
DebugBench: Evaluating Debugging Capability
of Large Language Models

Authors: Runchu Tian, Yining Ye, Yujia Qin, Xin Cong,
Yankai Lin, Yinxu Pan, Yesai Wu, Haotian Hui,

Weichuan Liu, Zhiyuan Liu, Maosong Sun

Presenter: Yvonne Zhou

Motivation
● While LLMs are proficient in code generation, debugging capabilities

remain under-explored.
● Challenges:

○ Risk of data leakage with commonly used datasets.
○ Small dataset sizes
○ Limited bug type coverage

● Goal: Provide a robust, large-scale benchmark to evaluate LLM debugging
performance effectively

Contributions
● Benchmarks to evaluate LLM Debugging

capabilities
○ 4,253 instances with diverse bugs.
○ Four major bug categories: Syntax, Reference, Logic,

and Multiples, and 18 minor types.
○ Snippet-level code in C++, Java, and Python.
○ Contain human baseline for comparison

Contribution (cont’d)
Benchmark overcomes challenges faced by prior works:

○ Reduce the risk of data leakage: LeetCode data released after July 2022
○ Fine-grained evaluation: develop a bug taxonomy based on Barr (2004)’s

classification criteria
○ Large data scales: prompt GPT-4 to implant bugs into the clean code
○ Ensure integrity: automatic filtering and manual inspection

Benchmark Construction
Collect questions, code snippets, and
examples from LeetCode (2023)
community

1. The code solution must be correct
2. The instances must contain necessary

information, eg. language, release time, and
question id.

3. no earlier than July 2022

Benchmark Construction
GPT-4 used to insert various types of
bugs (syntax, reference, logic, multiple).

1. The buggy code must fail certain test cases
2. The buggy code should not include in-line

comments that could leak information about
the bug

3. The explanation for the bug must be thorough
and relevant to the assigned bug type

1. Bug Validity: Each bug must fail test
for assigned type

2. Sensitive Information Security: free
of sensitive data

3. Scenario Alignment: Bugs should
look realistic and not include hints

Evaluation
● Six Models:

○ Closed-source models: GPT-4, GPT-3.5
○ Four open-source LLMs

● Scenarios: Zero-shot debugging
● Metric: Pass Rate on test suites provide by LeetCode (2023)

● Contain baseline for comparison: human performance from three
programmers with over four years of experience in programming

Findings
1. Closed-source models outperform open-source models

Findings
1. Closed-source models outperform open-source models
2. Syntax and reference errors are easier than Logic and multiple error for

LLM to debug.

Findings
1. Closed-source models outperform open-source models
2. Syntax and reference errors are easier than Logic and multiple error for

LLM to debug.
3. Easy-to-debug if it is easy-to-code

a. Phi-Coefficient of LLMs’ coding and
debugging performance

Findings
1. Closed-source models outperform open-source models
2. Syntax and reference errors are easier than Logic and multiple error for

LLM to debug.
3. Easy-to-debug if it is easy-to-code

a. Phi-Coefficient of LLMs’ coding and
debugging performance

4. Effect of Multiple Sampling: Better debugging at the cost of using more
inference tokens

5. Effect of Runtime Feedback: Runtime Feedback is not always useful for
debugging LLMs

Limitations
● AI implanted bugs, less realistic than real-world bugs.
● Evaluation test suits from the LeetCode platform only

Scientific Peer Reviewer
Yize Cheng

Paper Summary
● Introduces DebugBench, a benchmark designed to assess the debugging

capabilities of LLMs
○ Consists of 4253 instances across C++, Python, and Java
○ Consists of 4 Primary bug types and 18 subtypes

● Aims at addressing limitations in previous benchmarks
○ Data Leakage
○ Small Scale
○ No Differentiation among bug types

● Runs experiments to:
○ Compare the debugging capabilities of human, closed-source LLMs, and open-source

LLMs.
○ Compare LLM debugging capabilities on different bug types
○ Find correlations between debugging capabilities and code generation capabilities

Technical Correctness - Fixable Major Issue
● Claim: “closed-source models have inferior debugging capabilities compared

to humans, and open-source models perform worse in debugging compared
to closed-source models”

○ Human performance: “three programmers, each with over four years of experience in
programming”

Noisy estimation — The claim is insufficiently substantiated

Neither a good representative of the average or optimal human performance

Human can use IDE, with breakpoint features and many more. LLMs just read
the code. Why not consider ACI like SWE-agent?

Technical Correctness - Fixable Major Issue
● Claim: “closed-source models have inferior debugging capabilities compared

to humans, and open-source models perform worse in debugging compared
to closed-source models”

○ Closed-source models: GPT-4, GPT-3.5-Turbo
○ Open-source models: CodeLlama-7b-Instruct, Llama-3-8B-Instruct,

DeepSeek-Coder-33B-Instruct, Mixtral-8x7B-Instruct

1.8 Trillion parameters
175 Billion parameters

Imbalance comparison — The claim is insufficiently substantiated

Scientific Contribution
● Provides a new dataset for public use

○ The paper introduces a new dataset that enables further research on language model
debugging, giving the community a resource for benchmarking.

● Provides a Valuable Step Forward in an Established Field
○ The paper advances understanding of debugging capabilities across closed- and

open-source models, contributing useful insights to the field.

Presentation - Minor Flaws
The final benchmark contains 4253 instances

sum=4253

Presentation - Minor Flaws
The final benchmark contains 4253 instances, but…

79.2% of the 3,000 bug-implanted
instances pass the filtering process.

92.1% pass here

So how did they ended up with 4253 instances?

Comments - Strengths
● The paper introduces DebugBench, a benchmark specifically designed for

evaluating debugging skills in LLMs, addressing an underexplored area in
model assessment.

● DebugBench includes 4,253 instances across C++, Java, and Python, with
various bug types, offering a thorough testing ground.

● They ran some experiments to compare debugging capabilities of
different LLMs and humans, and investigate the role of run-time feedback
for debugging and the correlation between debugging and code
generation.

Comments - Weaknesses
● Experimental setup does not adequately support the claim regarding

comparative debugging performance
○ Imbalanced comparison and limited sample size for human performance

● All instances in the dataset are derived from LeetCode questions, which
represent isolated code snippets.

○ Real-world debugging often involves cross-file dependencies, where bugs may emerge
from interactions between files rather than isolated code segments.

○ This benchmark thus captures only a simplified debugging scenario.

Comments - Weaknesses
● Although the authors aim to address data leakage concerns, LLMs are

evolving, and this approach may not be a fully effective solution in the
long term.

● Using LLMs to assess the realism of synthesized bugs is not an accurate
approach.

○ LLMs are not specifically optimized for this purpose, and it is unclear whether such
considerations were addressed during the LLM alignment process.

○ A more reliable method would involve having highly experienced practitioners in the field
examine the bugs. Their expertise could better determine whether these bugs reflect
those commonly encountered in real-world scenarios.

Recommended Decision
● Weak Reject (Can be Convinced by a Champion)
● Confidence: Highly Confident.

Archaeologist
Utkarsh Tyagi

Previous Work
A Critical Review of Large Language Model on Software Engineering: An
Example from ChatGPT and Automated Program Repair
Zhang, Q., Zhang, T., Zhai, J., Fang, C., Yu, B., Sun, W., & Chen, Z. (2023) (https://arxiv.org/pdf/2310.08879)

- The paper seeks to review the bug-fixing capabilities of ChatGPT on a clean APR benchmark.
- They introduce EvalGPTFix, a new benchmark with buggy and their corresponding fixed programs from competitive programming

problems starting from 2023, after the training cutoff point of ChatGPT.
- Contributions:

- Overlooked Issue of the data leakage.
- Clean Benchmark. We construct a new APR benchmark EvalGPTFix
- Extensive Study. We conduct an in-depth empirical analysis of how ChatGPT is applied to APR.

- Three research questions:
- The effectiveness of ChatGPT on EvalGPTFix
- What is the effect of different prompts on the repair performance of ChatGPT?
- Can dialogues help ChatGPT in improving repair performance?

https://arxiv.org/pdf/2310.08879

Previous Work
Results:

RQ1 - The performance of ChatGPT in EvalGPTFix shows that: (1)
ChatGPT is effective in fixing different types of bugs, e.g., 96%,
100%, 50% and 71% of CE, TLE, RE and WA bugs are correctly fixed;
(2) ChatGPT is able to fix 109 bugs in EvalGPTFix.

RQ2 - The performance under different prompts demonstrates
that, ChatGPT can benefit from more advanced prompts with
additional information. For example, compared with the basic
prompt, 25, 18, and 10 more bugs can be fixed with error
information, problem description, and buggy lines.

RQ3 - The performance under a dialogue study demonstrates that,
ChatGPT can repair more difficult-to-fix bugs with dynamic
execution feedback in an interaction manner, e.g., 9 bugs that have
not been fixed in previous prompts are fixed successfully.

Previous Work

Subsequent Work
Beyond Correctness: Benchmarking
Multi-Dimensional Code Generation For
Large Language Models
Zheng, J., Cao, B., Ma, Z., Pan, R., Lin, H., Lu, Y., Han, X. and Sun, L., 2024
(https://arxiv.org/pdf/2407.11470)

- In recent years, researchers have proposed numerous benchmarks to
evaluate the impressive coding capabilities of large language models
(LLMs). However, current benchmarks primarily assess the accuracy
of LLM-generated code, while neglecting other critical dimensions that
also significantly impact code quality in real-world development.

- Therefore, this paper proposes the RACE benchmark, which
comprehensively evaluates the quality of code generated by LLMs
across 4 dimensions: Readability, mAintainability, Correctness, and
Efficiency.

https://arxiv.org/pdf/2407.11470

Subsequent Work

Subsequent Work
- Current code LLMs still have considerable room for

improvement in generating correct and user-compliant
code across multiple dimensions. For instance, even
the most advanced model, o1-mini, achieves only a
score of 60.3 in time complexity, with most models
below 50.

- Since current benchmarks use correctness as the sole
guiding indicator, some LLMs perform well only on
correctness but exhibit significant deficiencies in other
dimensions. For example, Qwen2.5-Coder-7B-Ins
demonstrates comparable levels of code correctness
to GPT-4o-mini;however, GPT-4o-mini outperforms it
by at least 5 percentage points regarding comments,
modularity, and space complexity.

Based on the RACE benchmark, the performance results for each LLM in code
correctness (C), readability (R), maintainability (M), and efficiency (E). RN, RL, RC,
and EC denote the Name Convention, Length, Comments, and Complexity
factor. MI denotes the Maintainability Index. MC denotes the Modularity factor.
NIT and NIS are metrics for code efficiency. RACE Score represents the overall
metrics at the dimension level.

Academic Researcher
Pranav Sivaraman

Embeddings Database of Debug Problems
- Create a corpus of debugging

samples with embedded
representations for each sample.

- Generate the embedding of a new
sample and find its nearest
neighbors in the corpus.

- New samples can be real world

- Not possible without the dataset.
DebugBench has a lot of data points
and a taxonomy.

Better Representation for Code
- Instead of text, use alternative

representations for code, such as
ProGraML.

- Could using a different
representation improve
performance, especially for
open-source models?

Hacker
Georgios (George) Milis

Introduction

But are they good debuggers?

DebugBench puts this to the test!

https://evalplus.github.io/leaderboard.html

Supposedly, LLMs are good coders…

https://evalplus.github.io/leaderboard.html

Experiment setup

● Random subsets of DebugBench’s buggy Python code

● An LLM

● LeetCode API 🍪 to test the fixes

Prompt:
Observe the
following faulty
code. Your task is
to fix up the code
and explain on the
modification in less
than 20 words. You
have to write the
fixed code again.
You should put
<code></code> and
<exp></exp> on the
boundary of the code
and the explanation.
Do not write
anything else in
your
response.\n{code}

Buggy code: Fixed code:

Results

DebugBench, Figure 6.

Conclusion

● ‘s performance seems on par with models

● Clear difference between syntax/reference VS harder/multiple bugs

❖ Authors’ claims verified!

Future Work

● Evaluate on the entire DebugBench

● cheated! Should be tested on LeetCode problems after 11/2023

Industry Practitioner
Shreya Mishra

Positives
● Reduced Debugging Time & Costs

○ Optimizes LLM debugging capabilities, reducing need for human involvement.
○ Quicker error resolution leads to substantial cost savings and reduced

development time.
● Enhanced Model Performance

○ Trains models on an extensive, diverse bug dataset.
○ Improved model robustness across code issues, increasing product reliability and

customer satisfaction.
● Better Model Evaluation & Accountability

○ High-quality testing environment for evaluating debugging capabilities.
○ Facilitates performance standards, boosting transparency and accountability.

Negatives
● Initial Setup & Training Costs

a. Requires significant initial investment of resources and time for setup, fine-tuning, and
integration.

b. Could impact short-term budgets.
● Risk of Overfitting to Synthetic Bugs

a. Diverse bugs, yet synthetically generated.
b. Over Reliance on DebugBench may hinder generalization to all real-world code issues.

● Dependency on External Benchmarks
a. Evaluation relies on DebugBench’s external criteria.
b. Any benchmark changes could affect long-term model assessment and consistency.

Industry Practitioner
Sonal Kumar

The Product
Develop a multi-layered debugging assistant that uses enhanced runtime feedback to provide contextually rich insights based on the type of
error.

It will build on the DebugBench findings by tailoring feedback for each error type and dynamically adjusting feedback detail levels.

This system aims to increase debugging accuracy, especially for complex logic errors, where standard runtime feedback is currently
inadequate.

Features

1. Dynamic Error Type Detection: Use initial code analysis to classify bugs into categories (syntax, reference, logic, etc.) before running
diagnostics.

2. Contextual Runtime Feedback: Customize feedback based on error type. For example, syntax errors would get traditional stack
traces, while logic errors would receive step-by-step logical flow analysis and automated sanity checks on variable states.

3. Iterative Feedback Loops: It will support iterative debugging by re-running code with adjusted parameters, gathering insights at each
iteration to refine its guidance.

4. Enhanced Explanations: Incorporate reasoning steps, especially for logic-based errors, to make complex error insights more
accessible.

Pros and Cons
Positive: It would make debugging more intuitive and accurate by tailoring
feedback to error types, particularly helping developers navigate complex
logic errors.

Negative: Implementing and fine-tuning this multi-layered system could be
computationally intensive.

Private Investigator
Zeying Zhu

Third author of the paper -- Yujia Qin
● Recently completed his PhD in Tsinghua

University, advised by Zhiyuan Liu (sixth author of
the paper)

● Work Experience
○ Seed, ByteDance, 2024.7 - Now
○ Founder of SeqAI Inc., 2024.1 - 2024.7

● Primary Research Areas: LLM/VLM-based agent

Third author of the paper -- Yujia Qin
● Previous Works and recent focus

○ ML-bench: Evaluating Large Language Models and Agents for Machine
Learning Tasks on Repository-Level Code, submitted to ICLR 2025.

○ Tool learning: Explore how to endow large models with higher-order cognitive
abilities, allowing them to use complex tools in a manner similar to humans.
■ XAgent, ToolBench, ToolLLM

● Motivation
○ His research interests on LLM agents and the ability of large models to using

complex tools. LLM itself as a tool can do tasks such as code debugging and
generation. Also, his advisor Zhiyuan Liu, the sixth author of the paper, has a
long research history on NLP and LLM.

Private Investigator
Ashish Seth

Advisor-- Zhiyuan Liu
● Currently an Associate Professor of Computer Science and

Technology at Tsinghua University

● Academic Journey
○ Dec, 2021 - Now, Tsinghua University, Beijing.
○ Aug, 2011 - Dec, 2013, Postdoc, Tsinghua University, Beijing.
○ Aug, 2006 - Jul, 2011, PhD, Tsinghua University, Beijing.
○ Sep, 2002 - Jul, 2006, Undergraduate, Tsinghua University, Beijing.

● Primary Research Areas:
○ Large Language Model (LLM), Natural Language Processing

(NLP), Knowledge Graphs, Representation Learning, and Social
Computing.

Advisor-- Zhiyuan Liu
Recent Work:

AI powered tutoring system: An adaptive AI tutoring system powered by
large language models, designed to enhance personalized learning through
modular processes and memory-based progress tracking.

Multimodal Retrieval Systems: Using multimodal agents to return fusion
results of images and texts to answer user questions.

Social Impact Accesser
Mohammed Afaan

Ansari

Positive Impact
● Reduction of Human Effort in Bug Fixing: By helping LLMs achieve

human-level debugging, it could decrease manual debugging
workloads, enhancing productivity and potentially improving job
satisfaction in software development.

● Educational Tool: DebugBench could serve as a valuable educational
resource for students and beginner developers, providing a platform
to practice and develop real-world debugging skills.

● Support for Open-Source Development: The open-source nature of
DebugBench encourages collaboration and innovation in the research
community, allowing other researchers and developers to contribute
to and improve LLM debugging capabilities.

Negative Impact
No major negatives impacts that directly affect the paper’s main
objective

● Risk of Generalization Issues: Focusing primarily on popular
programming languages (C++, Java, Python) may lead to limited
effectiveness of LLMs in debugging less common languages,
restricting their utility in a wide range of development scenarios.

● Potential for Overfitting: LLMs trained and tested primarily on
injected bugs, like those in DebugBench, may overfit on these specific
patterns and perform less effectively on normally occurring,
real-world bugs.

