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Smart Contracts

- Definition. A program deployed on a blockchain (e.g. Ethereum)
- Immutable once deployed, so, difficult to fix vulnerabilities post-hoc
- Highly desirable to prevent vulnerabilities before deployment
- Live vulnerability are very expensive!! 

- millions of USD in value are lost regularly



Smart Contracts – Functional and Implementation Bugs

Implementation Bugs

- Exhibit universal buggy 
behavior

- Example: integer overflow

Functional Bugs

- Newly-identified category of bugs
- “machine un-auditable”
- Cannot be reliably detected by relying on 

pre-defined bug patterns
- Existing automated tools rely on such patterns



Smart Contracts – Functional Bugs as Difficult

Identification requires non-trivial reasoning across multiple multiple sources of 
information or modalities

- Example: reasoning across source code and natural-language documentation



SMARTINV

SMARTINV is a novel framework for:

- inferring smart contract invariants
- detecting bugs at scale



Example: Flashloan Primer

- A flashloan is an uncollateralized 
loan that allows users to borrow 
assets without cost as long as the 
loanee pays back within a single 
transaction

- Price manipulation hack:
- Hacker injects a large flashloan into 

token0 price reserve, which changes 
price.

- Hacker takes advantage of temporary 
price change to get a new flashloan at 
temporary better rate.

- Hacker pays back loans, keeping an 
arbitrage profit.

Implies real-time price oracle, which 
means price can change between 

beginning and end of flashloan



Example: Flashloan Primer

- Most traditional bug analyzers report 
this as a healthy contract

- Based on formal verification, symbolic 
execution, dynamic analysis, common 
bug patterns

- Requires natural-language 
understanding of “real-time price 
updates” to recognize bug

- SMARTINV infers invariant by 
analyzing code source code and 
comment



SMARTINV Workflow

Challenge #1: Incorporate and represent 
multimodal information and respective 
smart contract semantics

- Invariant templates and unique 
finetuning process that incorporates 
multimodal information

Challenge #2: Determine which 
invariants are correct (during inference)

- Novel invariant ranking strategy



SMARTINV – Invariant Templates

- Uses both standard and novel invariant templates
- Model is trained on smart contracts with labeled ground truth invariants
- Novel invariant templates:



- Goal. Guide a pre-trained foundation model towards generating 
gun-preventive invariants

- New Idea. Introduce increasingly complex thoughts into the conversation as 
the model is reasoning

- (Model is finetuned to generate one thought at a time)
- Tier 1: identify critical program points
- Tier 2: identify possible invariants
- Tier 3: rank possible invariants and bugs

- Inference. decompose the invariant generation problem into this 3-tiered task

SMARTINV – Tier of Thought Finetuning and Inference



SMARTINV – ToT Invariants Verification Algorithm

- As inference is generating possible invariants, convert the generated Solidity 
code to Boogie, which performs a static analysis to check if there is enough 
information present in the source code to prove program correctness

- If the invariant is strong enough, its marked as so
- If the invariant is not strong enough, model checker will search for 

counterexamples to propose to a Tier 3 reasoning prompt



Implementation

- Training and inference are written in 4011 LoC Python
- Invariant verification algorithm are written in 1322 LoC C#, using VeriSol
- Invariant templates are written in 169 LoC Solidity
- LLaMA-7B with 8-bit quantization used as foundation model
- LLaMA-7B was finetuned with Parameter Efficient Finetuning and low-rank 

adaptation
- Smart contract dataset of 179,319 contracts from 1 Jan 2016 to 1 July 2023 

collected from Etherscan and public Github repositories using Google 
BigQuery

- Training contracts were labeled with ground truth features: transactional 
contexts, critical program points, all relevant invariants, critical invariants, 
ranked critical invariants, and vulnerabilties



Evaluation

Research questions:

- RQ1: In terms of bug detection, how does SMARTINV compare to six 
state-of-the-art bug analyzers and three similar prompting-based tools?

- RQ2: In terms of invariants generation, how does SMARTINV compare to 
similar tools?

- RQ3: How much do our selected model LLaMA and optimizing strategies 
improve the accuracy of bugs detection and invariants generation?

- RQ4: How fast is SMARTINV compared to similar tools?



RQ1: Effectiveness of Predicted Invariants for Bug Detection

Compared SMARTINV to several state-of-the-art bug-detection systems.



RQ1: Effectiveness of Predicted Invariants for Bug Detection

…



RQ2: Invariants Detection Accuracy

Compared SMARTINV’s invariants detection capability with:

- INVCON (a Daikon-adapted smart contract invariants detector)
- VERISMART (a CEGIS-style verifier)



RQ3: Ablation Study

Considered six foundation models as our 
baselines: OPT-350M, Google’s T5-Small, 
OpenAI’s GPT2 and GPT4 (no finetuning 
available), Stanford’s Alpaca, and Meta’s 
LLaMA-7B

Goal. Quantify how much our key optimization 
strategies improved the end results

Method. Removed natural language modality in 
dataset by deleting comments and renaming 
functions to not give away domain-specific info.

TABLE 12. Ablation Study



RQ4: Runtime Performance



Discussions

- Token Length. Foundation models have limited token length available for 
finetuning. LLaMA models are limited to 4069 tokens. So, large contracts 
were truncated. Future work to do here.

- Verifier Compatibility with Solidity Compilers. Based verifier on VeriSol’s 
mapping between Solidity and Boogie, but this limits compiler versions and 
thus compatible contracts.

- Exploitability of Zero-Day Bugs. Not all detected zero-day bugs are 
exploitable, due to old compiler versions used in study.



Smart Contract Static and Dynamic Analysis

- Symbolic execution, relying on common bug 
patterns

- Can’t generalize beyond pre-determined bug patterns
- Static analysis tools use data flow analysis

- Can’t be multimodal
- Fuzzing using randomized testing

- Slow and unpredictable

Invariants Detectors and Verifiers

- Daikon and InvCon automatically generate 
possible invariants to consider

- SMTChecker, SolcVerifier, VeriSol, and Zeus 
require manual specification of invariants then 
infer transaction invariants

- Requires good specification

Related Work

ML-Based Tools

- SVChecker and Neural Contract Graph 
use NNs to discover sets limited sets of 
implementation bugs based on trained 
patterns

- Prompting-based tools don’t check for 
model hallucinations

- Overall, can’t reliably detect critical 
functional bugs
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Technical Correctness

1. No Apparent Flaws

- The authors go into detail about their methodology. They explain their new 
prompting strategy and how it results in better model performance after 
fine-tuning, followed by formal verification. 

- Comparison of SmartInv with existing tools, with SmartInv achieving the 
lowest False Positive Rate and False Negative Rate. 

- Concludes with an ablation study of their framework and discusses the 
limitations of their framework, which are acceptable.



Scientific Contribution

2, 3, 4, 5, 6

- The authors present a new prompting technique and dataset that result in a 
tool designed to easily identify and fix known types of security vulnerabilities. 

- The findings from this work could inspire future research that improves bug 
detection, enables more fixes in complex scenarios, and reduces runtime 
costs.



Presentation and Recommended Decision

3. Major but Fixable Flaws in Presentation

- The language of the paper can be adjusted to make it a bit more clearer. In 
particular a more detailed background on what smart contracts are would be 
helpful. 

- Another issue is that the authors mention smart contracts are immutable, but 
don't explain how the bugs of a smart contract could be fixed. 

- Table 8 should be replaced with a graph that better illustrates the author's 
claims. 

2. Accept with Noteworthy Concerns in Meta Review
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Previous Work

- GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program 
Analysis

- an early attempt to leverage LLMs for smart contract vulnerability detection
- combined GPT with traditional program analysis techniques to identify 

potential vulnerabilities
- breaks down vulnerability types into scenarios and properties

- matches these to the candidate functions and uses static analysis tools with the AST to 
confirm that the code is vulnerable

https://arxiv.org/abs/2308.03314
https://arxiv.org/abs/2308.03314


Comparison

- lacks the ability to reason about multimodal input (natural language 
and source code)

- doesn’t have the ability to generate invariants to assist with 
preventing logical bugs in the contract

- doesn’t structure the prompting intelligently like SMARTInv does with 
increasing difficulty as you progress through the tiers

- SMARTINV’s fine-tuning approach helps overcome the limitations of 
pre-training knowledge that GPTScan mentions



Subsequent Work
- PropertyGPT: LLM-driven Formal Verification of Smart Contracts through 

Retrieval-Augmented Property Generation
- uses a vector database of existing properties for retrieval-augmented generation of new 

properties
- more sophisticated process for ensuring the quality of generated properties

- compilability checks, appropriateness weighted ranking, and runtime verification
- also defines its own intermediate language for property specification

https://arxiv.org/abs/2405.02580
https://arxiv.org/abs/2405.02580


Comparison

- retrieval mechanism using a vector database of existing properties 
rather than fine-tuning.

- iterative refinement process guided by compiler feedback and more 
rigorous checks

- more complicated ranking of invariants using similarity-based weight 
ranking algorithm

- SMARTINV’s multimodal reasoning capabilities are still unique 
strengths not explicitly addressed in PropertyGPT
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Smart contract bugs are costly!

$45 million lost over only 16 bugs in FY2024 Q1 (hacken.io)

DeFi platform Compound falsely awarded $90 million due to vulnerabilities

August 2021 - hacker exploited bug to steal $600 million in tokens (ICBA)



Extremely diverse range of bugs

Many of the top smart contract bugs
are implicit (hard-to-catch with static
analyzers) or easily obfuscated

Smart contracts (like the blockchain)
is immutable - cannot be modified
in post

*OWASP Smart Contract Top 10



Upshot: Definitely worth it

Proposed solution works better than static analyzers (according to their own metrics)

Can be used in tandem with static analyzers
Code is open-source

Little to no upfront cost to run
Code can be verified / modified

Risk is too high to not rigorously test



Con: Solution is still not perfect

Paper’s solution works well up to a point
~10.5% of contracts false positives

Partially depends on in-file comments
If no comments, can be ineffective

Must be used with other alternatives
for maximum effectiveness
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Sally Junsong Wang

- Background
- Researcher with affiliations to Stanford University, Columbia University, and the University of 

Cambridge
- Research interests span security, systems, and law
- Published works on smart contract security and financial systems accountability

- Relation to the paper
- The paper aligns with her research focus on security and systems
- Demonstrates her expertise in applying advanced computational techniques to blockchain and 

smart contract security
- Combines her technical knowledge with insights into legal and financial systems, which is 

relevant for smart contract applications



Kexin Pei

- Background
- Assistant Professor in the Department of Computer Science at the University of Chicago since July 

2023
- PhD in Computer Science from Columbia University (2016-2023)
- MS in Computer Science from Purdue University (2014-2016)
- BA in Computer Science from Hong Kong Baptist University (2010-2014)
- Industry experience through internships at Google DeepMind (2022-2023) and Microsoft Research 

(2018-2019)
- Research focuses on security, software engineering, and machine learning
- Specializes in data-driven program analysis to improve security and reliability of software systems

- Relation to the paper
- The paper directly applies his expertise in machine learning for program analysis
- Demonstrates his focus on developing models that reason about program structure and behavior
- Aligns with his goal of efficiently analyzing, detecting, and fixing software vulnerabilities
- Showcases his ability to apply advanced techniques to real-world security problems in smart contracts



Junfeng Yang

- Background
- Professor at Columbia University
- PhD advisor to Kexin Pei from 2016 onwards
- Research centers on making reliable and secure systems
- Focus areas include

- Security and robustness of machine learning
- Tools to protect, verify, analyze, test, and debug software
- Programming and runtime systems for cloud applications

- BS in Computer Science from Tsinghua University
- PhD in Computer Science from Stanford University
- Created eXplode, a system for finding storage system errors (OSDI best paper award)
- Worked at Microsoft Research Silicon Valley in 2008

- Relation to the paper
- The paper aligns with his research focus on software security and reliability
- Demonstrates his expertise in applying machine learning to improve system security
- Builds on his work in developing tools for software verification and analysis
- Showcases his ongoing collaboration with former students (Kexin Pei) in cutting-edge research
- Applies his knowledge of distributed systems and cloud applications to the domain of smart contracts
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Project: SMARTFIX—Automated Repair of Smart Contracts Using 
Foundation Models

- SMARTFIX: an automated framework for not only detecting bugs and 
generating invariants in smart contracts but also automatically repairing the 
identified vulnerabilities.

- Introduce automated code repair mechanisms guided by the inferred 
invariants and leveraging the ToT prompting strategy.

- How? Extend the capabilities of foundation models to not only detect bugs 
and generate invariants but also to suggest code fixes that adhere to the 
inferred invariants and preserve the intended functionality of the contracts.



Core components and approaches



Proposed Flow

- SMARTINV: Input → ToT Tiers 1-3 → Verification → Bug Detection Output.
- SMARTFIX: Input → ToT Tiers 1-4 → Code Repair Module → Re-Verification 

→ Fixed Code Output → Developer Interaction.
- Reminder:

- Tier 1: Identifies critical program points where bugs are likely to occur.
- Tier 2: Generates relevant invariants associated with these critical points.
- Tier 3: Ranks the critical invariants to prioritize which ones are most crucial for the contract's 

correctness.
- Tier 4 Process:

- Input: The smart contract code, the identified bugs, and the critical invariants that are currently 
violated.

- Action: The model uses this information to generate specific code changes that would fix the 
bugs.



Automated Code Repair Module

- Data preparation:
- Collect Bug-Fix Pairs: Assemble a dataset of buggy smart contracts and their corresponding 

fixed versions, including annotations explaining the bugs and fixes.
- Fine-Tune the Model: Train the foundation model on this dataset to learn patterns of common 

bugs and their repairs.
- Integration with ToT Strategy:

- Extend ToT with Repair Tier:
- Tier 4: Generate code modifications to fix the detected bugs while ensuring that the 

critical invariants hold.
- Example Prompt:

- “Given the smart contract code and the following violated invariants, suggest code 
modifications to fix the contract while ensuring the invariants are satisfied.”



Verification of Generated Fixes

- Re-Verification Pipeline:
- Syntax and Semantic Checks: Verify that the modified code compiles and adheres to Solidity's 

syntax and semantics.
- Inductive Verification and BMC: Use the existing verification methods to ensure that the fixes 

satisfy all critical invariants and do not introduce new bugs.
- Automated Testing:

- Generate test cases based on the invariants to validate the functionality of the fixed 
contract.



Developer Interaction Interface

- User Interface:
- Display Bugs and Fixes: Provide a platform where developers can see detected bugs and the 

model's suggested fixes side by side.
- Interactive Editing:

- Allow developers to accept, reject, or modify the suggested fixes directly within the 
interface.

- Feedback Mechanism:
- Collect Developer Input: Gather feedback on the usefulness and accuracy of the fixes.
- Iterative Improvement: Use this feedback to refine the model through additional fine tuning.



Challenges

- Maintaining Functional Correctness:
- Challenge: Ensuring that code fixes do not alter the intended behavior of the contract.
- Approach: Verify fixes using the existing verification pipeline.

- Model Generalization:
- Challenge: The model may struggle to generalize fixes to unseen bugs or novel contract 

patterns.
- Approach: Expand and diversify the training dataset with various bug types and contract 

styles. Employ regularization techniques to prevent overfitting.



Impact

- Enhanced Security:
- Quick Mitigation: Reduces the time between bug detection and deployment of fixes, 

minimizing the risk of exploitation.
- Preventative Measures: Helps in proactively securing contracts before deployment.

- Increased Developer Productivity:
- Automation of Routine Tasks: Frees developers from manual debugging and patching, 

allowing them to focus on innovation.
- Assistance for Less Experienced Developers: Provides guidance in secure coding practices, 

potentially raising the overall quality of smart contract code.


