adversarial Attacks with Limited Queries and Information. In Proceedings of

the 35th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 2137-

2146. http://proceedings.mlr.press/v80/ilyas18a.html

(15

[16

[19

[20]

[21

[22

[23]

[24

[29

[30

[31

[32

(37

(38]

[40

[41]

[45

[46]

Sergey loffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs.LG]
Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas
Papernot. 2020. High Accuracy and High Fidelity Extraction of Neural Networks.
arXiv:1909.01838 [cs.LG]

Mika Juuti, Sebastian Szyller, Samuel Marchal, and N. Asokan. 2019. PRADA:
Protecting against DNN Model Stealing Attacks. arXiv:1805.02628 [cs.CR]
Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. 2021. Protecting
{DNNj}s from Theft using an Ensemble of Diverse Models. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=LucJxySuJcE
S. Kariyappa and M. K. Qureshi. 2020. Defending Against Model Stealing Attacks
With Adaptive Misinformation. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,
767-775. https://doi.org/10.1109/CVPR42600.2020.00085

Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images.
University of Toronto (05 2012).

Ya Le and X. Yang. 2015. Tiny ImageNet Visual Recognition Challenge.
Huiying Li, Shawn Shan, Emily Wenger, Jiayun Zhang, Haitao Zheng, and Ben Y.
Zhao. 2020. Blacklight: Defending Black-Box Adversarial Attacks on Deep Neural
Networks. arXiv:2006.14042 [cs.CR]

Daniel Lowd and Christopher Meek. 2005. Adversarial Learning. In Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining (Chicago, Illinois, USA) (KDD °05). Association for Computing Ma-
chinery, New York, NY, USA, 641-647. https://doi.org/10.1145/1081870.1081950
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2019. Towards Deep Learning Models Resistant to Adversarial
Attacks. arXiv:1706.06083 [stat.ML]

Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-Vision
Package of Torch. In Proceedings of the 18th ACM International Conference on
Multimedia (Firenze, Italy) (MM ’10). Association for Computing Machinery, New
York, NY, USA, 1485-1488. https://doi.org/10.1145/1873951.1874254

Smitha Milli, Ludwig Schmidt, Anca D. Dragan, and Moritz Hardt. 2018. Model
Reconstruction from Model Explanations. arXiv:1807.05185 [stat.ML]
Seungyong Moon, Gaon An, and Hyun Oh Song. 2019. Parsimonious
Black-Box Adversarial Attacks via Efficient Combinatorial Optimization.
arXiv:1905.06635 [cs.LG]

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew
Ng. 2011. Reading Digits in Natural Images with Unsupervised Feature Learning.
NIPS (01 2011).

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2018. Knockoff Nets:
Stealing Functionality of Black-Box Models. arXiv:1812.02766 [cs.CV]
Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2020. Predic-
tion Poisoning: Towards Defenses Against DNN Model Stealing Attacks.
arXiv:1906.10908 [cs.LG]

Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade, and
Vinod Ganapathy. 2020. ActiveThief: Model Extraction Using Active Learning
and Unannotated Public Data. Proceedings of the AAAI Conference on Artificial
Intelligence 34, 01 (Apr. 2020), 865-872. https://doi.org/10.1609/aaai.v34i01.5432
Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. 2017. Practical Black-Box Attacks against Machine
Learning. arXiv:1602.02697 [cs.CR]

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

A. Quattoni and A. Torralba. 2009. Recognizing indoor scenes. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition. 413-420. https://doi.org/
10.1109/CVPR.2009.5206537

Jonas Rauber, Wieland Brendel, and Matthias Bethge. 2017. Foolbox: A Python
toolbox to benchmark the robustness of machine learning models. In Reliable
Machine Learning in the Wild Workshop, 34th International Conference on Machine
Learning. http://arxiv.org/abs/1707.04131

Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel.
2020. Foolbox Native: Fast adversarial attacks to benchmark the robustness of
machine learning models in PyTorch, TensorFlow, and JAX. Journal of Open
Source Software 5, 53 (2020), 2607. https://doi.org/10.21105/joss.02607

Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J. Fleet. 2016. Adversarial
Manipulation of Deep Representations. arXiv:1511.05122 [¢s.CV]

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:1409.1556 [cs.CV]

Florian Trameér, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ris-
tenpart. 2016. Stealing Machine Learning Models via Prediction APIs.
arXiv:1609.02943 [cs.CR]

Jean-Baptiste Truong, Pratyush Maini, Robert J. Walls, and Nicolas Papernot.
2021. Data-Free Model Extraction. arXiv:2011.14779 [cs.LG]

Daniel Ponsa Vassileios Balntas, Edgar Riba and Krystian Mikolajczyk. 2016.
Learning local feature descriptors with triplets and shallow convolutional neural
networks. In Proceedings of the British Machine Vision Conference (BMVC), Edwin

https://arxiv.org/abs/1910.05429
https://arxiv.org/abs/1810.09076
https://arxiv.org/abs/1712.04248
https://arxiv.org/abs/2003.04884
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1904.02144
https://arxiv.org/abs/1907.05587
https://arxiv.org/abs/1810.03505
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://www.microsoft.com/en-us/research/publication/the-sybil-attack/
https://www.microsoft.com/en-us/research/publication/the-sybil-attack/
https://arxiv.org/abs/1406.2661
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://arxiv.org/abs/1512.03385
http://proceedings.mlr.press/v80/ilyas18a.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1909.01838
https://arxiv.org/abs/1805.02628
https://openreview.net/forum?id=LucJxySuJcE
https://doi.org/10.1109/CVPR42600.2020.00085
https://arxiv.org/abs/2006.14042
https://doi.org/10.1145/1081870.1081950
https://arxiv.org/abs/1706.06083
https://doi.org/10.1145/1873951.1874254
https://arxiv.org/abs/1807.05185
https://arxiv.org/abs/1905.06635
https://arxiv.org/abs/1812.02766
https://arxiv.org/abs/1906.10908
https://doi.org/10.1609/aaai.v34i01.5432
https://arxiv.org/abs/1602.02697
https://doi.org/10.1109/CVPR.2009.5206537
https://doi.org/10.1109/CVPR.2009.5206537
http://arxiv.org/abs/1707.04131
https://doi.org/10.21105/joss.02607
https://arxiv.org/abs/1511.05122
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1609.02943
https://arxiv.org/abs/2011.14779

R. Hancock Richard C. Wilson and William A. P. Smith (Eds.). BMVA Press,
Article 119, 11 pages. https://doi.org/10.5244/C.30.119
[47] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. 2011. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001. California
Institute of Technology.
Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. 2020. Cache Telepathy:
Leveraging Shared Resource Attacks to Learn DNN Architectures. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 2003-2020. https:
//www.usenix.org/conference/usenixsecurity20/presentation/yan
Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Y. Zhao, and Yafei Dai.
2014. Uncovering Social Network Sybils in the Wild. ACM Trans. Knowl. Discov.
Data 8, 1, Article 2 (Feb. 2014), 29 pages. https://doi.org/10.1145/2556609
Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi Ho, and Yier
Jin. 2020. CloudLeak: Large-Scale Deep Learning Models Stealing Through
Adversarial Examples. Network and Distributed System Security Symposium.
https://doi.org/10.14722/ndss.2020.24178

[48

[49

o
=

A ATTACKER STARTING FROM 5,000 SEED
IMAGES
We use table 11 to show that our SEAT detector remains effective

when the attacker collects 5,000 natural images for the seed image
set and use the same amount of budget (50,000).

Table 11: Adaptive JBA-PGD with 5,000 CIFAR10 seed sam-
ples

Adaptive Schemes Strategies # Accounts Ex. Acc.

Non-adaptive N/A 29 87%
VGG16 + CINIC10 28 86%

Query Filtering 5-layer + CIFAR10 seed 25 85%
VGG16 + CIFAR10 seed 32 86%

Crop 14 85%

Brightness 27 82%

Scale 14 85%

Rotate 27 85%

Query Blinding Contrast 12 82%
Uniform 56 82%

Gaussian 54 82%

Translate 15 85%

Auto-encoder 22 83%

B DISTORTION PARAMETERS OF RANDOM
TRANSFORMATION

Table 12: Random Transformation Parameters

Transformation Torchvision Parameter
Crop RandomResizedCrop scale=(0.96, 1)
Brightness Colorfitter brightness=0.09
Scale RandomAffine scale=(0.83, 1.17)
Rotate RandomRotate degrees=15
Contrast Colorfitter contrast=0.55
Translate RandomAffine translate=(0.05, 0.05)
Uniform noise N/A range=(-0.064, 0.064)
Gaussian noise N/A (mean,std)=(0,0.095)

Chen et al.[7] generate positive sample in equation (3) by random
transformations. In our experiments, we use Torchvision[30] imple-
mentation of these random transformation, and an transformation
will be randomly sampled to transform an images. For Uniform

and Gaussian noise, we use PyTorch implementation of random
number generator of corresponding distributions with necessary

scaling and shifting. In table 12, the first column is the type of
transformation, the second column is the implementation name in
Torchvision, and the last column is how we set the parameter of
these random transformation.

https://doi.org/10.5244/C.30.119
https://www.usenix.org/conference/usenixsecurity20/presentation/yan
https://www.usenix.org/conference/usenixsecurity20/presentation/yan
https://doi.org/10.1145/2556609
https://doi.org/10.14722/ndss.2020.24178

	Abstract
	1 Introduction
	2 Background & Related Works
	2.1 Notations
	2.2 Threat Model
	2.3 Jacobian-based Augmentation Attacks
	2.4 Data-free Model Extraction Attacks
	2.5 Sampling-based Extraction Attacks
	2.6 Detection Schemes
	2.7 Other Defenses

	3 Methodology
	3.1 SEAT
	3.2 Similar Pairs
	3.3 Adaptive Attacks

	4 Experiments
	4.1 Experiment Settings
	4.2 Seed Query Set
	4.3 Training SEAT
	4.4 False Positive Rate
	4.5 Effectiveness of SEAT Detector
	4.6 Adaptive Attack Evaluation
	4.7 Detecting DFME Attack
	4.8 Comparison with Existing Defenses
	4.9 Ablation Study

	5 Limitations
	5.1 False Positive Rate
	5.2 Other Adaptive Attacks
	5.3 Pair Search Runtime

	6 Conclusion
	7 Acknowledgements
	References
	A Attacker starting from 5,000 seed images
	B Distortion Parameters of Random Transformation

