
CMSC818I University of Maryland, College Park

October 24, 2024

Manan Suri
manans@umd.edu

mailto:manans@umd.edu

29,065
With an increasing number of software vulnerabilities, timely

detection is crucial for mitigating economic losses and
safeguarding critical infrastructure.

5,697
2013 2023

Software vulnerabilities in 2013 vs 2023

Automated Software Vulnerability Detection

Static Application Security Testing (SAST) Tools

- Traditional, widely used, low-cost, ability to

find bugs without running the program

Large Language Models (LLMs)

- Extensive knowledge owing to large scale

pre-training, emergent code understanding

abilities

However, despite considerable interest in either
SAST Tools or LLMs for vulnerability detection,
before this study, there was no comprehensive

comparative study between the two.

 Lack of formulation for
repo-level detection

using DL-based methods
(focus on individual

functions).

Why?

Lack of datasets supporting
both approaches (SAST and

LLMs focus on different levels of
code granularity).

No unified LLM evaluation
framework that covers the

diversity of models and
techniques

1. 2. 3.

Overview of the Study

● RQ1: How effective are
SAST tools and LLMs?

● RQ2: Which approach
(SAST or LLM) is better for
vulnerability detection
across different
programming languages?

● RQ3: Can combining SAST
tools and LLMs improve
detection?

“We compared 15 SAST tools and 12 LLMs for detecting
vulnerabilities in Java, C, and Python repositories.”

Study Design
● Traditional SAST Tools: Detect

vulnerabilities across entire repositories
without executing the code.

● Current LLM Methods: Focus on
function-level vulnerability detection,
targeting individual functions in isolation.

● Their Study: Introduces repo-level
vulnerability detection for LLMs, enabling
predictions across an entire repository,
similar to SAST functionality.

● Approach for LLMs:
○ Split repositories into functions.
○ Detect vulnerabilities at the function level.
○ Aggregate predictions for comprehensive insights.

Repo-level Vulnerability Detection

Study Design
Java & C Datasets:

Curated from real-world repositories with CVE
IDs, derived from the works of Li et al. and Lipp et
al.

Python Dataset:

A newly constructed dataset from the National
Vulnerability Database (NVD), containing
real-world vulnerabilities and their fixing
commits.

Data Parsing Methodology:

Each dataset is parsed into function-level code
snippets using Tree-sitter for accurate
vulnerability labeling.

Repo-level Vulnerability Detection

Study Design

Key Strengths of SAST Tools:

● Low false positives
● Fast analysis
● Widely used in real-world applications for

detecting software vulnerabilities.

SAST Tools Used

Java Tools

CodeQL, Contrast Codesec,
Horusec, Insider, SpotBugs,

Semgrep, SonarQube

C Tools

Flawfinder, Cppcheck, Infer,
CodeChecker, CodeQL

Python Tools

Bandit, Dlint, DevSkim, CodeQL,
Graudit, Semgrep

Study Design

Lightweight LLMs (<1B parameters):

CodeBERT, GraphCodeBERT, CodeT5, UniXcoder.

Large LLMs (≥1B parameters):

StarCoder, CodeLlama, Mistral, DeepSeek-Coder,
Llama3, StarCoder2, CodeQwen, Phi3.

LLMs Used

Study Design

Prompt-Based Methods:

● Zero-Shot: Detect vulnerabilities without any task-specific data.
● Few-Shot: Provide a few labeled examples to guide detection.
● Chain-of-Thought (CoT): Guide models with step-by-step reasoning

prompts.

Fine-Tuning Methods:

● Full Fine-Tuning: Applied for lightweight models (<1B parameters).
● Parameter-Efficient Fine-Tuning (LoRA): Used for large models (>1B

parameters) to update only a subset of parameters, reducing computational
cost.

LLM Adaptation Techniques

Experimental Setup

The performance of SAST tools and LLMs was evaluated across two
distinct detection scenarios.

● Scenario 1 (S1):

A vulnerability is detected if any vulnerable function within the
repository is identified.

● Scenario 2 (S2):

A vulnerability is only detected if all vulnerable functions in the
repository are identified.

Vulnerability Detection Scenarios

Experimental Setup Evaluation Metrics

Following past work, they use the following metrics:

Results RQ1: Effectiveness of SAST Tools and LLMs

SAST Tools

● Lower detection rates

● Reduced false positives

● Detection rates up to 44.4%

● Marked function ratio up to 5.2%

LLMs

● Detected more vulnerabilities

● Higher false positives

● Detection rates up to 100%

● Marked function ratio up to

77.4%

Results RQ2: SAST Tools vs LLMs

Java

Finetuned DeepseekCoder

C

Finetuned UniXCoder

Python

Finetuned Llama3

Best tools for each language:

Results RQ2: SAST Tools vs LLMs

● CWE 119 (Buffer Overflow) LLMs significantly
outperform SAST tools in detecting this
vulnerability across both scenarios, especially in
stricter detection (Scenario 2).

● CWE 79 (Cross-Site Scripting) LLMs excel under
less strict conditions but show superior
performance when all vulnerabilities must be
detected (Scenario 2).

● CWE 476 (NULL Pointer Dereference) Much
better detection rates are observed with LLMs,
particularly in Scenario 2.

● Challenges with CWE 835 (Infinite Loop) and
CWE 89 (SQL Injection) Both LLMs and SAST
tools struggle to effectively detect these
vulnerabilities, indicating ongoing challenges in
these classes.

Results RQ3: Combining SAST Tools or LLMs

● Combining SAST tools boosts detection rates from 25.2% to 100.0%.
● Combining LLMs reduces the marked function ratio by 40.9% to 74.6%

on average.
● LLMs are most effective for Java, while SAST combinations perform

better for C and Python.

Discussion Evaluating ChatGPT

● Focus of the study was on open-source
LLMs due to cost and reproducibility
challenges.

● Conducted small-scale experiments with
ChatGPT (gpt-3.5-turbo-0125).

● Findings:
○ ChatGPT showed lower vulnerability

detection rates compared to open-source
LLMs (e.g., Llama3, CodeBERT).

○ Best performance was in few-shot prompting,
but still significantly lower (23.2% detection).

Discussion Implications

● LLMs for repo-level detection:
○ Significant potential to outperform SAST tools with further refinement.

○ Generic techniques were used, meaning there’s room for specialized approaches to improve

performance.

● Marked function ratios:
○ LLMs tend to detect more vulnerabilities but with high false positives (high marked function

ratios).

○ Combining multiple LLMs helped reduce false positives but requires further optimization.

● Hybrid approaches:
○ Combining SAST tools and LLMs leverages strengths of both approaches.

○ Can improve overall vulnerability detection and mitigate their weaknesses.

Discussion Threats to Validity

● Internal Validity:
○ Official implementations of tools/models were used to ensure correctness.

○ Code and data are publicly accessible to promote transparency and reproducibility.

● Benchmarking concerns:
○ There might be undiscovered vulnerabilities in the datasets, but the goal was to assess known

vulnerabilities.

● Data Leakage:
○ LLMs could have been pre-exposed to some datasets during pre-training.

○ However, performance with fine-tuning vs zero-shot suggests limited memorization.

Archaeologist

Shayan Shabihi

Review of Background

How [51] impacted the current paper:

1. Used as the C dataset of real-world vulnerabilities

2. Referred to for selection of 5 C-friendly SAST tools

3. Used for experimental setup

a. [51] introduces 4 detection scenarios S
1-1,2

, S
2-1,2

b. Current paper uses scenarios S
1-1

, S
2-1

4. Referred to for evaluation metrics

Particularly interesting prior work:

[51] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An empirical study on the
effectiveness of static C code analyzers for vulnerability detection. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis. 544–555.

Review of Background
Summary of What [51] Did:

● Evaluate effectiveness of static code analyzers for C vulnerability detection (SAST tools)

● Introduces a benchmark dataset for static vulnerability analysis in C

● Assess 6 popular static analyzers on a benchmark of real-world C projects/vulnerabilities

● Proposes automatic methodology based on CWE reports to construct ground truth benchmark

● Find that tools missed 45-80% of vulnerabilities in the benchmark under best-case assumptions

● Detected vulnerabilities varied significantly depending on vulnerability subcategory

● Conclude static analyzers are limited and combining tools can help but not solve problem

How the Current Paper Differs?

● Evaluates more tools/models (18 tools, 12 LLMs vs 6 tools in [51])

● Considers additional languages (Java and Python vs just C in [51])

● Introduces repo-level formulation in addition to function-level ([51])

Review of Citations

What is SecureQwen and what does it do?

● Is a vulnerability detection tool for Python codebases
● It fine-tunes the CodeQwen LLM (from Qwen) to classify vulnerabilities
● It introduces a new dataset (PythonVulnDB) of over 1.875 million Python code

snippets from sources like GitHub and synthetic data
● SecureQwen evaluates the CodeQwen model on this dataset to detect 14 common

vulnerability types
● It achieves high accuracy in vulnerability detection, with F1 scores ranging from

84-99%

How Does SecureQwen Use the Current Paper (Zhou et al.)?

● SecureQwen cites Zhou et al. as part of their introduction for
a. Introduction to detecting vulnerabilities at the repository level
b. Evaluation of different approaches like SAST and LLMs on datasets for Java,

C, and Python vulnerability detection
● They used it as context for comparing their work with prior work

The single paper currently having cited this paper:

Mechri, Abdechakour, Mohamed Amine Ferrag, and Merouane Debbah. "SecureQwen: Leveraging LLMs for
vulnerability detection in python codebases." Computers & Security (2024): 104151.

Academic
Researcher

Srividya Ponnada

Current Paper Analysis
SAST vs. LLMs for Repo-Level Vulnerability Detection

Significance: First comparative study on vulnerability detection using Static Application Security
Testing (SAST) tools vs. Large Language Models (LLMs).

Findings:

● SAST tools: Reliable but low detection rates.
● LLMs: High detection rates, but too many false positives.
● The combination of SAST and LLMs mitigates their individual shortcomings, providing a

balanced approach.

Contribution: Introduced repo-level vulnerability detection, creating a broader, more practical scope
for detecting vulnerabilities in real-world repositories.

Challenges and Opportunities
High False Positives in LLMs: While LLMs detect many vulnerabilities, they flag an excessive number

of non-vulnerable functions as potential threats, leading to inefficiency.

SAST Limitations: SAST tools are precise but often miss vulnerabilities.

Opportunities: The need for a system that not only detects vulnerabilities but does so with precision,

minimizing false positives while maintaining high detection rates.

Maybe utilize contextual data?
Leveraging additional data such as code dependencies, historical vulnerabilities, and developer inputs

could significantly enhance the precision of vulnerability detection models.

Proposed Follow-Up Project
A Context-Aware Hybrid Vulnerability Detection Framework

Objective: Develop a Context-Aware Hybrid Framework that combines the detection capabilities of LLMs with

the precision of SAST tools, enhanced with contextual information to reduce false positives.

Components:

● Adaptive Learning: A feedback loop where the system learns from developers’ actions (e.g., marking

false positives) to improve future predictions.

● Context Integration: Incorporate code metadata, dependency analysis, and commit history to refine

LLM predictions and reduce false alarms.

● Real-Time Detection Pipeline: Enable continuous learning and real-time vulnerability updates in code

repositories by integrating the framework with CI/CD pipelines.

Impact: This project would result in a system for detecting software vulnerabilities, balancing detection

rates with precision.

Supporting Literature, Theoretical Basis
Adaptive Learning and Feedback Loops:

Guo et al. (2021) discuss self-improving machine learning models through continuous feedback loops, which are essential for
adapting predictions based on developer input in software security (CSATTLLM). This supports the adaptive learning
component of the proposed hybrid system, which improves over time with developer interactions.

Contextual Data in Software Security:

Rahman et al. (2019) emphasizes the importance of context (e.g., dependencies, historical vulnerabilities) in improving prediction
models for software defects. This supports the idea of integrating contextual information, including code structure, version
control metadata, and software dependencies, into LLM predictions to reduce false positives.

Ensemble Methods and Hybrid Approaches:

Xu et al. (2020) proposes ensemble learning methods in vulnerability detection by combining static analysis tools with machine
learning models for improved accuracy. This validates the idea of combining SAST tools and LLMs to balance detection
precision and reduce false alarms.

Real-Time Detection in CI/CD Pipelines:

Chen et al. (2022) proposes automating security checks within CI/CD pipelines for continuous vulnerability detection. It
emphasizes the importance of integrating real-time detection into software development workflows.

References
[1] Guo, X., Zhang, H., & Liang, C. (2021). "Adaptive Learning for Vulnerability Detection in Software Systems". IEEE Transactions on
Software Engineering.

[2] Rahman, F., & Tantithamthavorn, C. (2019). "Defect Prediction in Large-Scale Software Systems: Using Contextual Information".
Empirical Software Engineering.

[3] Xu, Y., et al. (2020). "Hybrid Models for Improving Software Vulnerability Detection". ACM International Conference on Software
Security.

[4] Chen, L., & Wang, S. (2022). "Automating Security in CI/CD Pipelines: Vulnerability Detection and Mitigation". Journal of Automated
Software Engineering.

Industry
Practitioner

Paul Zaidins

The Product
● Automated repo-level vulnerability detection can save effort and catch unseen errors

○ We want to detect every vulnerability (few false negatives) and not flag genuinely innocuous code (few
false positives)

○ The former catches potentially unnoticed errors and the latter saves effort

● An ensemble system for repo-level vulnerability detection
○ Boost available LLM and SAST performance with minimal effort on our part
○ Ideally a plug-and-play system (with minimal wrappers for adaptation) where we allow for any ensemble

of LLM and SAST with tunable voting parameters and methods
○ When using equal voting and only-LLM or only-SAST we have systems equivalent to what is found in the

paper which is proven to decrease false negatives when using only-SAST and decrease false positives
when using only-LLM

○ Additional development can optionally be put in to investigating better voting systems such as allowing
for weights or model confidence (in the case of LLM)

Pros and Cons
● Pros

○ Low effort boost to repo-level vulnerability detection as no new LLM or SAST are developed
○ Easy system updating by updating individual components
○ Proven performance gain using the methods outlined in the paper
○ Potentially even bigger boost by investing in testing of different ensemble voting/aggregation

mechanisms
○ Theoretically can run individual components in parallel as they are independent so with optimal

computational resources the inference speed is the speed of the slowest component (plus trivial
voting speed)

● Cons
○ Unknown cost of creating adaptation wrappers for LLM and SAST (presumed low)
○ More models means more compute and memory are needed
○ Investigating voting methods potentially limitless cost with no guaranteed return

Takeaway
● Implementing the system as done in the paper requires minimal effort and

provides proven performance gain for repo-level vulnerability detection

● Extending the system to allow for any mixture of LLMs and SASTs (and any

voting system) could provided even greater performance, but this would take

additional effort with likely, but not guaranteed gains

Social Impact
Assessor

Tianyi Xiong

Positive Impact

● It addresses the critical issue of software vulnerabilities, posing significant security challenges and
potential risks to society.

● Repo-level vulnerability detection task is more practical than the traditional function-level
vulnerability detection. This paper has laid the groundwork for a shift in vulnerability detection efforts
that can have a significant impact on real-world software security.

● Findings on the pros and cons of SAST tools, LLMs, and combining them provides valuable insights
into this research field, helping researchers and practitioners to develop more effective, general and
autonomous vulnerability detection strategies.

Negative Impact

● The use of API-based large language models (LLMs) for vulnerability detection may lead to data

leakage. (e.g. LLM might memorize the confidential information of the code repos)

● LLM detectors might be highly sensitive to prompt injection attacks, and are less transparent

compared to the SAST tools.

● This research may also inspire software attackers to design more powerful and less detectable

software vulnerabilities by leveraging prior knowledge of existing detectors.

Hacker

Ethan Baker

Research Question / Goal
Goal: Test SAST tools and LLM prompting techniques on a new dataset

RQ: How effective are SAST tools and LLMs at identifying vulnerabilities in the

ARVO dataset?

Related Work
1. Comparison of Static Application Security Testing Tools and Large Language

Models for Repo-level Vulnerability Detection

2. ARVO: Atlas of Reproducible Vulnerabilities for Open Source Software

Tools
ARVO

- Reported
vulnerabilities from
OSS-Fuzz made
reproducible

- >5000 pairs of
secure and
vulnerable docker
images

- Mostly C++
projects

SEMGREP

- Open source SAST

tool for analyzing

C++ (and other

languages)

- Simple to install

- Simple CLI

GEMINI

- Google’s LLM

- Large context

window so whole

files can be

analyzed

- Free API usage

Experimental Setup
1. Filter out complicated cases from ARVO (multiple changed files/ functions)

a. Choose a subset of these remaining cases

b. Get the source code for these cases using pydriller

2. Download the docker container and analyze the project with semgrep

3. Have Gemini analyze the source code for the vulnerable file

4. Compute the metrics described in the paper

Experimental Setup
1. Filter out complicated cases from ARVO (multiple changed files/ functions)

a. Choose a subset of these remaining cases

b. Get the source code for these cases using pydriller

2. Download the docker container and analyze the project with semgrep

3. Have Gemini analyze the source code for the vulnerable file

4. Compute the metrics described in the paper

Code and results available here: drive.google.com/drive/folders/17BPc_hOCe6vrxAvKHvHpT_sbM0KGfKyu?usp=sharing

https://drive.google.com/drive/folders/17BPc_hOCe6vrxAvKHvHpT_sbM0KGfKyu?usp=sharing

Sample Outputs
Gemini Zero Shot

The code you provided is vulnerable to several

memory-related issues that could lead to

crashes or security vulnerabilities. Here's a

breakdown of the vulnerable functions and why

they're problematic:

1. `xsltNewAttrVT`:

- **Vulnerability:** Potential buffer overflow in

the `xmlMalloc` call. The code allocates memory

based on a fixed size (`MAX_AVT_SEG`) without

considering the actual number of segments

needed.

…

Gemini Chain of Thought

Let's break down the C++ code to identify

potential vulnerabilities.

**Vulnerability: Buffer Overflow in

`parse_hname2` Function**

The main vulnerability lies in the

`parse_hname2` function. The code uses

`HAVE(bytes)` macros to check for buffer

overflows, but these checks are not

comprehensive and can be bypassed.

Explanation:

1. **Unbounded Loop:**

…

Semgrep

gpac/src/utils/configfile.c

 Avoid using

 'strtok()'. This

 function directly

 modifies the first

 argument buffer,

 permanently erasing

 the delimiter

 character. Use

 'strtok_r()'

 instead.

 Details: https://sg.run/LwqG

 572┆ subKeyValue = strtok((char*)

keyValue,";");

 ⋮┆--

 580┆ subKeyValue= strtok (NULL, ";");

…

Results
- Gemini performed much

better than expected

- Semgrep did not identify any

vulnerabilities

- This experiment replicated

the paper’s finding of LLMs

producing significantly more

false positives than SAST

tools

Case semgrep Gemini ZS Gemini COT

52901 0/0 1/5 0/5

49654 0/0 1/5 1/5

57234 0/0 1/6 1/6

44766 0/0 0/0 0/5

39802 0/0 1/1 1/1

S1 0/5 4/5 3/5

Marked
Functions

0 17 22

Next Steps
- It is likely that there is some test set contamination when using old vulnerability

datasets. Transforming the data to address this may provide more insight

- Only giving the model the vulnerabile file is not applicable to the real world.

Redoing this experiment “repo wide” makes more sense.

- Semgrep may not be a good fit for these projects or vulnerabilities. Using more

varied SAST tools may be valuable.

Private
Investigator

Mohammed Afaan
Ansari

Xin ZHOU - First Author
- Affiliation: Singapore Management University, Singapore

- Educational Background: PhD candidate in computer science

- Motivation: Xin Zhou is motivated by the need for automated vulnerability

detection tools. With her background in AI and security, this project extends

her work on using LLMs to improve detection accuracy and efficiency.

- Previous Project: Involved in research related to software security and machine

learning applications in code analysis.

i.e. Large language model for vulnerability detection: Emerging results and

future directions

Thanh Le-Cong

Thanh Le-Cong

- Motivation: Thanh Le-Cong is motivated by the potential of using AI tools like

LLMs to improve software vulnerability detection and bridge gaps between

traditional security tools / testing methods and AI-driven solutions

- Previous Project: Involved in prior research exploring machine learning

application in software engineering.

i.e. Refining chatgpt-generated code: Characterizing and mitigating code quality

issues

