DebugBench: Evaluating Debugging Capability
of Large Language Models

Authors: Runchu Tian, Yining Ye, Yujia Qin, Xin Cong,
e Yankai Lin, Yinxu Pan, Yesai Wu, Haotian Hui, ——
Weichuan Liu, Zhiyuan Liu, Maosong Sun

Presenter: Yvonne Zhou

Motivation

e While LLMs are proficient in code generation, debugging capabilities
remain under-explored.

e Challenges:

o Risk of data leakage with commonly used datasets.
o Small dataset sizes
o Limited bug type coverage

e Goal: Provide a robust, large-scale benchmark to evaluate LLM debugging
performance effectively

Contributions

e Benchmarks to evaluate LLM Debugging

capabilities
o 4,253 instances with diverse bugs.
o Four major bug categories: Syntax, Reference, Logic,
and Multiples, and 18 minor types.
o Snippet-level code in C++, Java, and Python.
o Contain human baseline for comparison

Type Minor Type Number
misused ==/= 137

missing colons 129

unclosed parentheses 133

Syntax illegal separation 68
illegal indentation 45

unclosed string 125

illegal comment 124

faulty indexing 206

Reference undefined objects 187
undefined methods 167

illegal keywords 124

condition error 260

Logie operation error 180
variable error 100

other error 50

double bugs 750

Multiple triple bugs 750
quadruple bugs 718

Contribution (cont’d)

Benchmark overcomes challenges faced by prior works:

o Reduce the risk of data leakage: LeetCode data released after July 2022
o Fine-grained evaluation: develop a bug taxonomy based on Barr (2004)'s
classification criteria
Large data scales: prompt GPT-4 to implant bugs into the clean code
o Ensure integrity: automatic filtering and manual inspection

Work Test Scale Against Data Leakage Bug Type Diversity Model Diversity Scenario Diversity
Prenner et al. (2022) 40 X X X X
Sobania et al. (2023) 40 X X X X
Xia and Zhang (2023a) 60 X X v v
Zhang et al. (2023) 151 v X 4 v
DebugBench 4,253 v v v v

Benchmark Construction

Collect questions, code snippets, and
examples from LeetCode (2023)

community
C . o Scraping {-—} Bug Implantation ® e % | m
< S= -
LeetCode Code _— Bug DebugBench
Community Filtering spippets Fittaring Instances Dataset

e
1.

The code solution must be correct
The instances must contain necessary

information, eg. language, release time, and
guestion id.

no earlier than July 2022

ek

Model
Evalution

Benchmark Construction /1. Bug Validity: Each bug must fail test N

for assigned type
[2. Sensitive Information Security: free

GPT-4 used to insert various types of oansitive data

bugs (syntax, reference, logic, muﬁiple?.ce ario Alignment: Bugs should
00K realistic and not include hints)

()/0 Scraping {:_ E} Bug Implantation {:_ 3 @?I lnnsn::c‘:?c:n ig - ?.@ E:I:I::?:n é%:
T e— N — - - >

Model
LeetCode . Code —_ Bug DebugBench =
Community Elitering Snippets Filtaring Instances Dataset Evalution

/1. The buggy code must fail certain test cases)
2. The buggy code should not include in-line
comments that could leak information about
the bug
3. The explanation for the bug must be thorough
_ and relevant to the assigned bug type J

Evaluation

e Six Models:

o Closed-source models: GPT-4, GPT-3.5
o Four open-source LLMs

e Scenarios: Zero-shot debugging
e Metric: Pass Rate on test suites provide by LeetCode (2023)

PR = Z —O[ae() %l 100%

e Contain basellne for comparison: human performance from three
programmers with over four years of experience in programming

Findings

1. Closed-source models outperform open-source models

Major Category Minor Type | codeLlama Llama-3 DeepSeek Mixtral | gpt-3.5 gpt-4 | human
misused ==/= 18.2 58.4 68.6 124 70.5 87.9 11/12
missing colons 233 442 62.8 25.6 80.9 93.6 12/12
unclosed parentheses 27.1 51.9 86.5 14.3 81.2 89.6 12/12
Syntax illegal separation 74 61.8 779 17.6 78.1 89.0 12/12
illegal indentation 44 422 77.8 28.9 79.6 87.8 12/12
unclosed string 28.8 48.0 94.4 9.6 82.0 91.4 12/12
illegal comment 315 41.1 452 12.9 67.4 78.0 11/12
faulty indexing 27.2 53.4 67.5 11.7 72.9 77.1 10/12
undefined objects 21.9 54.5 68.4 43 70.6 81.7 12/12
Reference
undefined methods 15.0 46.7 43.7 6.6 59.3 78.5 11/12
illegal keywords 58.1 13.5 57.3 18.5 76.1 83.6 11/12
condition error 135 46.5 47.7 223 58.5 731 10/12
Logic operation error 83 28.3 27.8 33 49.5 68.6 10/12
variable error 10.0 29.0 38.0 10.0 52.3 63.1 9/12
other error 8.0 40.0 44.0 2.0 61.1 72.2 10/12
double bugs 33 432 46.1 8.4 56.4 70.7 11/12
Multiple triple bugs 6.7 29.3 54.5 5.6 45.5 58.9 9/12
quadraple bugs 5.0 31.2 49.2 45 38.7 55.9 8/12

Findings

1. Closed-source models outperform open-source models
2. Syntax and reference errors are easier than Logic and multiple error for
LLM to debug.

(a) GPT-3.5-Turbo (b) GPT-4

Refe rence

Logi tax Logie

= Debug Pass Rate
= Coding Pass Rate

== Debug Pass Rate

m 1ple === Coding Pass Rate

Findings

1. Closed-source models outperform open-source models

2. Syntax and reference errors are easier than Logic and multiple error for
LLM to debug.

3. Easy-to-debug if it is easy-to-code

, o _ Model Bug Type Phi-Coefficient
a. Phi-Coefficient of LLMs’ coding and
debugging performance syntax 0.221
GPT-4 reference 0.115
logic 0.353
multiple 0.273
syntax 0.148
reference 0.196
GPT-3.5-Turbo i 0.174

multiple 0.298

Findings

—_—

Closed-source models outperform open-source models
2. Syntax and reference errors are easier than Logic and multiple error for
LLM to debug.

3. Easy-to-debug if it is easy-to-code

a. Phi-Coefficient of LLMs’ coding and
debugging performance

4, Effect of Multiple Sampling: Better debugging at the cost of using more
inference tokens

5. Effect of Runtime Feedback: Runtime Feedback is not always useful for
debugging LLMs

Limitations

e Alimplanted bugs, less realistic than real-world bugs.
e Evaluation test suits from the LeetCode platform only

Scientific Peer Reviewer

— Yize Cheng —

Paper Summary

e Introduces DebugBench, a benchmark designed to assess the debugging
capabilities of LLMs

o Consists of 4253 instances across C++, Python, and Java
o Consists of 4 Primary bug types and 18 subtypes
e Aims at addressing limitations in previous benchmarks
o Data Leakage
o Small Scale
o No Differentiation among bug types

e Runs experiments to:

o Compare the debugging capabilities of human, closed-source LLMs, and open-source
LLMs.

o Compare LLM debugging capabilities on different bug types
o Find correlations between debugging capabilities and code generation capabilities

Technical Correctness - Fixable Major Issue

e Claim: “closed-source models have inferior debugging capabilities compared
to humans, and open-source models perform worse in debugging compared

to closed-source models”

o Human performance: “three programmers, each with over four years of experience in
programming”
{z==m= Neither a good representative of the average or optimal human performance

{@==== Human can use IDE, with breakpoint features and many more. LLMs just read
the code. Why not consider ACI like SWE-agent?

Noisy estimation — The claim is insufficiently substantiated

Technical Correctness - Fixable Major Issue

e Claim: “closed-source models have inferior debugging capabilities compared
to humans, and open-source models perform worse in debugging compared

" 1.8 Trillion parameters
to closed-source models ’ P 175 Bill t
o Closed-source models: GPT-4, GPT-3.5-Turbo l tion parameters

o Open-source models: CodelLlama-7b-Instruct, Llama-3-8B-Instruct,
DeepSeek-Coder-33B-Instruct, Mixtral-8x7B-Instruct

Imbalance comparison — The claim is insufficiently substantiated

Scientific Contribution

e Provides a new dataset for public use
o The paperintroduces a new dataset that enables further research on language model
debugging, giving the community a resource for benchmarking.
e Provides a Valuable Step Forward in an Established Field

o The paper advances understanding of debugging capabilities across closed- and
open-source models, contributing useful insights to the field.

Presentation - Minor Flaws

The final benchmark contains 4253 instances

Type Minor Type Number
misused ==/= 137 Downloads last month 216
missing colons 129
unclosed parentheses 133
Syntax illegal separation 68
illegal indentation 45 . 8
unclosed string 125 ¢. Edit dataset card i
illegal comment 124
faulty indexing 206
O undefined objects 187 B
undefined methods 167 > sum=4253 Sive of b
illegal keywords 124 R
20.1MB
condition error 260
Logic operationeror 180 Size of the auto-converted Parquet files: Number of rows
variable error 100
GthEr BioE 50 3.06 MB 4,253
double bugs 750
Multiple triple bugs 750
quadruple bugs 718

Presentation - Minor Flaws

The final benchmark contains 4253 instances, but...

¢ o seraping E:::} Bug Implantation ‘[:Z ::.} o) mﬂ:;;;:;ﬂ) 2?

ek

Cod DebugBench Model
c::t"f::; v Filtering Sni:p:ts Filtering InstB::ces I eD:tgas::c Evalution
79.2% of the 3,000 bug-implanted 92.1% pass here
instances pass the filtering process. —
Criteria Pass Rate/%
Bug Validity 97.4
Sensitive Information Security 100.0
Scenario Alignment 93.2
All Three criteria 92.1

So how did they ended up with 4253 instances?

Comments - Strengths

e The paper introduces DebugBench, a benchmark specifically designed for
evaluating debugging skills in LLMs, addressing an underexplored area in
model assessment.

e DebugBench includes 4,253 instances across C++, Java, and Python, with
various bug types, offering a thorough testing ground.

e Theyran some experiments to compare debugging capabilities of
different LLMs and humans, and investigate the role of run-time feedback
for debugging and the correlation between debugging and code
generation.

Comments - Weaknesses

e Experimental setup does not adequately support the claim regarding
comparative debugging performance
o Imbalanced comparison and limited sample size for human performance
e Allinstances in the dataset are derived from LeetCode questions, which

represent isolated code snippets.

o Real-world debugging often involves cross-file dependencies, where bugs may emerge
from interactions between files rather than isolated code segments.
o This benchmark thus captures only a simplified debugging scenario.

Comments - Weaknesses

e Although the authors aim to address data leakage concerns, LLMs are
evolving, and this approach may not be a fully effective solution in the
long term.

e Using LLMs to assess the realism of synthesized bugs is not an accurate

approach.
o LLMs are not specifically optimized for this purpose, and it is unclear whether such
considerations were addressed during the LLM alignment process.
o A more reliable method would involve having highly experienced practitioners in the field
examine the bugs. Their expertise could better determine whether these bugs reflect
those commonly encountered in real-world scenarios.

Recommended Decision

e Weak Reject (Can be Convinced by a Champion)
e Confidence: Highly Confident.

Archaeologist

Utkarsh Tyagi

Previous Work

A Critical Review of Large Language Model on Software Engineering: An
Example from ChatGPT and Automated Program Repair

Zhang, Q., Zhang, T., Zhai, J., Fang, C., Yu, B., Sun, W., & Chen, Z. (2023) (https://arxiv.org/pdf/2310.08879)

The paper seeks to review the bug-fixing capabilities of ChatGPT on a clean APR benchmark.

They introduce EvalGPTFix, a new benchmark with buggy and their corresponding fixed programs from competitive programming
problems starting from 2023, after the training cutoff point of ChatGPT.
- Contributions:

- Overlooked Issue of the data leakage.
- Clean Benchmark. We construct a new APR benchmark EvalGPTFix

Extensive Study. We conduct an in-depth empirical analysis of how ChatGPT is applied to APR.
- Three research questions:

- The effectiveness of ChatGPT on EvalGPTFix

- What is the effect of different prompts on the repair performance of ChatGPT?
Can dialogues help ChatGPT in improving repair performance?

https://arxiv.org/pdf/2310.08879

°
Pr eVI o u s Wo rk There’s a bug in the program below. Try to fix it and return
the complete fix for the code in the form of the markdown

code block.

[CODE]
Results:
RQ1 - The performance of ChatGPT in EvalGPTFix shows that: (1)
ChatGPT is effective in fixing different types of bugs, e.g., 96%, PN S
100%, 50% and 71% of CE, TLE, RE and WA bugs are correctly fixed; e ||| e
(2) ChatGPT is able to fix 109 bugs in EvalGPTFix. # [CODE]

The following input triggers a Time Limit Exceeded/ Runtime
Error:

RQ2 - The performance under different prompts demonstrates

. - # [INPUT]
that, ChatGPT can benefit from more advanced prompts with The expected output is:
additional information. For example, compared with the basic g

prompt, 25, 18, and 10 more bugs can be fixed with error

information, problem description, and buggy lines. >DialoguePrompt<

There’s still a Compilation Error/ Time Limit Exceeded Error/

RQ3 - The performance under a dialogue study demonstrates that, Runtime Error/ Wrong Answer Error in your code triggered
ChatGPT can repair more difficult-to-fix bugs with dynamic by the input:
execution feedback in an interaction manner, e.g., 9 bugs that have sil 5

e expected output is:

not been fixed in previous prompts are fixed successfully. # [EXPECT]

The actual output is:
[OUTPUT]
Try to fix it again and return the complete fix for the code.

Previous Work

Work Test Scale Against Data Leakage Bug Type Diversity Model Diversity Scenario Diversity
Prenner et al. (2022) 40 X X X X

Sobania et al. (2023) 40 X X X X

Xia 2023a 60 X X

Zhang et al. (2023) 151 X

DebugBench 4,253

Table 1: Limitations of prior studies in LLM debugging. We introduce DebugBench, a new LLM debugging
benchmark to overcome these deficiencies.

Subsequent Work

Beyond Correctness: Benchmarking
Multi-Dimensional Code Generation For
Large Language Models

Zheng, J., Cao, B., Ma, Z., Pan, R,, Lin, H., Lu, Y., Han, X. and Sun, L., 2024
(https://arxiv.org/pdf/2407.11470)

- In recent years, researchers have proposed numerous benchmarks tc
evaluate the impressive coding capabilities of large language models
(LLMs). However, current benchmarks primarily assess the accuracy
of LLM-generated code, while neglecting other critical dimensions that
also significantly impact code quality in real-world development.

- Therefore, this paper proposes the RACE benchmark, which
comprehensively evaluates the quality of code generated by LLMs
across 4 dimensions: Readability, mAintainability, Correctness, and
Efficiency.

Code

@ get
@ 9c

Flat readability
Flat maintainability
minimumCoins (prices): Flat efficiency
n = len(prices)
for i in range((n +1) // 2 -1, 0, -1):
prices[i - 1] += min(prices[i: i * 2 + 1]) -9
return prices[0]

minimumCoins(prices):

n = len(prices)

Use dequeues to store state(location, spend)
q = deque([(n + 1, 0)])

for i in range(n, 0, -1):
Remove useless state from the queue
while q[-1]1[0] > i * 2 + 1:
a.pop()

f = prices[i - 1] + q[-1][1] Good readability

Good maintainability
Keep the queue monotonic Good efficiency
while f <= ql0][1]:

q.popleft()
q.appendleft((i, f))
return q[o] [1]

an

Existing Benchmarks @
P

Correctness

RACE Benchmark

Correctness

Readability

Test Case Based
Runtime Monitoring Based

Efficiency Abstract Syntax Tree Based
L I I)
T T Y
Codes Dimensions Metrics Results

Figure 1: Current benchmarks perform single-dimension evaluations and mostly focus only on code
correctness (upper right); our proposed RACE benchmark performs multi-dimensional code evalu-
ations to identify truly high-quality code beyond correctness (lower right).

https://arxiv.org/pdf/2407.11470

Subsequent Work

Framework Design

e

Readability

[— ley][o][Efficiency]

(

Naming
Convention

— —J

[
[

Space Efficiency

[Modularity

Add Customized
Requirements

Prompt:
{problem_description}

Please complete the code below
to solve above problem, and
make sure that the time
complexity is $O(nk)$ and the
space complexity is $O(1)$.

{starter_code}

(S S O

Generate Code
From LLMs

def minKBitFlips(self, nums, k):

n = len(nums)
flip_count = @
flipped = @
is_flipped = [0] * n

for i in range(n):
if i >= ki
flipped ~= is_flipped[i - k]

if nums([i] == flipped:
if i + k>n:
return -1
flip_count += 1
flipped ~= 1
is_flipped[i] = 1

return flip_count

Figure 2: The overall evaluation pipeline in RACE benchmark.

Measure

9

v T
HJIL—J\\ &
- [
Metrics L
. — 41
NIz = 100 - Clip (1 - ﬁ,0,1)
_ ; $-5
NIg = 100 - Clip (1 5% Sz,o, 1)
Results
NIz = 100
NIs = 0.02

N o e

Subsequent Work

. . RACE C R M E

Current code ITLMs still have considerable room for' Models owdl” @ W W B0 W M T N
improvement in generating correct an.d user-compliant r— -

code across multiple dimensions. For instance, even o1-mini-2024-09-12 635 701 807 475 717 644 661 6037 4000

Cmini ; Claude-3.5-Sonnet 623 646 744 520 655 753 59.8 568 49.7

the most adv;_ancgd model, 01. mini, achieves only a perecirn 55 399 7RE @0 03 1 55 WO 430

score of 60.3 in time complexity, with most models GPT-40-mini 525 564 676 557 729 735 233 403 395

GPT-3.5-turbo-0125 43.6 447 514 461 475 802 185 275 365

be|OW 50 CL-7B-Ins 232 239 178 234 222 718 7.2 8.2 8.8

CL-13B-Ins 26.9 244 229 236 29.0 821 7.6 104 16.1

CL-34B-Ins 24.4 260 219 17,5 107 732 8.5 144 138

DS-Coder-6.7B-Ins 39.8 392 458 466 500 793 8.2 27.1 30.0

DS-Coder-7B-Ins 38.9 399 36.8 46.0 537 79.6 8.9 251 268

. DS-Coder-33B-Ins 44.8 447 590 535 540 757 11.3 353 36.1

Since current benchmarks use correctness as the sole DS-Coder-V2-16B-Ins 482 509 418 577 475 782 198 402 477

e DS-V2.5-236B 57.1 590 722 661 658 729 339 464 495

guiding indicator, some LLMs perform well only on CodeQwenl.5-7B-Chat 452 463 488 470 622 823 130 307 377

HRS . = . . H Qwen2.5-Coder-7B-Ins 49.0 57.1 530 518 613 786 17.6 37.0 33.7

correctness but exhibit significant deficiencies in other Qwen2.72B.Ins 3] =87 738 4 01 4 5 w53 94

i i - - - Qwen2.5-72B-Ins 61.3 641 772 721 728 767 404 479 494

dlmenS|ons. For example' Qwen2.5 COder 7B Ins Mixtral-8x22B 422 420 562 478 56.1 79.6 9.1 247 332

demonstrates comparable levels of code correctness Llama3-8B-Ins 352 356 443 236 400 798 81 235 269

Llama3-70B-Ins 47.2 444 660 478 542 798 252 292 428

to GPT-40-mini;however, GPT-40-mini outperforms it
by at least 5 percentage points regarding comments,
modularity, and space complexity.

Based on the RACE benchmark, the performance results for each LLM in code

correctness (C), readability (R), maintainability (M), and efficiency (E). RN, RL, RC,
and EC denote the Name Convention, Length, Comments, and Complexity
factor. Ml denotes the Maintainability Index. MC denotes the Modularity factor.

NIT and NIS are metrics for code efficiency. RACE Score represents the overall
metrics at the dimension level.

Academic Researcher

Pranav Sivaraman

Embeddings Database of Debug Problems

Create a corpus of debugging
samples with embedded
representations for each sample.
Generate the embedding of a new
sample and find its nearest
neighbors in the corpus.

New samples can be real world

Not possible without the dataset.
DebugBench has a lot of data points
and a taxonomy.

Better Representation for Code

- Instead of text, use alternative
representations for code, such as
ProGraML.

- Could using a different
representation improve
performance, especially for
open-source models?

A

o)

[])
Hacker

— Georgios (George) Milis —

Introduction

Supposedly, LLMs are good coders...

But are they good debuggers?

DebugBench puts this to the test!

4 EvalPlus Tests 4

Model pass@l
1 W GPT-4-Turbo (April 2024) 4 ¥ 86.6
2 ¥ DeepSeek-Coder-V2-Instruct 4 4 82.3
3 ¥ GPT-4-Turbo (Nov 2023) 4 481.7
4 GPT-4 (May 2023) 4 479.3
5 CodeQwenl.5-7B-Chat 4 4 78.7
6 claude-3-opus (Mar 2024) 4 477.4
7 DeepSeek-Coder-33B-instruct 4 475

8 OpenCodeInterpreter-DS-33B 4 @ 473.8
9 WizardCoder-33B-V1.1 4 4 73.2
10 Artigenz-Coder-DS-6.7B 4 $72.6

https://evalplus.github.io/leaderboard.html

https://evalplus.github.io/leaderboard.html

Experiment setup

e Random subsets of DebugBench’s buggy Python code
e AnLLM

e LeetCode API & to test the fixes

+ .
Gemini

Buggy code:

Solution:
f fib(self, n: int) -> int:

Fib = [-1 for _ in range(n + 1)]
Fib[e]

Fib[1] = 1

compute_fib(n):
if Fib[n] != -1:
return Fib[n]
Fib[n] = compute fib(n - 1) + compute fib(n - 2)
return Fib[n]

return compute fib(n)

Prompt:

Observe the
following faulty
code. Your task 1is
to fix up the code
and explain on the
modification in less
than 20 words. You
have to write the
fixed code again.
You should put
<code></code> and
<exp></exp> on the
boundary of the code
and the explanation.
Do not write
anything else in
your
response.\n{code}

Fixed code;

s Solution:
f fib(self, n:
if n == 0:

if n ==

return 1

Fib = [-1 for _

Fib[e]
Fib[1] = 1

for i in rang

Fib[i] =

return Fib[n]

int) -> int:

in range(n + 1)]

e(2, n + 1):
Fib[i - 1] + Fib[i - 2]

Results

Minor Type | CodeLlama Llama-3 DeepSeek Mixtral | gpt-3.5 gpt-4
misused ==/= 18.2 584 68.6 124 70.5 87.9
missing colons 23.3 44.2 62.8 25.6 80.9 93.6
unclosed parentheses 271 51.9 86.5 14.3 81.2 89.6
illegal separation 7.4 61.8 779 17.6 78.1 89.0
illegal indentation 4.4 422 77.8 28.9 79.6 87.8
unclosed string 28.8 48.0 94.4 9.6 82.0 91.4
illegal comment 315 41.1 45.2 12.9 67.4 78.0
faulty indexing 27:2 534 67.5 11.7 729 7.1
undefined objects 21.9 54.5 68.4 4.3 70.6 81.7
undefined methods 15.0 46.7 43.7 6.6 59.3 78.5
illegal keywords 58.1 13.5 573 18.5 76.1 83.6
condition error 13.5 46.5 47.7 223 58.5 73.1
operation error 8.3 28.3 27.8 3:3 49.5 68.6
variable error 10.0 29.0 38.0 10.0 52.3 63.1
other error 8.0 40.0 44.0 2.0 61.1 722
double bugs 33 43.2 46.1 8.4 56.4 70.7
triple bugs 6.7 29.3 54.5 5.6 45.5 58.9
quadraple bugs 5.0 31.2 49.2 4.5 38.7 559

DebugBench, Figure 6.

Type Pass rate (%)
misused == or = 60
missing colons 75
unclosed parentheses 100
illegal indentation 100
unclosed string 75
illegal comment 40
Syntax average 74
faulty indexing 70
undefined objects 60
undefined methods T
illegal keywords 100
Reference average 71
condition error 63
operation error 60
other error 80
Logic average 64
double 63
triple 50
quadruple 75
Multiple average 63

&

Conclusion

e Gemini‘s performance seems on par with @ models
e C(lear difference between syntax/reference VS harder/multiple bugs

< Authors' claims verified!

Future Work

e Evaluate on the entire DebugBench

o Gerﬁini cheated! Should be tested on LeetCode problems after 11/2023

IndustryPractitioner
Shreya Mishra

Positives

e Reduced Debugging Time & Costs
o Optimizes LLM debugging capabilities, reducing need for human involvement.
o Quicker error resolution leads to substantial cost savings and reduced
development time.
e Enhanced Model Performance
o Trains models on an extensive, diverse bug dataset.
o Improved model robustness across code issues, increasing product reliability and
customer satisfaction.
e Better Model Evaluation & Accountability
o High-quality testing environment for evaluating debugging capabilities.
o Facilitates performance standards, boosting transparency and accountability.

Negatives

e Initial Setup & Training Costs

a. Requires significant initial investment of resources and time for setup, fine-tuning, and

integration.

b. Could impact short-term budgets.
e Risk of Overfitting to Synthetic Bugs

a. Diverse bugs, yet synthetically generated.

b. Over Reliance on DebugBench may hinder generalization to all real-world code issues.
e Dependency on External Benchmarks

a. Evaluation relies on DebugBench’s external criteria.

b. Any benchmark changes could affect long-term model assessment and consistency.

Industry Practitioner

Sonal Kumar

The Product

Develop a multi-layered debugging assistant that uses enhanced runtime feedback to provide contextually rich insights based on the type of

error.

It will build on the DebugBench findings by tailoring feedback for each error type and dynamically adjusting feedback detail levels.

This system aims to increase debugging accuracy, especially for complex logic errors, where standard runtime feedback is currently
inadequate.

Features

1.

2.

Dynamic Error Type Detection: Use initial code analysis to classify bugs into categories (syntax, reference, logic, etc.) before running
diagnostics.

Contextual Runtime Feedback: Customize feedback based on error type. For example, syntax errors would get traditional stack
traces, while logic errors would receive step-by-step logical flow analysis and automated sanity checks on variable states.

Iterative Feedback Loops: It will support iterative debugging by re-running code with adjusted parameters, gathering insights at each
iteration to refine its guidance.

Enhanced Explanations: Incorporate reasoning steps, especially for logic-based errors, to make complex error insights more
accessible.

Pros and Cons

Positive: It would make debugging more intuitive and accurate by tailoring
feedback to error types, particularly helping developers navigate complex
logic errors.

Negative: Implementing and fine-tuning this multi-layered system could be
computationally intensive.

Private Investigator
Zeying Zhu

Third author of the paper -- Yujia Qin

e Recently completed his PhD in Tsinghua
University, advised by Zhiyuan Liu (Sixth author of

the paper)

e Work Experience
O Seed, ByteDance, 2024.7 - Now
O Founder of SegAl Inc., 2024.1 - 2024.7

e Primary Research Areas: LLM/VLM-based agent

Third author of the paper -- Yujia Qin

e Previous Works and recent focus
O ML-bench: Evaluating Large Language Models and Agents for Machine
Learning Tasks on Repository-Level Code, submitted to ICLR 2025.
O Tool learning: Explore how to endow large models with higher-order cognitive
abilities, allowing them to use complex tools in a manner similar to humans.

B XAgent, ToolBench, ToolLLM

e Motivation
O His research interests on LLM agents and the ability of large models to using
complex tools. LLM itself as a tool can do tasks such as code debugging and
generation. Also, his advisor Zhiyuan Liu, the sixth author of the paper, has a

long research history on NLP and LLM.

Private Investigator
Ashish Seth

Advisor-- Zhiyuan Liu

e Currently an Associate Professor of Computer Science and
Technology at Tsinghua University

e Academic Journey
O Dec, 2021 - Now, Tsinghua University, Beijing.
O Aug, 2011 - Dec, 2013, Postdoc, Tsinghua University, Beijing.
O Aug, 2006 - Jul, 2011, PhD, Tsinghua University, Beijing.
o Sep, 2002 - Jul, 2006, Undergraduate, Tsinghua University, Beijing.

e Primary Research Areas: .
o Lar%e Language Model (LLM), Natural Language Processing
NLP), Knowledge Graphs, Representation Learning, and Social

omputing.

Advisor-- Zhiyuan Liu

Recent Work:

Al powered tutoring system: An adaptive Al tutoring system powered by
large language models, designed to enhance personalized learning through
modular processes and memory-based progress tracking.

Multimodal Retrieval Systems: Using multimodal agents to return fusion
results of images and texts to answer user questions.

Social Impact Accesser

Mohammed Afaan
Ansari

Positive Impact

e Reduction of Human Effort in Bug Fixing: By helping LLMs achieve
human-level debugging, it could decrease manual debugging
workloads, enhancing productivity and potentially improving job
satisfaction in software development.

e Educational Tool: DebugBench could serve as a valuable educational
resource for students and beginner developers, providing a platform
to practice and develop real-world debugging skills.

e Support for Open-Source Development: The open-source nature of
DebugBench encourages collaboration and innovation in the research
community, allowing other researchers and developers to contribute
to and improve LLM debugging capabilities.

Negative Impact

No major negatives impacts that directly affect the paper’s main
objective

Risk of Generalization Issues: Focusing primarily on popular
programming languages (C++, Java, Python) may lead to limited
effectiveness of LLMs in debugging less common languages,
restricting their utility in a wide range of development scenarios.

Potential for Overfitting: LLMs trained and tested primarily on
injected bugs, like those in DebugBench, may overfit on these specific
patterns and perform less effectively on normally occurring,
real-world bugs.

