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Motivation
● Timely and effective vulnerability patching is essential for cybersecurity defense

● Current approaches struggle to generate valid and correct patches for real-world vulnerabilities

● The authors propose to use LLM to automate vul. patching

○ No test input/exploit evidence

○ No model training



Key Challenges

1) For automated patching, prompting would also need to be automated

2) We need exemplars for effective prompting, but how to automatically get the best 

exemplars

3) Real-world vulnerabilities have cross-file dependencies, how to accommodate the large 

code context

4) LLM can hallucinate, bad patching can be worse than not patching



Motivating Example

Vulnerable code for CVE-2024-24188

Vulnerable statement is at line 24



GPT4 +
 Standard Prompt

The vulnerability is correctly identified, 
but it does not analyze the actual 
buffer size of p



GPT4+
SOTA Approach

In the prev SOTA approach, the 
vulnerable statement is removed and 
LLM is instructed to complete the 
code

Still the vulnerability is not patched



LLMPATCH: Open source tool
● Implement LLMPATCH based on four latest and most powerful LLMs: GPT4, Gemini, Claude3, and 

Llama3.

● Key results on vulnerability patching
○ LLMPATCH: 44.91%-57.18% F1

○ Baseline Prompting: 3.54%-28.74% F1

○ Prev SOTA: 20.58%-34.58% F1

● LLMPATCH is efficient: 37.148-50.209s 

● LLMPATCH is inexpensive: 5,684-6,802 tokens per patch (less than 1 $)

● On the latest 11 vulnerabilities, LLMPATCH successfully patches 7 while the baselines only patches 0-3 

vulnerabilities.



Key aspects of LLMPATCH

1) Narrows down the scope of analysis to only the relevant subset of the program via a step called 

semantics-aware scoping. (Challenge 3)

2) Elicits the LLM to identify the vulnerability’s root cause and uses it to mine exemplars in a step called 

dynamic adaptive prompting. (Challenge 2)

3) With the adaptively chosen exemplars, LLMPATCH forms the patching prompt automatically. 

(Challenge 1)

4) LLMPATCH consults an ensemble of LLMs to cross-validate the candidate patches. (Challenge 4)



LLMPATCH OVERVIEW



Semantic Aware Scoping

● LLMPATCH extracts the essential code for vulnerability patching from the 
vulnerable code sample.

○ Small portion of code are critical statements, named as vulnerability semantics. Enable 
LLM to be more effective

○ LLM struggle with long text
● Vulnerability semantics: Aspects of a program’s code that contribute to its 

vulnerabilities
● Need to understand control and data flow dependencies
● Parse the source code into program dependence graphs
● Iteratively traverse this graph to collect all related parts of code



Motivating Example

Vulnerable code for CVE-2024-24188

Vulnerable statement is at line 24



Root Cause Analysis

Given a vulnerability semantics slice, the CWE ID, 

and the vulnerable statement, LLMPATCH first 

prompts the LLMs to generate the root cause



Fixing Strategy

With the ground-truth patches provided, LLMs are 
capable of generating the correct reasoning steps

Conduct a preliminary experiment on the real-world 
samples from our collected BigVul+CVEFixes dataset

Manual inspection on the generated exemplars by 
GPT-4, 92.98% of the reasoning steps are correct

Q: Given the following code slice 
<vulnerability semantics slice>, which has a 
<CWE-ID> vulnerability at line <vulnerable 
statement line>, the patch is <ground-truth 
patch>, please provide the reasoning steps 
to generate this patch.



Exemplar Selection

The time complexity is O(mn) where m is the 
number of training samples and n is the number of 
testing samples

Upto 8 exemplars are selected based on previous 
work in prompting

Q: Does the following two vulnerabilities 
share similar root causes:

<training sample root cause>

 <testing sample root cause>

 Please simply answer yes or no.



Patch Generation

Multiple patches are generated for a given input

To avoid re-computing root cause tokens, it is 

already added to the prompt from previous step

<selected exemplars> 

Q: Given the following code slice: <slice 
code> which has a <CWE-ID> vulnerability at 
line: <vulnerable line>, please generate five 
possible patches for the vulnerability. 

A: The patch can be done in three steps. 
Step 1. <root cause analysis>



Benchmark

● Start with PatchDB (12K) and CVEFixes (4K)

● Select the samples with the most popular CWEs in C languages.

● Collect 306 vulnerability fixing samples including 93 CWE-787, 45 CWE-125, 58 CWE-190, 21 CWE-401, 

19 CWE-457, and 70 CWE-476.

● Randomly split 200 samples for training and the remaining 106 samples are used for testing



Evaluation Metric

● recall = #fixed samples / #testing sample

● precision = #correct patches / #generated patches



Main Results



Contribution Of Components



Zero-day Vulnerability Patching



Scientific Peer Reviewer: Pankayaraj

Paper Summary

● This paper presents the idea of automating the patch generation for a given vulnerability in the code. 
● Here they design the patching via an automated adaptive prompting technique where they first use a labeled 

dataset with vulnerabilities and patches to create examples in an automated manner. Here the vulnerable lines 
are complemented with the dependency lines which gives a full context of the vulnerability and then the ground 
truth patch is suggested for it.

●  Later when given a vulnerable code and the vulnerability line they form a set of dependency lines for the 
vulnerability in a  similar manner as before and then get a summary of the root cause. 

● Then they use the summary as a way to match suitable examples and use in context learning to provide them 
as examples and ask the LLM to patch the vulnerabilities.  

● Here they use an ensemble of LLMs to validate the vulnerability patch to avoid hallucination
Technical Correctness:

2. Minor Issues
For a report this paper is technically sound. 



Technical Comments

● Use of same LLM for reasoning generation and patching.
○ For both the exemplar creation (reasoning step for a given patch) and the patching step they use a 

single LLMs.
○  Given that LLMs are shown to favor their own responses (LLM Evaluators Recognize and Favor Their 

Own Generations, 2024) and both the reasoning and the patching are done by the same LLMs I would 
like to see if this type of behavior will affect negatively affect the patching. 

○ For instance if the given reasoning wrong but it came from the same LLM (GPT4) will it ignore this as 
opposed to if the reasoning came from another LLM (eg Gemini) or else regardless of which LLM has 
generated the reasoning given the context the patching LLM will follow through with that reasoning. 
Given that in the paper they have stated that by manual checking found 92% of the reasoning is 
correct I would like to see this above mentioned setting for the examples for which the reasoning was 
wrong.



Technical Comments

● Complexity mitigation with RAGs
○ Though out of the scope of this paper the exemplar selection method is done via O(nm) LLM 

queries which is expensive. But this process does resemble the process of a RAG system. Can 
a traditional RAG retriever be used to select relevant root cause samples. This can reduce the 
complexity especially in practical systems the examples will be huge. If not fine tuning a 
pre-trained retriever for the root cause retrieval is an interesting future direction 

● Validation of training set reasoning
○ Why not use multi facet validation to improve the reasoning steps in the train set. Given train 

set is only created once it would make more sense to use validation to get a better accuracy. 



Decision: Accept
(with minor changes) 
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Previous work motivates current paper

Chain-of-Thought Prompting of Large Language Models for Discovering and Fixing Software Vulnerabilities

● Same author, seems like a previous version of this work

● 3 tasks: 
○ 1) vulnerability identification: binary classification (CWE-xxx or CWE-yyy)

○ 2) vulnerability discovery: multiclass classification (which CWE(s) does it have)

○ 3) vulnerability patching: given vulnerable code: <vulnerable code> <vulnerable line> -> generate patch

● Method: Vulnerability-Semantics-guided Prompting (VSP)
○ CoT 

○ Highlight vulnerability semantics (not pointing out how this is done)

○ Few Shots (manually provide few shots)

2024 Feb.



Current paper

What’s the difference 

● Semantics-Aware Scoping: algorithm for automatically extracting vulnerability semantics

● Mining exemplars from known patches to build an exemplar database

● Dynamically selecting the most appropriate exemplars (semantically similar)

● More LLMs



Similar work

● No papers have cited the previous one

● DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language Models
○ Propose security and semantic code fixes dataset (with both vulnerabilities and bugs)

○ CodeReduced (extract and simplify code)

■ Hierarchical Delta Debugging (HDD)

■ Reducing the size of a program while preserving a specific property, (e.g.compiler bug, static analysis 

alarm)

○ 2 scenarios: fine-tune/few-shot

○ Few-shot

■ Random Selection of exemplar

2024 Feb.
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Previous work motivates current paper
● Zero-shot code completion: “Examining Zero-Shot Vulnerability Repair with Large 

Language Models”
○ Remove the vulnerable code and lets LLMs complete the vulnerable parts

● Standard prompting: “LLMs Cannot Reliably Identify and Reason About Security 
Vulnerabilities (Yet?)”

○ Directly ask LLM to patch the vulnerability with code line number and CWE ID

● Both have no code analysis process and thus cannot solve out-of-bound vulnerability.
● LLMs provide incorrect and unfaithful reasoning in automated vulnerability repair without 

step-by-step guidance.



Solutions from LLMPatch
● Semantics-aware scoping for providing LLMs with code slices only 

relevant to vulnerabilities

● Chain-of-Thought prompting with exemplars from known patches
○ Finding root cause
○ Fixing strategy
○ Patch generation

● Build an exemplar database automatically for adaptive prompting



Subsequent/Concurrent Work
● Not cited yet but similar work concurrently:
● Code Vulnerability Repair with Large Language Model using 

Context-Aware Prompt Tuning

● Proposing similar findings of context-aware prompting with 
security contexts and code contexts in the prompt

● Specific on buffer overflow vulnerabilities using GitHib Copilot.
○ Security context: disclosing vulnerability existence to LLM and disclosing 

CWE details
○ Code context: buffer identification, bound selection, etc.



Industry 
Practitioner
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AI Assisted CI/CD Pipelines
● A major fintech company developing secure online banking and 

payment systems.
● Extremely sensitive financial data and transactions for millions of 

customers
● Any security vulnerability could have severe consequences

○ Financial losses
○ Regulatory penalties
○ Reputation damage

● Security team is struggling with the large volume of potential 
vulnerabilities that need to be addressed



Advantages
● Increased speed and scale in vulnerability analysis and patching

● 24/7 operation capability

● Improved consistency in patch generation

● Cost efficiency in the long run

○ Utilization of off-the-shelf LLMs without costly fine-tuning 

● Seamless integration with existing CI/CD pipelines

● Enhanced developer productivity by automating common 

vulnerability patching



Disadvantages
● Potential over-reliance on automated systems for critical 

security functions

● Risk of generated patches introducing new bugs or 

incompletely addressing vulnerabilities

● Current performance limitations (44.91%-57.18% F1 score) 

indicating room for improvement

● Necessity for rigorous human oversight and testing before 

deploying patches



Academic 
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InterPatch: Advanced Vulnerability Patching for 
Multi-Component Software Systems

Extending LLMPATCH to Address Inter-Component Vulnerabilities



Objectives

● To handle complex dependencies and interactions between different components.

● To improve security in integrated environments like microservices or modular 

applications.



Core Components of InterPatch



1. Semantic Analysis Expansion through Graph-Based Code Representation

LLMPATCH leverages Program Dependence Graphs (PDGs) to analyze vulnerabilities within a single 

component by capturing data and control dependencies. For InterPatch, we need to adapt and expand this 

concept to a System Dependence Graph (SDG) that incorporates multiple components and possibly different 

technologies.

Mathematical Foundation:

● PDG: Given a program consisting of statements  a PDG                          is a directed graph G = (V, E), 

where each vertex                   corresponds to a statement      and an edge              represents a data or 

control dependency.

● SDG: An SDG extends the PDG by incorporating vertices and edges that represent inter-component 

interactions. If components      and      have interactions based on data or control flows, these are 

added to the graph, providing a holistic view of the software system's architecture and dependencies.



Approach:

● Develop parsing tools that can construct SDGs by analyzing source code across different 

programming languages and runtime environments.

● Use these SDGs to identify critical points where vulnerabilities can propagate between 

components and to analyze the broader impact of potential vulnerabilities within the system.



2. Dynamic Exemplar Generation Using Hybrid Models

The dynamic generation of exemplars in LLMPATCH based on specific vulnerabilities could be improved using 

hybrid machine learning models that combine supervised learning techniques for vulnerability detection with 

unsupervised learning for anomaly detection across software components.

Mathematical Foundation:

● Supervised Learning: Given a training dataset                            where      is a feature vector extracted 

from the SDG and     is a label indicating the presence or type of vulnerability, a function                      is 

learned.

● Unsupervised Learning: For anomaly detection, clustering techniques like k-means or DBSCAN could 

be applied to the feature vectors to identify unusual patterns that might suggest vulnerabilities.



Approach:

● Integrate these learning models to continuously update the exemplar database as new patterns 

and types of vulnerabilities are discovered.

● Use these models to generate context-sensitive prompts for the language models to create 

more accurate patches.



3. Advanced Patch Validation Techniques

To validate patches in a multi-component environment, we can utilize ensemble methods that 

combine predictions from multiple models to decide whether a patch is valid.

Mathematical Foundation:

● Ensemble Methods: If                                are models that predict the validity of a patch, the final 

decision can be made based on a majority vote or weighted aggregation of these predictions: 

F..                                         where     is the weight assigned to the model     based on its accuracy.



Approach:

● Deploy multiple language models fine-tuned on different aspects of software systems (e.g., 

front-end, back-end, database) to evaluate patches.

● Use these models to simulate the application of patches in virtual environments and monitor 

for functional and security regressions.



Expected Challenges

● Complex Dependency Resolution: Understanding and resolving dependencies and interactions 

between different software components can be significantly more complex than handling 

single-component vulnerabilities.

● Diverse Environment Handling: Dealing with different programming languages, frameworks, and 

environments within the same software system will require versatile and robust parsing and analysis 

tools.



Impact

● Broader Applicability: This project would expand the applicability of automated vulnerability 

patching systems to more complex and realistic software environments, such as modern 

microservices architectures and integrated platforms.

● Enhanced Security: By ensuring that inter-component vulnerabilities are effectively patched, 

the overall security of multi-component software systems can be significantly improved, 

protecting against more sophisticated attack vectors.
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Yu Nong

Education: 

● BSc in Automation at South China University of Technology

● MS in Computer Science at Washington State University

● Now pursuing PhD in Computer Science at Washington State University

Work Experience

● Front-end engineer to oversee a large-scale digital cooperation platform for national 
hospitals at Beijing Hantang Technology Stock Company.

● IT helpdesk tech intern to maintain network infrastructures at Intuitive Networks.

● Software testing consultant to examine software quality at Optimum Semiconductor.



Yu Nong

Previous Projects

● A Preliminary Study on Open-Source Memory Vulnerability Detectors

-> He benchmarked several static analysis tools to find memory-related 

     vulnerabilities.

● Open Science in Software Engineering: A Study on Deep Learning-Based Vulnerability 
Detection

-> He explored the reproducibility and transparency of deep learning models 

    used for vulnerability detection.



Yu Nong

Motivation

● Stems from the need for effective and timely vulnerability patching due to the rapid 
increase in cyber threats.

● Hence, his research interests are about applying deep learning models to examine 
whether a computer program contains vulnerabilities.

● For example. LLMPATCH pushes the boundaries of LLM applications in computer 
security to address challenges in vulnerability patching through deep learning 
solutions.
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Positive Social Impacts Self-Assessed in the Paper

Enhanced Cybersecurity through Automated Patching: The paper emphasizes that LLMPATCH can automate vulnerability patching, 

including zero-day vulnerabilities, which are critical to improving software security. By addressing security flaws more efficiently, it aims 

to prevent cyberattacks that exploit software vulnerabilities, potentially reducing the frequency and severity of cybersecurity incidents .

Efficiency in Patch Development: LLMPATCH reportedly produces patches more quickly and accurately than traditional methods, 

suggesting that developers and companies could deploy it to maintain more secure software without extensive manual intervention. This 

has social benefits in protecting users’ data privacy and security at scale.

Reduction in Resource Costs for Vulnerability Management: By automating parts of the patching process, the paper suggests that 

LLMPATCH can reduce costs associated with manual vulnerability analysis and patching. This cost-saving aspect could make security more 

accessible to smaller organizations without extensive cybersecurity resources.



Potential Positive Impacts Not Addressed

Increased Accessibility to Security for Smaller Entities: Small and medium-sized enterprises (SMEs), which often lack the 

resources for advanced cybersecurity, could benefit from using an automated tool like LLMPATCH to manage vulnerabilities 

without extensive technical expertise.

Potential for Broader Applications of LLM-based Security Tools: While the paper focuses on vulnerability patching, a 

framework like LLMPATCH could inspire other applications in cybersecurity, such as automated detection and prevention 

strategies, which would broadly benefit secure software development.



Potential Negative Impacts Overlooked

Risk of Over-Reliance on Automation in Security: The adoption of LLMPATCH could lead organizations to become overly dependent on 
automated solutions, potentially reducing vigilance and manual scrutiny in security management. Automated systems can fail to capture 
nuanced vulnerabilities that require human expertise.

Potential Misuse of Automated Patching Technology: While designed for positive use, tools like LLMPATCH could potentially be 
reverse-engineered or repurposed by malicious entities to identify or even create vulnerabilities in existing software, exacerbating 
security issues rather than mitigating them.

Economic Implications for Cybersecurity Jobs: Automation in vulnerability patching might reduce the demand for certain cybersecurity 
roles, impacting employment in sectors that rely on manual patch development and vulnerability management, especially if these tools 
are widely adopted.

Limitations in Accuracy and False Positives: The paper mentions the potential for hallucinations and inaccuracies in LLM predictions, 
meaning that incorrect patches could be generated. Deploying such patches without thorough human review could lead to new 
vulnerabilities or break existing functionality, potentially impacting users and clients reliant on stable software systems.


