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ABSTRACT
Online fraud such as search engine poisoning, groups of fake ac-

counts and opinion fraud is conducted by fraudsters controlling a

large number of mobile devices. The key to detect such fraudulent

activities is to identify devices controlled by fraudsters. Traditional

approaches that fingerprint devices based on device metadata only

consider single device information. However, these techniques do

not utilize the relationship among different devices, which is crucial

to detect fraudulent activities. In this paper, we propose an effective

device fraud detection framework called FeatNet, which incorpo-

rates device features and device relationships in network repre-

sentation learning. Specifically, we partition the device network

into bipartite graphs and generate the neighborhoods of vertices

by revised truncated random walk. Then, we generate the feature

signature according to device features to learn the representation

of devices. Finally, the embedding vectors of all bipartite graphs are

used for fraud detection. We conduct experiments on a large-scale

data set and the result shows that our approach can achieve better

accuracy than existing algorithms and can be deployed in the real

production environment with high performance.
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1 INTRODUCTION
With the rapid development of the mobile internet, both account

and device information are essential for anti-fraud authentica-

tion [2]. For example, fraudsters could register different fake ac-

counts to participate in the sales promotion of e-commerce compa-

nies in order to get the discount vouchers or steer prices [8]. Tradi-

tionally, a special rule is applied to make sure each account can only

get one voucher from one device, since the cost of faking accounts

is much cheaper than building a mobile device cluster. Therefore,

device fingerprinting technique becomes a core technology to iden-

tify unique devices. However, research [21] has demonstrated that

only device fingerprint is not enough to be used for authentication,

and it could be harmful for the authentication system because the

fingerprints carry a lot of similarity, even across models and brands

in some particular scenario. To this end, we propose a framework

for fraud device detection called FeatNet. The relational and statis-

tical information with the devices is mined in this framework. We

utilize relationships between the devices, including mobile devices

in the same Wi-Fi local network, or shared by one same person.

Specifically, we construct a graph where the vertices are device,

WI-FI AP, and user account, and the edges between them denote

“device connects WI-FI AP” and “account logins in device” corre-

spondingly. The intuition is that the same WIFI and bad accounts

may be used by multiple devices controlled by the fraudsters. In

addition to relational information, statistics extracted from devices

can also strongly indicate whether they are used by fraudsters. For

example, devices that are rooted, have installed repackaged apps,

and always being charged have a higher likelihood of being used

by fraudsters.

Traditionally, to find anomalies of devices by their relationships,

label propagation methods [20], or rules like vertex degree counts

are applied in risk management, both of which fail to utilize the

global network information. Recently, research in the area of net-

work representation learning [1] [19] [24] utilizes intrinsic informa-

tion in network and learns distributed representations of vertices

or edges. However, there are challenges to transfer these work to

fraud detection for the following reasons: the scale of dataset is up

to hundreds of million; the dictionary of device ID is too large to be

embedded; the statistical features of vertices should be integrated
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into network structure of similar importance. We propose FeatNet

to solve these challenges by making the following contributions:

• We define the device network for detecting fraud devices,

which links devices together by physical or manmade time-

related relationships. In the device network, risky devices are

inclined to form clusters and we predict the risk probability

by incorporating device features with device relationships.

• We propose FeatNet, an unsupervised NRL framework for

the device network: large-scale heterogeneous device net-

work is partitioned to learn the distributed representation

of devices; to preserve the semantic closeness, the feature

signature of vertex is introduced in neighborhood sampling

strategy.

• We conduct experiments on the spamdexing detection of

Baidu mobile search with tens of millions of devices. Results

show that FeatNet has significant improvement over baseline

algorithms with high scalability in practice.

This paper proceeds as follow: related work of fraud detection

and NRL methods are reviewed in section 2. In section 3, after the

definition of device network, the FeatNet framework is introduced:

the objective function of the problem is designed and studied firstly;

then we define feature signature and discuss the graph partition

and vertex sampling strategy; we briefly outline the learning pro-

cedure of the overall framework lastly. In section 4, experiments

on spamdexing detection is conducted with practical data. We con-

clude with FeatNet framework and discuss some directions for

future works in section 5.

2 RELATEDWORK
Extensive research has been done to predict the label of nodes

by extracting structural information in the network. The conven-

tional method [3] [9] generates hand-crafted node features based

on network properties such as degree centrality and neighborhood

connectivity. Recently, Network Representation Learning (NRL)

has attracted much attention, which learns the feature representa-

tions of vertices by defining and optimizing the objective function.

LINE [24] preserves first order and second order proximity of ver-

tices and concatenated the two distributed representations, how-

ever, it is insufficient to take full advantage of network. GraRep [4]

generalizes LINE to incorporate information from neighborhoods

beyond 2-step, but computing of high-order proximities is time-

consuming and does not scale practically. SDNE [26] generalizes

LINE to a semi-supervised deep model and adapts auto-encoder

to embed the similarity vector of vertex. NEU [28] approximates

higher order proximity matrix to enhance the performance of any

NRL methods, while it supports tens of thousands of vertices with

millions of edges even though.

An alternative approach is to sample the vertex’s neighbors

by random walks and learn the representation from the result-

ing context. DeepWalk [19] generates linear context of vertices

by truncated random walks and adopts skip-gram model for the

representation learning, which exploit different orders of proximity.

Node2vec [6] generalizes DeepWalk with BFS and DFS of random

walks and explores diverse neighborhoods. TADW [27] proves that

random walks based method is equivalent to matrix factorization.

Except for the equivalence of structural neighborhoods in device

network, many device features exhibit a strong homophily (e.g.,

groups of products of the same type are controlled by fraudsters).

Therefore, the methods such as node2vec can be outperformed by

latent representations that better capture device homophily (as we

soon show).

More generally, feature learning in heterogeneous network is

challenging since it is hard to preserve the concept of node-context

with arbitrary types of vertices and incomparable weight of edges.

PTE [23] generalizes LINE to heterogeneous text network by parti-

tioning the whole network, and utilizes both labeled and unlabeled

data. To address the link prediction problem in academic network,

studies [5] [10] [22] define the composite relations as meta-paths

between two nodes and adopts meta-path-based random walks to

generate heterogeneous vertex neighbors biased by vertex type,

while it is difficult to model similarities between nodes without con-

nected mate-paths. LSHM [11] assumes that the labels and tags of

vertices are inter-dependent due to the influence of neighbors, and

learns the latent node representations by extending homogeneous

label propagation model. These research collectively demonstrate

that the embedding of heterogeneous network differs on specific

problems.

In addition, NRL with extra information is another interesting

topic. There is usually rich information in vertices and edges in

device network, such as device hardware information, historical

risk labels, etc. The approaches above mainly devote to preserve the

network structure, but they cannot be generalized to deal with fea-

tures trivially. TADW [27] incorporates text features of vertices into

NRL under the framework of matrix factorization. Most embedding

frameworks, such as SDNE, are inherently transductive and can

only generate embedding for a single fixed graph. The alternative

method is neighborhood aggregation algorithm. GCN [12] oper-

ates convolutional neural network (CNN) directly on graphs and

introduces a graph-based model for semi-supervised classification.

GraphSAGE [7] leverages node feature information to efficiently

generate node embedding for previously unseen data. CANE [25]

notices the different aspects of vertex when it interacts with differ-

ent neighbors. It uses a CNN to obtain text embeddings according to

structure based objective as well as text based objective. However,

CNN requires large amount of labeled samples which is impractical

in anti-fraud scenario, and the tuning of deep model involves many

parameters, which makes the gained knowledge hard to transfer to

related problems.

3 FEATURE LEARNING FRAMEWORK
In this section, we firstly formulate the embedding method of the

device network with various features of vertex, and then introduce

the approach of FeatNet and the components of our algorithm.

3.1 Problem Definition
Definition 1. Device network is a social network of devices linked

by physical or man-made relationships, which consists of type I

vertex and type II vertex. Type I vertex is the device itself, identi-

fied by device fingerprint. Type II vertex includes Wi-Fi AP, user

account, IP address and so on. Note that we take mobile device as

Type I vertex because we want to predict the risk level of devices in
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spamdexing detection. In other scenario, any node can be consid-

ered as Type I vertex. Wi-Fi AP is identified by the concatenation

of BSSID (Basic Service Set Identification) and SSID (Service Set

Identifier). User account is identified by the account ID.

The device network, denoted as GL = (V ,E,W ,X ,Y ), is a par-
tially labeled information network. V = V0 ∪V1 ∪ ... ∪VN−1 are N
disjoint sets of vertices, where V0 are type I vertices and others are

type II vertices. X ∈ Rχ is the feature vertor of nodes’ attributes,

where χ is the dimension of feature, Y ∈ R is the label set of each

node. We will discuss how to extract node feature X in Section

III.B. E is connections between vertexes, which can be directed or

undirected, weighted or unweighted. In our approach, the weight

of the edge between vi and vj is defined as the reciprocal of the

days since the connection is established. We aim to learn the map-

ping function f : X → Rd ,d << χ , which embeds information to

low-dimensional feature representations.

In device network, type I vertex is connected to type II vertex,

and there is no connection between different types of type II ver-

tices. Hence, a reasonable solution is to partition the network into

some homogeneous bipartite networks where there is only one

type of edge, then sample the context of vertices alternatively from

these subnets. More importantly, partitioning by type II vertex

accelerates the convergence of optimization with high variance

of edge’s weights and makes the result interpretable in risk man-

agement scenario. Let the type I vertices be V0, type II vertices be
V1, ...,VN−1. Then we partition the networkGL into N − 1 bipartite
graphs G1, ...,GN−1, GN = (V0,Vn ,E), where n = 1, ...,N − 1. The
following node representation is based on these subnets.

3.2 FeatNet
3.2.1 Target of Optimization. The representation learning of one

bipartite graph can be formulated to a maximum likelihood opti-

mization problem. First, the source vertex is vi . The conditional
probability of generating context from vertex vi to vertex vj is
defined by the dot product of their representations as:

p (vj |vi ) =
exp (u⃗Tj · u⃗i )∑

vk ∈V exp (u⃗Tj · u⃗i )
(1)

Where u⃗i is the representation vector of vertex vi . Let the set
of neighborhoods be N , vj ∈ N is a sampled neighbor of vi . For
each source vertex vi ∈ V , equation (1) defines the conditional

distribution p (·|vi ) over the vertices set. We aim to maximize the

log-probability in terms of context structures. Since each step in

sampling is independent, the objective of sampling a network neigh-

borhood of vi is to maximize:∑
vi ∈V

loд(
∏
vj ∈N

p (vj |vi ))

We replace p (vj |vi ) with equation (1). Let d is size of the neigh-

borhoods N , the objective function conditioned on the feature

representation can be calculated as:

∑
vi ∈V

[−d · loд(
∑
vk ∈V

exp (u⃗Tk ) · u⃗i ) +
∑
vj ∈N

exp (u⃗Tj · u⃗i )] (2)

By maximizing the objective function equation (2), we can learn

the representation vector u⃗i of each vertex v⃗i . The calculation of

sum of each vk ∈ V is able to be optimized by negative sampling

in large-scale network. However, the computation of equation (2)
still meets with daunting challenges that will be discussed in the

next section.

3.2.2 Sampling Strategy. Next, we introduce the neighborhood

sampling strategy with a fixed window size d . The neighborhoods
of a node are not restricted to just immediate neighbors but can

have vastly different structures depending on the sampling strategy.

Node2vec [6] proposed a biased neighborhood sampling strategy

between BFS and DFS by introducing the return parameter p and

in-out parameter q.
In the traversal, let the previous vertex be vi ∈ V0, the current

vertex be vc ∈ Vn , then the next sampled vertex vj must be back in

V0, and no path length equals to 1 between v⃗i and v⃗j in the bipartite

graph. In this case, the unnormalized transition probability of node

c is set to πc j = α (i, j ) ·wc j , where

α (i, j ) =



1

p , i f (i = j )
1

q , i f (i , j )

For each vertex vi in the bipartite graph, we generate random

walk sequences by normalized πc j , and produce fixed length neigh-

borhood observations. After sampling, the skip-gram model [17] is

used to update our representations in accordance with our objective

function Equation (2). The method of learning distributed repre-

sentation of words includes dimensionality reduction on the word

co-occurrence matrix [13], skip-gram model, GloVe [18], etc. The

work [16] defines the specific loss function to prove that skip-gram

with negative sampling is an explicit matrix factorization of the

word co-occurrence matrix. There is no advantage of using any

approach over others and much of the performance gains are due

to system design choices and hyper-parameter optimizations [14],

so we evaluate the performance of FeatNet to specific task, which

will be stated in section 4.

3.2.3 Embedding With Feature Signature. However, there are limi-

tations of the aforementioned approach. First, embedding the vertex

by a sequence of device ID ignores the domain knowledge con-

tained in device features. Second, embedding device IDs can make

the model overfit labeled devices. Third, the quantity of device ID is

too large to train the skip-gram model. Next, we introduce feature

signature to solve this problem.

Definition 2. Feature signature is a string that represents the

characteristics of each device, which is constructed by expert do-

main knowledge and other labeled information such as records of

fraud.

By integrating feature signature into the context of each vertex,

we are able to utilize all features of devices as well as historical

labels. For example, there are tags with security expert knowledge,

such as antivirus_scan_security, host_repackage, debug_mode_on

etc., along with the rich text features and numeric features. We

preprocess these features to construct the feature signature, which

is described as below:

(1) Text features are represented as list L1.
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(2) Categorical features, such as records of fraud, is individually

labeled into disjoint subsets to text list, e.g., “risk: loan fraud”

is to “RISK_1”. Categorical features are represented as list

L2.
(3) Numeric feature is normalized and mapped to feature bucket,

then marked with text tag, eg. “day_average_power: 0.65” is

to “AVG_PWR_6”. Numeric features are represented as list

L3.
(4) L1,L2,L3 are concatenated into list L. An example of L is:

[“BOARD_MSM8953”, “RESOLUTION_1080*1920”, “PROD-

UCT_OPPOR9S”, “IS_ROOTED”, “ACCOUNT_NUM_LARGE”,

“DEBUG_MODE_ON”, “AVG_SIGNAL_STRENGTH_HIGH”,

“AVG_PWR_6”, “RISK_1”,...].

(5) Skip-gram model is used to convert L to a fixed length vector

Vk .
(6) Finally, continuous values inVk are mapped to buckets. Then

the feature signature string is formed by concatenating num-

bers in each bucket..

Text feature is themost common feature in spamdexing detection,

so other features are converted to text feature in feature the list L.
We use skip-gram model to represent the sequence ofVs with a low

dimensional vector. Once the vectors of each feature signature are

learned, the representation vector of the device can be obtained by

averaging all the vectors of its neighbors’ feature signatures. Since

the representations of devices leveraged by the fraudsters inclines

to cluster apparently, the representations of device’s neighbors

reveal the potential risk of the device. Note that the dimension of

Vk k is flexible to avoid over-fitting of the model. Besides, k affects

the dictionary size of feature signature s , which is proportional to

cost of computing equation (2). Hierarchical softmax is used to

reduce the complexity of computing to O (loд(s )).

3.2.4 Overall Framework. The overall learning framework is de-

tailed in Algorithm 1. First, the device network is partitioned to

N − 1 bipartite subnets. Second, the neighbors of vertices as well
as the feature signature of neighbors are sampled in all subnets.

Third, the representation of each vertex is learned by the feature

signature of neighbors. Let u⃗ni be the distributed representation

of vi in the subgraph Gn ,n = 1, ...,N − 1. u⃗ni will be the output to
downstream prediction task as N − 1 individual feature slot of vi .

In the stage of neighbor sampling, the time complexity isO (dn |V |),
where d is sampling length of neighborhood; n is the number of

walks; |V | is the number of vertices in the network. In the stage

of stochastic gradient descent, the training of skip-gram takes

O ( |V |loд(s )) time, where s is the dictionary size of feature sig-

nature, s << |V |. Thus the overall time complexity of FeatNet is

O ( |V |loд(s )).

4 EVALUATION
4.1 Data Sets
We conduct experiments of spamdexing detection on a real-world

datasets of Baidu mobile search to find devices possessed by fraud-

sters. By constructing relationships of device to Wi-Fi AP and user

account, we can integrate device features with network struture.

The entire dataset has 13,567,732 devices IDs, 31,427,140 BSSIDs

Algorithm 1 FeatNet Algorithm

function featureLearning((Graph G = (V ,E,W ))
for Gi in partitionGraph(G) do

append bipartiteGraphWalk(Gi ) towalks
ui = skip-gram(walks)
output ui

end for
end function

function partitionGraph(G = (V ,E,W ),
nodeType = N )

for i from 1 to N − 1 do
append (V0&Vi ,E,W ) to subдraph

end for
return subдraph
end function

function bipartiteGraphWalk(Gi = (Vi ,E,W ))
for v in Gi do

constructNodeSigature(v)
end for
for i from 1 towalk_num do

for vertex in Gi do
for d from 1 to samplinд_lenдth do

cur_vertex = vertex_neiдhbor [−1]
v = sampleNextNeighbor(cur_vertex )
append v to vertex_neiдhbor
append v .siд to siд_neiдhbor

end for
append siд_neiдhbor to siд_walk

end for
end for

return siд_walk
end function

and 136,006 user account IDs. The average degree of device vertex

is 31.3.

4.2 Baseline Methods
We compare FeatNet with the following baseline algorithms. For

comparisons, the dimension of distributed representation is set to

200 consistently.

(1) node feature skip-gram. The skip-gram model is used to

embed the features of node, then training classifier only

with node features, regardless of the structural information.

The minimum word count is set to 5.

(2) matrix factorization. The factorization of vertex co-occurrence

matrix is adopted to embed the network structure. We take

the top 200 values as the low-dimensional representation

vector of each vertex.

(3) LINE. LINE is a NRL method suitable for learning informa-

tion networks.We adopt both the first order and second order

proximity of LINE model. The number of negative samples
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is set to 5. The dimensions of the first and the second order

representations are both set to 100.

(4) node2vec. Node2vec defines a flexible notion of vertex’s

neighborhood and proposes a biased random walk sampling

method based on Deepwalk. We apply node2vec (scala im-

plementation with Spark) to device network to learn the

structural informaiton between devices. The values for p and

q are set to 1; number of walks is set to 20; walk length is set

to 50.

(5) FeatNet-1. FeatNet-1 uses device ID and Wi-Fi AP relation-

ships.

(6) FeatNet-2. FeatNet-2 uses device ID, Wi-Fi AP and user ac-

count relationships.

4.3 Performance
We evaluate the performance of these approaches in both clas-

sification and clustering tasks. In binary classification task, the

results is compared by the standard evaluation metric AUC with

random forest classifier on Spark. In clustering task with DBSCAN,

the effectiveness is measured by F1 score, homogeneity score and

completeness score.

4.3.1 Performance on Sample Dataset. To demonstrate the embed-

ding result of FeatNet, we select device node with high degree as

the sample dataset, which has 20000 edges of device ID/BSSID/user

account ID relationships. There are 9330 device IDs, 5525 of which

are spam; 3805 of which are not spam. There are 7339 BSSIDs and

138 user account IDs.

For binary classification task, we evaluate the performance of

fraud detection on the sampled dataset with various percentage of

training data with labels. As shown in Table 1, by incorporating

device feature with network structural information, FeatNet-2 con-

sistently achieves improvement among the baselines in different

training ratios. The performance of methods that take only node or

network information, such as node feature skip-gram and matrix

factorization, is inferior to other baselines. While, due to a small

quantity of device ID/user account relationships in this dataset,

FeatNet-2 hardly makes contribution to AUC score. The average ac-

curacy of FeatNet-1 is 0.824; and he average accuracy of FeatNet-2

is 0.851.

Table 1: AUC values on sampled dataset with sampled train-
ing ratios.

Algorithms 20% 40% 60% 80%

node feature skip-gram 0.755 0.766 0.772 0.771

matrix factorization 0.765 0.778 0.779 0.780

LINE 0.780 0.792 0.799 0.798

node2vec 0.790 0.808 0.808 0.811

FeatNet-1 0.926 0.927 0.927 0.930

FeatNet-2 0.928 0.928 0.929 0.931

We also conducted clustering tasks to assess the performance of

the methods. In the clustering task, we randomly select a portion

of vertices as training set, then repeat the clustering for 10 times

and report the average Macro-F1 and Micro-F1 score. As shown in

Table 2 and Table 3, FeatNet consistently and significantly improves

the performance of network embedding on both evaluation tasks.

Table 2: Micro-F1 on sampled dataset with sampled training
ratios.

Algorithms 20% 40% 60% 80%

node feature skip-gram 0.639 0.651 0.658 0.659

matrix factorization 0.539 0.569 0.615 0.618

LINE 0.666 0.667 0.667 0.667

node2vec 0.676 0.677 0.679 0.68

FeatNet-1 0.678 0.677 0.681 0.682

FeatNet-2 0.681 0.682 0.683 0.683

Table 3: Macro-F1 on sampled dataset with sampled training
ratios.

Algorithms 20% 40% 60% 80%

node feature skip-gram 0.628 0.663 0.668 0.67

matrix factorization 0.518 0.57 0.614 0.617

LINE 0.737 0.74 0.742 0.745

node2vec 0.74 0.741 0.743 0.745

FeatNet-1 0.742 0.775 0.801 0.867

FeatNet-2 0.745 0.787 0.829 0.875

Table 4: Homogeneity Score and Completeness Score.

Algorithms homogeneity completeness

node feature skip-gram 0.006 0.008

matrix factorization 0.005 0.003

LINE 0.001 0.073

node2vec 0.012 0.055

FeatNet-2 0.193 0.042

Table 4 reports the homogeneity score and completeness score

of the clustering results. The homogeneity score of FeatNet is much

higher than others, which means that there are many clusters con-

taining only data points that are members of a single class in the

FeatNet representation. Figure 1 shows the visualization of the de-

vice network embedding. The results are mapped to the 2-D space

using the t-SNE package with learned FeatNet embedding as input.

By investigating suspicious clusters that have high homogeneity

scores (such red plus signs in the lower left corner), we discov-

ered hundreds of device groups sharing similar format of SSID and

BSSID, which are likely controlled by fraudsters. These devices and

user accounts associated with them are added to the blacklist to

recude fraud risk.

4.3.2 Performance on Large-Scale Dataset. The large-scale dataset
has 39,483,849 edges of device ID/BSSID/user account ID relation-

ships. There are 13,567,732 device IDs, 1,260,835 of which are spam;

12,306,897 of which are not spam. There are 31,427,140 BSSIDs and

136,006 user account IDs. The dictionary size of feature signature

is 362,452 when k = 15.
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Figure 1: Visualization results on FeatNet.

For binary classification task, Table 5 compares the performance

on the large-scale dataset with various percentage of training data

with labels. Node feature skip-gram, matrix factorization, node2vec

and FeatNet run on a Spark cluster. For FeatNet, we use 200 execu-

tors, with 12g memory and 3 vCores for each executor; for each of

the other methods, we use 200 executors, with 14g memory and 3

vCores for each executor. Matrix factorization fails in this evalua-

tion for the magnitude of data. Node2vec takes device ID as node

context, so it fails in the embedding stage as the dictionary size of

device ID becomes too large. The open source project of LINE [24] is

multiple threads stand-alone mode, and the experiment on CentOS

server (128GB memory, Xeon E5-2620 v3 2.40GHz) fails with out of

memory error on the large-scale dataset.FeatNet-2 achieves stable

improvement in various training ratios than other baselines.

Table 5: AUC values on large-scale dataset with sampled
training ratios.

Algorithms 20% 40% 60% 80%

node feature skip-gram 0.698 0.700 0.699 0.705

FeatNet-1 0.874 0.878 0.880 0.881

FeatNet-2 0.875 0.880 0.883 0.885

The average accuracy of FeatNet-1 is 0.809; The average accuracy

of FeatNet-2 is 0.811.

4.3.3 Scalability. The scalability of FeatNet-2 is tested on a spark

cluster. The number of devices from 9,224 to 13,567,732, which is

randomly sampled from the whole dataset. Spark configurations

are as follows: num-executors=200, executor-cores=3, executor-

memory=8g.

Some optimization from previous work [15] makes the sampling

procedure efficient. As shown in Figure 2 FeatNet-2 scales nicely

with learning time increasing linearly, and completes learning of

the whole dataset in 59 minutes.

4.3.4 Parameter Sensitivity. We employ grid search to select the

best hyper-parameters of FeatNet. There are 5 hyper parameters:

dimension of feature signature k , return parameter p, in-out pa-
rameter q,truncated sampling length d and number of walks n. The

Figure 2: Scalability.

training ratio is fixed to 80%, and the parameters not tested are set

to default values: k = 15,p = q = 10,d = 50,n = 20.

Figure 3 shows that k improves performance at the cost of in-

creased computation time, while the performance drops when the

dimension becomes too large. When the ratio of return parame-

ter p to in-out parameter q is near 1, the performance of FeatNet

improves, which means the fraud devices cluster more efficiently

(Low p/q leads the walk to backtrack a step, and high p/q encour-

ages outward exploration in network [6]). We also examine that

the performance improves with the enhancement of d , because the
length of context increases. When d becomes large enough, the per-

formance of FeatNet converges. Similarly, n improves performance

with an upper limit, at the cost of proportional time consumption.

In conclusion, the performance of FeatNet is stable when theses

hyper parameters vary within a reasonable range.

Figure 3: Parameter Sensitivity.

5 DISCUSSION AND CONCLUSION
In this paper, we have proposed FeatNet, a network representation

learning framework for heterogeneous information networks with
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explicit domain features. The sampling strategy that FeatNet applies

in homogeneous bipartite graphs utilizes overall structural informa-

tion of device network. FeatNet also introduces feature signature

which adapts detailed device information in the embedding proce-

dure. In addition, FeatNet is easy to extend to other device-device

relationships. Finally, the whole FeatNet framework is implemented

on Spark, which brings excellent scalability.

In conventional anti-spam solutions, there is agreement on the

necessity of moderate data collection to fight against underground

economy. Our dataset was collected by the SDK bundle of Baidu

mobile search app with privacy notice provided. To anonymize

the data, device fingerprints and AP mac addresses are hashed and

personally identifiable fields are deleted. Adversarial evasion to

data collection is possible, e.g., change Wi-Fi AP name, but some

features may reflect such evasion attempt, e.g., the device may be

rooted in order to manipulate certain fields.

For future work, further studies are needed to improve Feat-

Net, such as to strengthen the theoretical justifications of the con-

struction of feature signature. We also would like to investigate

the applicability of our algorithm in other representation learn-

ing tasks. Another intriguing direction is to apply FeatNet as a

representational layer in the deep learning architecture.
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