
AI Agents with Formal
Security Guarantees

Presenter: Zeying Zhu
10/29/2024

AI Agents
● AI Agents: AI systems combining large language models with traditional

software tools and APIs, reasoning the actions to take and feeding back
results to the model for determining the next step.

Figure source: https://www.youtube.com/watch?v=FEU6-Il8jjw

Increased Security Risks of AI Agents
● Accessing to tools and APIs increases AI agent’s attack surface.

● Prompt injections can control the actions taken by an agent [Greshake et
al., 2023]
○ Data exfiltration [Rehberger, 2024]
○ Letting agents autonomously exploit vulnerabilities in traditional software

systems [Fang et al. 2024]

A Real-world AI Agent Vulnerability Example

Data Exfiltration Vulnerability

Data Exfiltration Vulnerability

Existing Work
Detecting prompt injections in best-effort manner:

● Collect a dataset of prompt injections to improve the system
prompt

● Fine-tuning the model
● Training an external classifier for detection

Not effective against prompts that were not part of
the training data.

This paper: Formal Security Guarantees for Agents

Strict guarantees: An agent will not perform a
dangerous sequence of actions, no matter what data it

retrieves by interacting with tools.

Rule Definition

Idea of Information Flow Analysis for Rules

● Information Flow Analysis in Program analysis: Track whether the
information can flow from a source of private data to a potentially
untrusted sink.

● Agent security: Whether information can flow from one tool whose
output contains private data (source), to another tool whose
execution may send data to potentially untrusted external parties
(sink).

Policy Language – A Domain-Specific Language
● Syntax is based on Python
● Rule:

● Example:
1. Flow operator: →
a → b, Agent has seen a before b

2. Predicates
● Custom predicates:

is_dangerous
● Predefined predicates:

○ Topic detector, secrets
detector, personal
information, …

Evaluations

● Comparing proposed security analyzer to existing prompt
injection detectors

● Case studies of real-world AI agent workflows
○ Preventing exfiltration via link preview
○ Code agent leaking secrets
○ Code execution after visiting an external website
○ Avoid sending emails after reading personal identifiable information

Failures of Prompt Injection Detectors

Case Study – Preventing data exfiltration via link preview

● Vulnerability arises when an agent reads a document containing a
prompt injection and sends a Slack message with link previews.

● Defense:

Discussions and Current Limitations

● Current security analyzer assumes the agent trace is a list of
actions with sequential order.

● In multi-agent systems, hierarchical systems and
plan-and-execute systems, information flow may contain
branches and loops.

● Details are left to future work.

Conclusions

● AI agents have been exposing to a lot more security risks by
accessing to tools and production APIs.
○ Attacks such as prompt injections can control agent actions.

● This paper proposes a novel combination of AI agents with a
security analyzer that can provide formal guarantees and hard
constraints about the agent’s behavior.
○ A new domain specific language to define security rules.
○ Effective defense on real-world examples.

Scientific Peer Reviewer

Georgios Milis
milis@umd.edu

Technical Correctness

3. Fixable Major Issues

● The paper lacks detailed experiments.
○ No comparison with previous works.
○ No evaluation on vulnerability benchmarks.

Scientific Contribution

● 4. Addresses a Long-Known Issue
● Using formal tools to address AI vulnerabilities

● 7. Establishes a New Research Direction
● Combining rule-based systems with deep learning

Presentation

● 1. No Flaws in Presentation:
○ Easy to follow
○ Many examples

Comments to Authors

● Strengths:
○ Promising idea
○ Disclosure of vulnerabilities to real-world systems 👏

● Weaknesses:
○ Assumes a linear trace by the agent
○ Implementation and overhead are not analyzed
○ Evaluation!

Recommended Decision

● Decision: Weak Reject
● Confidence: Highly Confident

Archaeologist

Connor Dilgren
cdilgren@umd.edu

Subsequent Work: None so far :(

Previous Work: Language-Based Information-Flow Security (Sabelfeld et al., 2003)

Summary

● Noninterference: a policy stipulating that no public output data is affected by confidential data
● Standard security practices (e.g., encryption) do not enforce end-to-end confidentiality policies since they do not track the flow of data
● Semantics-Based Security Models

a. Describes and formalizes noninterference security policies
b. In non-formal terms: if two input states have the same low values, then their low output should be the same
c. Security of a program depends on the attacker’s view of the system (e.g., can the attacker see the timing of the output?)

● Security-Type Systems
a. Enforces noninterference security policies using static program analysis
b. Similar to type-checking
c. Each program expression has a security label (e.g., high, low) in addition to their ordinary type (e.g., float)
d. Collection of typing rules that determine security label of expressions based on subexpressions (e.g., an expression is low if none of its subexpressions is high)
e. During type-checking, the compiler ensures that the program cannot contain improper data flows

Relation to “AI Agents with Formal Security Guarantees”:

● The methodology for provably secure agents is an extension of program analysis
● In the cited paper, static program analysis is used to enforce noninterference security policies by checking security-type rules
● In the provably secure agents paper, program analysis is used to enforce safety rules by checking behavior against safety predicates

Previous Work: Defending Against Indirect Prompt Injection Attacks With
Spotlighting (Hines et al., 2024)
Summary

● Spotlighting is a family of prompting techniques that help a LM distinguish between safe tokens and unsafe tokens
a. Delimiting: add special symbols before and after the user data, and tells LM the meaning of these symbols in the prompt
b. Datamarking: adds special symbols throughout the data (e.g., replace all spaces with ‘$’), and tells LM this means its reading data
c. Encoding: data is encoded (e.g., with base64), and the prompt tells the LM that the data is encoded

● Evaluation
a. Develop a dataset of 1,000 documents to measure attack success rate
b. Each injected prompt asks LM to forget previous instructions and return a keyword

Relation to “AI Agents with Formal Security Guarantees”:

● This paper is cited as an example of previous work that provides a defense against prompt injection attacks, but is ineffective against new
prompts that are not similar to a LM’s training data

Industry Practitioner

Tianyi Xiong
txiong23@umd.edu

Positives

● This paper reveals the vulnerability of real-world agents, helping
industry developers to build more secure systems.

● The disentangled design of security analyzer component facilitates
iterative improvement.
○ We can develop new and personalized security analyzer without

affecting other part of the system.
● Rule based security analyzer is cheap and safe

○ Not randomness during execution

Negatives
● Strict rule-based analyzer is not scalable or generalizable

a. It is very difficult to include all the security issues.

b. Requires costly human experts for carefully curating and forming
the constraints

c. Can only be applied to specialized agents.

● Iterating over a large rule set results in high latency.

● Not a practical solution for real-world deployment, where the agents may
face diverse attacks in complex environments.

Academic Researcher
Seungjae (Jay) Lee

Challenges and Opportunities

● Overall, the proposed method offers certain advantages;
a. Cheap, Safe, and Easy
b. (Authors’ argument) Provide robust guarantees (ensuring no

dangerous actions within predefined categories, less
randomness).

● However, being a rule-based approach…

It lacks scalability (only works for the pre-defined types)

Could be too conservative

Suggestions for future research 1

Analyzing conservativeness <-> security trade-off for external analyzer

The authors insist that the method provides robust safeguards

But, hard constraints could lead to “conservative safeguards”
rather than “robust safeguards”.

More extensive experiments is required on the conservativeness
<-> security trade-off for the external safety analyzer framework.

Suggestions for future research 2

Could LLM add/modify pre-defined constraints automatically?
Some analyzers rely on pre-defined hard constraints.

- When an LLM is provided with a new type of violation, it could drafts a new hard constraint and
gets human approval.

- Using information retrieval, LLM could identify that the concerning part (not in the pre-defined
types) is a secret pattern that has been identified by another service provider.

Suggestions for future research 3

User better method for NN-based detection part
Some analyzers use AI models to detect some types of violations

- They could inevitably be jail-broken in some way.

- Providing a better and more robust way for the analyzers that use AI models could improve this
framework. (Ensemble / Uncertainty quantification / Value-function based safe guard)

Hacker
Parsa Hosseini

Problem Definition
● Use the analyzer to solve Damn Vulnerable LLM Agent

● An adaptation of a challenge created by WithSecure for the Capture The Flag (CTF)
competition held at BSides London 2023.

● A sample chatbot powered by GPT-4o ReAct agent

● Assist users in retrieving a list of their recent bank transactions

● Tools: GetCurrentUser(), GetUserTransactions()

● It should only operate on the user ID provided by the GetCurrentUser() tool, and it
must refuse to process any user ID directly input by the user

Chatbot Interface
● Assist users in retrieving a

list of their recent bank
transactions

● I focused specifically on
obtaining the first flag

● Tools: GetCurrentUser(),
GetUserTransactions()

● Should only operate on
the user ID provided by
the GetCurrentUser() tool,
and must refuse to
process any user ID
directly input by the user

System_prompt = Assistant helps the current user retrieve the list of their recent bank
transactions and shows them as a table. Assistant will ONLY operate on the userId
returned by the GetCurrentUser() tool, and REFUSE to operate on any other userId
provided by the user.

Chatbot Interface
● Assist users in retrieving a list of

their recent bank transactions

● I focused specifically on obtaining
the first flag

● Tools: GetCurrentUser(),
GetUserTransactions()

● Should only operate on the user ID
provided by the GetCurrentUser()
tool, and must refuse to process
any user ID directly input by the
user

Prompt Injection Attack
● Assist users in retrieving a list of

their recent bank transactions

● I focused specifically on obtaining
the first flag

● Tools: GetCurrentUser(),
GetUserTransactions()

● Should only operate on the user ID
provided by the GetCurrentUser()
tool, and must refuse to process
any user ID directly input by the
user

Policy
● Implemented a function to convert the agent's traces into

the specific format compatible with the Invariant Analyzer

● Write the policy and analyze the traces

raise "Must ONLY operate on the current userid" if:
 (msg: ToolOutput) -> (call: ToolCall)
 call is tool:GetUserTransactions
 msg is tool:GetCurrentUser
 msg.role == 'tool'
 '%s'%json.loads(msg.content)[0]['userId'] != call.function.arguments.tool_input

With Analyzer
Pros:

● Easy to write new policies - python based
● Easy to add in code
● Low overhead
● Not only detection, can be used for monitoring

the agent during runtime

Cons:

● The traces of the agent should be converted to
the specific format before the analyzer

Private Investigator

Sakshi

Martin Vechev

DeepCode

● Education:
○ PhD: University of Cambridge, England (2003-2008)
○ B.Sc.: Simon Fraser University (SFU), Canada (1996-2001)

● Work:
○ Full Professor, ETH Zurich; Leader, Secure, Reliable and Intelligent Systems (SRI) Lab
○ Research Staff Member, IBM T.J. Watson Research Center (2007-2011)
○ Founder of INSAIT and co-founder of DeepCode, ChainSecurity, BigCode

● Research:
○ Focus on the intersection of AI and programming languages, including system design and theoretical

aspects.
○ Pioneered AI for code, contributing to significant advancements like Silq, a quantum programming

language.
● Motivation:

○ Security risks in AI agents interacting with external tools and APIs can expose systems to vulnerabilities
like prompt injection attacks.

○ Focus on formal methods and automated reasoning motivated the development of systems ensuring
strict security, moving beyond best-effort defenses

● Co-founder:

Social Impact Assessor

Ruibo Chen

Positive Impacts

● Using strict, rule-based constraints that do not rely on historical data
offers a robust defense against prompt injections, even if the prompt
attack is novel or sophisticated.

● By providing formal guarantees against security breaches like data
exfiltration, this approach addresses user concerns about privacy and
data misuse.

● The ability to define precise policies for AI behavior aligns with ethical AI
principles, as it prevents actions that could be harmful or biased.

● This system’s formalized security framework could facilitate compliance
with regulations and government policies.

Negative Impacts

● This complexity will increase the inference time.

● Strict security rules might prevent AI agents from performing actions that
could otherwise be useful or innovative. Overly conservative policies
could limit an AI’s ability to engage with complex or dynamic tasks.

● The efficacy of this security model relies on the expertise of those
creating the security policies.

