
Automated Software
Vulnerability Patching using

Large Language Models

Motivation
● Timely and effective vulnerability patching is essential for cybersecurity defense

● Current approaches struggle to generate valid and correct patches for real-world vulnerabilities

● The authors propose to use LLM to automate vul. patching

○ No test input/exploit evidence

○ No model training

Key Challenges

1) For automated patching, prompting would also need to be automated

2) We need exemplars for effective prompting, but how to automatically get the best

exemplars

3) Real-world vulnerabilities have cross-file dependencies, how to accommodate the large

code context

4) LLM can hallucinate, bad patching can be worse than not patching

Motivating Example

Vulnerable code for CVE-2024-24188

Vulnerable statement is at line 24

GPT4 +
 Standard Prompt

The vulnerability is correctly identified,
but it does not analyze the actual
buffer size of p

GPT4+
SOTA Approach

In the prev SOTA approach, the
vulnerable statement is removed and
LLM is instructed to complete the
code

Still the vulnerability is not patched

LLMPATCH: Open source tool
● Implement LLMPATCH based on four latest and most powerful LLMs: GPT4, Gemini, Claude3, and

Llama3.

● Key results on vulnerability patching
○ LLMPATCH: 44.91%-57.18% F1

○ Baseline Prompting: 3.54%-28.74% F1

○ Prev SOTA: 20.58%-34.58% F1

● LLMPATCH is efficient: 37.148-50.209s

● LLMPATCH is inexpensive: 5,684-6,802 tokens per patch (less than 1 $)

● On the latest 11 vulnerabilities, LLMPATCH successfully patches 7 while the baselines only patches 0-3

vulnerabilities.

Key aspects of LLMPATCH

1) Narrows down the scope of analysis to only the relevant subset of the program via a step called

semantics-aware scoping. (Challenge 3)

2) Elicits the LLM to identify the vulnerability’s root cause and uses it to mine exemplars in a step called

dynamic adaptive prompting. (Challenge 2)

3) With the adaptively chosen exemplars, LLMPATCH forms the patching prompt automatically.

(Challenge 1)

4) LLMPATCH consults an ensemble of LLMs to cross-validate the candidate patches. (Challenge 4)

LLMPATCH OVERVIEW

Semantic Aware Scoping

● LLMPATCH extracts the essential code for vulnerability patching from the
vulnerable code sample.

○ Small portion of code are critical statements, named as vulnerability semantics. Enable
LLM to be more effective

○ LLM struggle with long text
● Vulnerability semantics: Aspects of a program’s code that contribute to its

vulnerabilities
● Need to understand control and data flow dependencies
● Parse the source code into program dependence graphs
● Iteratively traverse this graph to collect all related parts of code

Motivating Example

Vulnerable code for CVE-2024-24188

Vulnerable statement is at line 24

Root Cause Analysis

Given a vulnerability semantics slice, the CWE ID,

and the vulnerable statement, LLMPATCH first

prompts the LLMs to generate the root cause

Fixing Strategy

With the ground-truth patches provided, LLMs are
capable of generating the correct reasoning steps

Conduct a preliminary experiment on the real-world
samples from our collected BigVul+CVEFixes dataset

Manual inspection on the generated exemplars by
GPT-4, 92.98% of the reasoning steps are correct

Q: Given the following code slice
<vulnerability semantics slice>, which has a
<CWE-ID> vulnerability at line <vulnerable
statement line>, the patch is <ground-truth
patch>, please provide the reasoning steps
to generate this patch.

Exemplar Selection

The time complexity is O(mn) where m is the
number of training samples and n is the number of
testing samples

Upto 8 exemplars are selected based on previous
work in prompting

Q: Does the following two vulnerabilities
share similar root causes:

<training sample root cause>

 <testing sample root cause>

 Please simply answer yes or no.

Patch Generation

Multiple patches are generated for a given input

To avoid re-computing root cause tokens, it is

already added to the prompt from previous step

<selected exemplars>

Q: Given the following code slice: <slice
code> which has a <CWE-ID> vulnerability at
line: <vulnerable line>, please generate five
possible patches for the vulnerability.

A: The patch can be done in three steps.
Step 1. <root cause analysis>

Benchmark

● Start with PatchDB (12K) and CVEFixes (4K)

● Select the samples with the most popular CWEs in C languages.

● Collect 306 vulnerability fixing samples including 93 CWE-787, 45 CWE-125, 58 CWE-190, 21 CWE-401,

19 CWE-457, and 70 CWE-476.

● Randomly split 200 samples for training and the remaining 106 samples are used for testing

Evaluation Metric

● recall = #fixed samples / #testing sample

● precision = #correct patches / #generated patches

Main Results

Contribution Of Components

Zero-day Vulnerability Patching

Scientific Peer Reviewer: Pankayaraj

Paper Summary

● This paper presents the idea of automating the patch generation for a given vulnerability in the code.
● Here they design the patching via an automated adaptive prompting technique where they first use a labeled

dataset with vulnerabilities and patches to create examples in an automated manner. Here the vulnerable lines
are complemented with the dependency lines which gives a full context of the vulnerability and then the ground
truth patch is suggested for it.

● Later when given a vulnerable code and the vulnerability line they form a set of dependency lines for the
vulnerability in a similar manner as before and then get a summary of the root cause.

● Then they use the summary as a way to match suitable examples and use in context learning to provide them
as examples and ask the LLM to patch the vulnerabilities.

● Here they use an ensemble of LLMs to validate the vulnerability patch to avoid hallucination
Technical Correctness:

2. Minor Issues
For a report this paper is technically sound.

Technical Comments

● Use of same LLM for reasoning generation and patching.
○ For both the exemplar creation (reasoning step for a given patch) and the patching step they use a

single LLMs.
○ Given that LLMs are shown to favor their own responses (LLM Evaluators Recognize and Favor Their

Own Generations, 2024) and both the reasoning and the patching are done by the same LLMs I would
like to see if this type of behavior will affect negatively affect the patching.

○ For instance if the given reasoning wrong but it came from the same LLM (GPT4) will it ignore this as
opposed to if the reasoning came from another LLM (eg Gemini) or else regardless of which LLM has
generated the reasoning given the context the patching LLM will follow through with that reasoning.
Given that in the paper they have stated that by manual checking found 92% of the reasoning is
correct I would like to see this above mentioned setting for the examples for which the reasoning was
wrong.

Technical Comments

● Complexity mitigation with RAGs
○ Though out of the scope of this paper the exemplar selection method is done via O(nm) LLM

queries which is expensive. But this process does resemble the process of a RAG system. Can
a traditional RAG retriever be used to select relevant root cause samples. This can reduce the
complexity especially in practical systems the examples will be huge. If not fine tuning a
pre-trained retriever for the root cause retrieval is an interesting future direction

● Validation of training set reasoning
○ Why not use multi facet validation to improve the reasoning steps in the train set. Given train

set is only created once it would make more sense to use validation to get a better accuracy.

Decision: Accept
(with minor changes)

Archaeologist
Yang Jeffrey Fan Chiang

Previous work motivates current paper

Chain-of-Thought Prompting of Large Language Models for Discovering and Fixing Software Vulnerabilities

● Same author, seems like a previous version of this work

● 3 tasks:
○ 1) vulnerability identification: binary classification (CWE-xxx or CWE-yyy)

○ 2) vulnerability discovery: multiclass classification (which CWE(s) does it have)

○ 3) vulnerability patching: given vulnerable code: <vulnerable code> <vulnerable line> -> generate patch

● Method: Vulnerability-Semantics-guided Prompting (VSP)
○ CoT

○ Highlight vulnerability semantics (not pointing out how this is done)

○ Few Shots (manually provide few shots)

2024 Feb.

Current paper

What’s the difference

● Semantics-Aware Scoping: algorithm for automatically extracting vulnerability semantics

● Mining exemplars from known patches to build an exemplar database

● Dynamically selecting the most appropriate exemplars (semantically similar)

● More LLMs

Similar work

● No papers have cited the previous one

● DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language Models
○ Propose security and semantic code fixes dataset (with both vulnerabilities and bugs)

○ CodeReduced (extract and simplify code)

■ Hierarchical Delta Debugging (HDD)

■ Reducing the size of a program while preserving a specific property, (e.g.compiler bug, static analysis

alarm)

○ 2 scenarios: fine-tune/few-shot

○ Few-shot

■ Random Selection of exemplar

2024 Feb.

Archaeologist
Zeying Zhu

Previous work motivates current paper
● Zero-shot code completion: “Examining Zero-Shot Vulnerability Repair with Large

Language Models”
○ Remove the vulnerable code and lets LLMs complete the vulnerable parts

● Standard prompting: “LLMs Cannot Reliably Identify and Reason About Security
Vulnerabilities (Yet?)”

○ Directly ask LLM to patch the vulnerability with code line number and CWE ID

● Both have no code analysis process and thus cannot solve out-of-bound vulnerability.
● LLMs provide incorrect and unfaithful reasoning in automated vulnerability repair without

step-by-step guidance.

Solutions from LLMPatch
● Semantics-aware scoping for providing LLMs with code slices only

relevant to vulnerabilities

● Chain-of-Thought prompting with exemplars from known patches
○ Finding root cause
○ Fixing strategy
○ Patch generation

● Build an exemplar database automatically for adaptive prompting

Subsequent/Concurrent Work
● Not cited yet but similar work concurrently:
● Code Vulnerability Repair with Large Language Model using

Context-Aware Prompt Tuning

● Proposing similar findings of context-aware prompting with
security contexts and code contexts in the prompt

● Specific on buffer overflow vulnerabilities using GitHib Copilot.
○ Security context: disclosing vulnerability existence to LLM and disclosing

CWE details
○ Code context: buffer identification, bound selection, etc.

Industry
Practitioner

Aditya Ranjan

AI Assisted CI/CD Pipelines
● A major fintech company developing secure online banking and

payment systems.
● Extremely sensitive financial data and transactions for millions of

customers
● Any security vulnerability could have severe consequences

○ Financial losses
○ Regulatory penalties
○ Reputation damage

● Security team is struggling with the large volume of potential
vulnerabilities that need to be addressed

Advantages
● Increased speed and scale in vulnerability analysis and patching

● 24/7 operation capability

● Improved consistency in patch generation

● Cost efficiency in the long run

○ Utilization of off-the-shelf LLMs without costly fine-tuning

● Seamless integration with existing CI/CD pipelines

● Enhanced developer productivity by automating common

vulnerability patching

Disadvantages
● Potential over-reliance on automated systems for critical

security functions

● Risk of generated patches introducing new bugs or

incompletely addressing vulnerabilities

● Current performance limitations (44.91%-57.18% F1 score)

indicating room for improvement

● Necessity for rigorous human oversight and testing before

deploying patches

Academic
Researcher

Amisha Bhaskar

InterPatch: Advanced Vulnerability Patching for
Multi-Component Software Systems

Extending LLMPATCH to Address Inter-Component Vulnerabilities

Objectives

● To handle complex dependencies and interactions between different components.

● To improve security in integrated environments like microservices or modular

applications.

Core Components of InterPatch

1. Semantic Analysis Expansion through Graph-Based Code Representation

LLMPATCH leverages Program Dependence Graphs (PDGs) to analyze vulnerabilities within a single

component by capturing data and control dependencies. For InterPatch, we need to adapt and expand this

concept to a System Dependence Graph (SDG) that incorporates multiple components and possibly different

technologies.

Mathematical Foundation:

● PDG: Given a program consisting of statements a PDG is a directed graph G = (V, E),

where each vertex corresponds to a statement and an edge represents a data or

control dependency.

● SDG: An SDG extends the PDG by incorporating vertices and edges that represent inter-component

interactions. If components and have interactions based on data or control flows, these are

added to the graph, providing a holistic view of the software system's architecture and dependencies.

Approach:

● Develop parsing tools that can construct SDGs by analyzing source code across different

programming languages and runtime environments.

● Use these SDGs to identify critical points where vulnerabilities can propagate between

components and to analyze the broader impact of potential vulnerabilities within the system.

2. Dynamic Exemplar Generation Using Hybrid Models

The dynamic generation of exemplars in LLMPATCH based on specific vulnerabilities could be improved using

hybrid machine learning models that combine supervised learning techniques for vulnerability detection with

unsupervised learning for anomaly detection across software components.

Mathematical Foundation:

● Supervised Learning: Given a training dataset where is a feature vector extracted

from the SDG and is a label indicating the presence or type of vulnerability, a function is

learned.

● Unsupervised Learning: For anomaly detection, clustering techniques like k-means or DBSCAN could

be applied to the feature vectors to identify unusual patterns that might suggest vulnerabilities.

Approach:

● Integrate these learning models to continuously update the exemplar database as new patterns

and types of vulnerabilities are discovered.

● Use these models to generate context-sensitive prompts for the language models to create

more accurate patches.

3. Advanced Patch Validation Techniques

To validate patches in a multi-component environment, we can utilize ensemble methods that

combine predictions from multiple models to decide whether a patch is valid.

Mathematical Foundation:

● Ensemble Methods: If are models that predict the validity of a patch, the final

decision can be made based on a majority vote or weighted aggregation of these predictions:

F.. where is the weight assigned to the model based on its accuracy.

Approach:

● Deploy multiple language models fine-tuned on different aspects of software systems (e.g.,

front-end, back-end, database) to evaluate patches.

● Use these models to simulate the application of patches in virtual environments and monitor

for functional and security regressions.

Expected Challenges

● Complex Dependency Resolution: Understanding and resolving dependencies and interactions

between different software components can be significantly more complex than handling

single-component vulnerabilities.

● Diverse Environment Handling: Dealing with different programming languages, frameworks, and

environments within the same software system will require versatile and robust parsing and analysis

tools.

Impact

● Broader Applicability: This project would expand the applicability of automated vulnerability

patching systems to more complex and realistic software environments, such as modern

microservices architectures and integrated platforms.

● Enhanced Security: By ensuring that inter-component vulnerabilities are effectively patched,

the overall security of multi-component software systems can be significantly improved,

protecting against more sophisticated attack vectors.

Private Investigator
Andy Lin

Yu Nong

Education:

● BSc in Automation at South China University of Technology

● MS in Computer Science at Washington State University

● Now pursuing PhD in Computer Science at Washington State University

Work Experience

● Front-end engineer to oversee a large-scale digital cooperation platform for national
hospitals at Beijing Hantang Technology Stock Company.

● IT helpdesk tech intern to maintain network infrastructures at Intuitive Networks.

● Software testing consultant to examine software quality at Optimum Semiconductor.

Yu Nong

Previous Projects

● A Preliminary Study on Open-Source Memory Vulnerability Detectors

-> He benchmarked several static analysis tools to find memory-related

 vulnerabilities.

● Open Science in Software Engineering: A Study on Deep Learning-Based Vulnerability
Detection

-> He explored the reproducibility and transparency of deep learning models

 used for vulnerability detection.

Yu Nong

Motivation

● Stems from the need for effective and timely vulnerability patching due to the rapid
increase in cyber threats.

● Hence, his research interests are about applying deep learning models to examine
whether a computer program contains vulnerabilities.

● For example. LLMPATCH pushes the boundaries of LLM applications in computer
security to address challenges in vulnerability patching through deep learning
solutions.

Social Impact
Assessor

Sonal Kumar

Positive Social Impacts Self-Assessed in the Paper

Enhanced Cybersecurity through Automated Patching: The paper emphasizes that LLMPATCH can automate vulnerability patching,

including zero-day vulnerabilities, which are critical to improving software security. By addressing security flaws more efficiently, it aims

to prevent cyberattacks that exploit software vulnerabilities, potentially reducing the frequency and severity of cybersecurity incidents .

Efficiency in Patch Development: LLMPATCH reportedly produces patches more quickly and accurately than traditional methods,

suggesting that developers and companies could deploy it to maintain more secure software without extensive manual intervention. This

has social benefits in protecting users’ data privacy and security at scale.

Reduction in Resource Costs for Vulnerability Management: By automating parts of the patching process, the paper suggests that

LLMPATCH can reduce costs associated with manual vulnerability analysis and patching. This cost-saving aspect could make security more

accessible to smaller organizations without extensive cybersecurity resources.

Potential Positive Impacts Not Addressed

Increased Accessibility to Security for Smaller Entities: Small and medium-sized enterprises (SMEs), which often lack the

resources for advanced cybersecurity, could benefit from using an automated tool like LLMPATCH to manage vulnerabilities

without extensive technical expertise.

Potential for Broader Applications of LLM-based Security Tools: While the paper focuses on vulnerability patching, a

framework like LLMPATCH could inspire other applications in cybersecurity, such as automated detection and prevention

strategies, which would broadly benefit secure software development.

Potential Negative Impacts Overlooked

Risk of Over-Reliance on Automation in Security: The adoption of LLMPATCH could lead organizations to become overly dependent on
automated solutions, potentially reducing vigilance and manual scrutiny in security management. Automated systems can fail to capture
nuanced vulnerabilities that require human expertise.

Potential Misuse of Automated Patching Technology: While designed for positive use, tools like LLMPATCH could potentially be
reverse-engineered or repurposed by malicious entities to identify or even create vulnerabilities in existing software, exacerbating
security issues rather than mitigating them.

Economic Implications for Cybersecurity Jobs: Automation in vulnerability patching might reduce the demand for certain cybersecurity
roles, impacting employment in sectors that rely on manual patch development and vulnerability management, especially if these tools
are widely adopted.

Limitations in Accuracy and False Positives: The paper mentions the potential for hallucinations and inaccuracies in LLM predictions,
meaning that incorrect patches could be generated. Deploying such patches without thorough human review could lead to new
vulnerabilities or break existing functionality, potentially impacting users and clients reliant on stable software systems.

