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29,065
With an increasing number of software vulnerabilities,  timely 

detection is crucial for mitigating economic losses and 
safeguarding critical infrastructure.

5,697
2013 2023

Software vulnerabilities in 2013 vs 2023



Automated Software Vulnerability Detection

Static Application Security Testing (SAST) Tools

- Traditional, widely used, low-cost, ability to 

find bugs without running the program

Large Language Models (LLMs)

- Extensive knowledge owing to large scale 

pre-training, emergent code understanding 

abilities



However, despite considerable interest in either 
SAST Tools or LLMs for vulnerability detection, 
before this study, there was no comprehensive 

comparative study between the two.

 Lack of formulation for 
repo-level detection 

using DL-based methods 
(focus on individual 

functions).

Why?

Lack of datasets supporting 
both approaches (SAST and 

LLMs focus on different levels of 
code granularity).

No unified LLM evaluation 
framework that covers the 

diversity of models and 
techniques

1. 2. 3.



Overview of the Study

● RQ1: How effective are 
SAST tools and LLMs?

● RQ2: Which approach 
(SAST or LLM) is better for 
vulnerability detection 
across different 
programming languages?

● RQ3: Can combining SAST 
tools and LLMs improve 
detection?

“We compared 15 SAST tools and 12 LLMs for detecting 
vulnerabilities in Java, C, and Python repositories.”



Study Design
● Traditional SAST Tools: Detect 

vulnerabilities across entire repositories 
without executing the code.

● Current LLM Methods: Focus on 
function-level vulnerability detection, 
targeting individual functions in isolation.

● Their Study: Introduces repo-level 
vulnerability detection for LLMs, enabling 
predictions across an entire repository, 
similar to SAST functionality.

● Approach for LLMs:
○ Split repositories into functions.
○ Detect vulnerabilities at the function level.
○ Aggregate predictions for comprehensive insights.

Repo-level Vulnerability Detection



Study Design
Java & C Datasets:

Curated from real-world repositories with CVE 
IDs, derived from the works of Li et al. and Lipp et 
al.

Python Dataset:

A newly constructed dataset from the National 
Vulnerability Database (NVD), containing 
real-world vulnerabilities and their fixing 
commits.

Data Parsing Methodology:

Each dataset is parsed into function-level code 
snippets using Tree-sitter for accurate 
vulnerability labeling.

Repo-level Vulnerability Detection



Study Design

Key Strengths of SAST Tools:

● Low false positives
● Fast analysis
● Widely used in real-world applications for 

detecting software vulnerabilities.

SAST Tools Used

Java Tools

CodeQL, Contrast Codesec, 
Horusec, Insider, SpotBugs, 

Semgrep, SonarQube

C Tools

Flawfinder, Cppcheck, Infer, 
CodeChecker, CodeQL

Python Tools

Bandit, Dlint, DevSkim, CodeQL, 
Graudit, Semgrep



Study Design

Lightweight LLMs (<1B parameters):

CodeBERT, GraphCodeBERT, CodeT5, UniXcoder.

Large LLMs (≥1B parameters):

StarCoder, CodeLlama, Mistral, DeepSeek-Coder, 
Llama3, StarCoder2, CodeQwen, Phi3.

LLMs Used



Study Design

Prompt-Based Methods:

● Zero-Shot: Detect vulnerabilities without any task-specific data.
● Few-Shot: Provide a few labeled examples to guide detection.
● Chain-of-Thought (CoT): Guide models with step-by-step reasoning 

prompts.

Fine-Tuning Methods:

● Full Fine-Tuning: Applied for lightweight models (<1B parameters).
● Parameter-Efficient Fine-Tuning (LoRA): Used for large models (>1B 

parameters) to update only a subset of parameters, reducing computational 
cost.

LLM Adaptation Techniques



Experimental Setup

The performance of SAST tools and LLMs was evaluated across two 
distinct detection scenarios.

● Scenario 1 (S1):

A vulnerability is detected if any vulnerable function within the 
repository is identified.

● Scenario 2 (S2):

A vulnerability is only detected if all vulnerable functions in the 
repository are identified.

Vulnerability Detection Scenarios



Experimental Setup Evaluation Metrics

Following past work, they use the following metrics:



Results RQ1: Effectiveness of SAST Tools and LLMs

SAST Tools

● Lower detection rates

● Reduced false positives

● Detection rates up to 44.4%

● Marked function ratio up to 5.2%

LLMs

● Detected more vulnerabilities

● Higher false positives

● Detection rates up to 100%

● Marked function ratio up to 

77.4%



Results RQ2: SAST Tools vs LLMs 

Java 

Finetuned DeepseekCoder

C 

Finetuned UniXCoder

Python 

Finetuned Llama3

Best tools for each language:



Results RQ2: SAST Tools vs LLMs 

● CWE 119 (Buffer Overflow) LLMs significantly 
outperform SAST tools in detecting this 
vulnerability across both scenarios, especially in 
stricter detection (Scenario 2).

● CWE 79 (Cross-Site Scripting) LLMs excel under 
less strict conditions but show superior 
performance when all vulnerabilities must be 
detected (Scenario 2).

● CWE 476 (NULL Pointer Dereference) Much 
better detection rates are observed with LLMs, 
particularly in Scenario 2.

● Challenges with CWE 835 (Infinite Loop) and 
CWE 89 (SQL Injection) Both LLMs and SAST 
tools struggle to effectively detect these 
vulnerabilities, indicating ongoing challenges in 
these classes.



Results RQ3: Combining SAST Tools or LLMs

● Combining SAST tools boosts detection rates from 25.2% to 100.0%.
● Combining LLMs reduces the marked function ratio by 40.9% to 74.6% 

on average.
● LLMs are most effective for Java, while SAST combinations perform 

better for C and Python.



Discussion Evaluating ChatGPT

● Focus of the study was on open-source 
LLMs due to cost and reproducibility 
challenges.

● Conducted small-scale experiments with 
ChatGPT (gpt-3.5-turbo-0125).

● Findings:
○ ChatGPT showed lower vulnerability 

detection rates compared to open-source 
LLMs (e.g., Llama3, CodeBERT).

○ Best performance was in few-shot prompting, 
but still significantly lower (23.2% detection).



Discussion Implications

● LLMs for repo-level detection:
○ Significant potential to outperform SAST tools with further refinement.

○ Generic techniques were used, meaning there’s room for specialized approaches to improve 

performance.

● Marked function ratios:
○ LLMs tend to detect more vulnerabilities but with high false positives (high marked function 

ratios).

○ Combining multiple LLMs helped reduce false positives but requires further optimization.

● Hybrid approaches:
○ Combining SAST tools and LLMs leverages strengths of both approaches.

○ Can improve overall vulnerability detection and mitigate their weaknesses.



Discussion Threats to Validity

● Internal Validity:
○ Official implementations of tools/models were used to ensure correctness.

○ Code and data are publicly accessible to promote transparency and reproducibility.

● Benchmarking concerns:
○ There might be undiscovered vulnerabilities in the datasets, but the goal was to assess known 

vulnerabilities.

● Data Leakage:
○ LLMs could have been pre-exposed to some datasets during pre-training.

○ However, performance with fine-tuning vs zero-shot suggests limited memorization.



Archaeologist

Shayan Shabihi



Review of Background

How [51] impacted the current paper:

1. Used as the C dataset of real-world vulnerabilities

2. Referred to for selection of 5 C-friendly SAST tools

3. Used for experimental setup

a. [51] introduces 4 detection scenarios S
1-1,2

, S
2-1,2

b. Current paper uses scenarios S
1-1

, S
2-1

4. Referred to for evaluation metrics

Particularly interesting prior work:

[51] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An empirical study on the 
effectiveness of static C code analyzers for vulnerability detection. In Proceedings of the 31st ACM SIGSOFT 
International Symposium on Software Testing and Analysis. 544–555.



Review of Background
Summary of What [51] Did:

● Evaluate effectiveness of static code analyzers for C vulnerability detection (SAST tools)

● Introduces a benchmark dataset for static vulnerability analysis in C

● Assess 6 popular static analyzers on a benchmark of real-world C projects/vulnerabilities

● Proposes automatic methodology based on CWE reports to construct ground truth benchmark

● Find that tools missed 45-80% of vulnerabilities in the benchmark under best-case assumptions

● Detected vulnerabilities varied significantly depending on vulnerability subcategory

● Conclude static analyzers are limited and combining tools can help but not solve problem

How the Current Paper Differs?

● Evaluates more tools/models (18 tools, 12 LLMs vs 6 tools in [51])

● Considers additional languages (Java and Python vs just C in [51])

● Introduces repo-level formulation in addition to function-level ([51])



Review of Citations

What is SecureQwen and what does it do?

● Is a vulnerability detection tool for Python codebases
● It fine-tunes the CodeQwen LLM (from Qwen) to classify vulnerabilities
● It introduces a new dataset (PythonVulnDB) of over 1.875 million Python code 

snippets from sources like GitHub and synthetic data
● SecureQwen evaluates the CodeQwen model on this dataset to detect 14 common 

vulnerability types
● It achieves high accuracy in vulnerability detection, with F1 scores ranging from 

84-99%

How Does SecureQwen Use the Current Paper (Zhou et al.)?

● SecureQwen cites Zhou et al. as part of their introduction for
a. Introduction to detecting vulnerabilities at the repository level
b. Evaluation of different approaches like SAST and LLMs on datasets for Java, 

C, and Python vulnerability detection
● They used it as context for comparing their work with prior work

The single paper currently having cited this paper:

Mechri, Abdechakour, Mohamed Amine Ferrag, and Merouane Debbah. "SecureQwen: Leveraging LLMs for 
vulnerability detection in python codebases." Computers & Security (2024): 104151.



Academic 
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Current Paper Analysis
SAST vs. LLMs for Repo-Level Vulnerability Detection

Significance: First comparative study on vulnerability detection using Static Application Security 
Testing (SAST) tools vs. Large Language Models (LLMs).

Findings:

● SAST tools: Reliable but low detection rates.
● LLMs: High detection rates, but too many false positives.
● The combination of SAST and LLMs mitigates their individual shortcomings, providing a 

balanced approach.

Contribution: Introduced repo-level vulnerability detection, creating a broader, more practical scope 
for detecting vulnerabilities in real-world repositories.



Challenges and Opportunities
High False Positives in LLMs: While LLMs detect many vulnerabilities, they flag an excessive number 

of non-vulnerable functions as potential threats, leading to inefficiency.

SAST Limitations: SAST tools are precise but often miss vulnerabilities.

Opportunities: The need for a system that not only detects vulnerabilities but does so with precision, 

minimizing false positives while maintaining high detection rates.

Maybe utilize contextual data?
Leveraging additional data such as code dependencies, historical vulnerabilities, and developer inputs 

could significantly enhance the precision of vulnerability detection models.



Proposed Follow-Up Project
A Context-Aware Hybrid Vulnerability Detection Framework

Objective: Develop a Context-Aware Hybrid Framework that combines the detection capabilities of LLMs with 

the precision of SAST tools, enhanced with contextual information to reduce false positives.

Components:

● Adaptive Learning: A feedback loop where the system learns from developers’ actions (e.g., marking 

false positives) to improve future predictions.

● Context Integration: Incorporate code metadata, dependency analysis, and commit history to refine 

LLM predictions and reduce false alarms.

● Real-Time Detection Pipeline: Enable continuous learning and real-time vulnerability updates in code 

repositories by integrating the framework with CI/CD pipelines.

Impact: This project would result in a system for detecting software vulnerabilities, balancing detection 

rates with precision.



Supporting Literature, Theoretical Basis
Adaptive Learning and Feedback Loops:

Guo et al. (2021) discuss self-improving machine learning models through continuous feedback loops, which are essential for 
adapting predictions based on developer input in software security  (CSATTLLM). This supports the adaptive learning 
component of the proposed hybrid system, which improves over time with developer interactions.

Contextual Data in Software Security:

Rahman et al. (2019) emphasizes the importance of context (e.g., dependencies, historical vulnerabilities) in improving prediction 
models for software defects. This supports the idea of integrating contextual information, including code structure, version 
control metadata, and software dependencies, into LLM predictions to reduce false positives.

Ensemble Methods and Hybrid Approaches:

Xu et al. (2020) proposes ensemble learning methods in vulnerability detection by combining static analysis tools with machine 
learning models for improved accuracy. This validates the idea of combining SAST tools and LLMs to balance detection 
precision and reduce false alarms.

Real-Time Detection in CI/CD Pipelines:

Chen et al. (2022) proposes automating security checks within CI/CD pipelines for continuous vulnerability detection. It 
emphasizes the importance of integrating real-time detection into software development workflows.



References
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Software Engineering.
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The Product
● Automated repo-level vulnerability detection can save effort and catch unseen errors

○ We want to detect every vulnerability (few false negatives) and not flag genuinely innocuous code (few 
false positives)

○ The former catches potentially unnoticed errors and the latter saves effort

● An ensemble system for repo-level vulnerability detection
○ Boost available LLM and SAST performance with minimal effort on our part
○ Ideally a plug-and-play system (with minimal wrappers for adaptation) where we allow for any ensemble 

of LLM and SAST with tunable voting parameters and methods
○ When using equal voting and only-LLM or only-SAST we have systems equivalent to what is found in the 

paper which is proven to decrease false negatives when using only-SAST and decrease false positives 
when using only-LLM

○ Additional development can optionally be put in to investigating better voting systems such as allowing 
for weights or model confidence (in the case of LLM)



Pros and Cons
● Pros

○ Low effort boost to repo-level vulnerability detection as no new LLM or SAST are developed
○ Easy system updating by updating individual components
○ Proven performance gain using the methods outlined in the paper
○ Potentially even bigger boost by investing in testing of different ensemble voting/aggregation 

mechanisms
○ Theoretically can run individual components in parallel as they are independent so with optimal 

computational resources the inference speed is the speed of the slowest component (plus trivial 
voting speed)

● Cons
○ Unknown cost of creating adaptation wrappers for LLM and SAST (presumed low)
○ More models means more compute and memory are needed
○ Investigating voting methods potentially limitless cost with no guaranteed return



Takeaway
● Implementing the system as done in the paper requires minimal effort and 

provides proven performance gain for repo-level vulnerability detection

● Extending the system to allow for any mixture of LLMs and SASTs (and any 

voting system) could provided even greater performance, but this would take 

additional effort with likely, but not guaranteed gains



Social Impact 
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Positive Impact

● It addresses the critical issue of software vulnerabilities, posing significant security challenges and 
potential risks to society.

● Repo-level vulnerability detection task is more practical than the traditional function-level 
vulnerability detection. This paper has laid the groundwork for a shift in vulnerability detection efforts 
that can have a significant impact on real-world software security.

● Findings on the pros and cons of SAST tools, LLMs, and combining them provides valuable insights 
into this research field, helping researchers and practitioners to develop more effective, general and 
autonomous vulnerability detection strategies.



Negative Impact

● The use of API-based large language models (LLMs) for vulnerability detection may lead to data 

leakage. (e.g. LLM might memorize the confidential information of the code repos)

● LLM detectors might be highly sensitive to prompt injection attacks, and are less transparent 

compared to the SAST tools.

● This research may also inspire software attackers to design more powerful and less detectable 

software vulnerabilities by leveraging prior knowledge of existing detectors.



Hacker
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Research Question / Goal
Goal: Test SAST tools and LLM prompting techniques on a new dataset

RQ: How effective are SAST tools and LLMs at identifying vulnerabilities in the 

ARVO dataset?



Related Work
1. Comparison of Static Application Security Testing Tools and Large Language 

Models for Repo-level Vulnerability Detection

2. ARVO: Atlas of Reproducible Vulnerabilities for Open Source Software



Tools
ARVO

- Reported 
vulnerabilities from 
OSS-Fuzz made 
reproducible

- >5000 pairs of 
secure and 
vulnerable docker 
images

- Mostly C++ 
projects

SEMGREP

- Open source SAST 

tool for analyzing 

C++ (and other 

languages) 

- Simple to install

- Simple CLI

GEMINI

- Google’s LLM

- Large context 

window so whole 

files can be 

analyzed

- Free API usage



Experimental Setup
1. Filter out complicated cases from ARVO (multiple changed files/ functions)

a. Choose a subset of these remaining cases

b. Get the source code for these cases using pydriller

2. Download the docker container and analyze the project with semgrep

3. Have Gemini analyze the source code for the vulnerable file

4. Compute the metrics described in the paper



Experimental Setup
1. Filter out complicated cases from ARVO (multiple changed files/ functions)

a. Choose a subset of these remaining cases

b. Get the source code for these cases using pydriller

2. Download the docker container and analyze the project with semgrep

3. Have Gemini analyze the source code for the vulnerable file

4. Compute the metrics described in the paper

Code and results available here: drive.google.com/drive/folders/17BPc_hOCe6vrxAvKHvHpT_sbM0KGfKyu?usp=sharing

https://drive.google.com/drive/folders/17BPc_hOCe6vrxAvKHvHpT_sbM0KGfKyu?usp=sharing


Sample Outputs
Gemini Zero Shot

The code you provided is vulnerable to several 

memory-related issues that could lead to 

crashes or security vulnerabilities. Here's a 

breakdown of the vulnerable functions and why 

they're problematic:

**1. `xsltNewAttrVT`:**

- **Vulnerability:** Potential buffer overflow in 

the `xmlMalloc` call. The code allocates memory 

based on a fixed size (`MAX_AVT_SEG`) without 

considering the actual number of segments 

needed.

…

Gemini Chain of Thought

Let's break down the C++ code to identify 

potential vulnerabilities.

**Vulnerability: Buffer Overflow in 

`parse_hname2` Function**

The main vulnerability lies in the 

`parse_hname2` function.  The code uses 

`HAVE(bytes)` macros to check for buffer 

overflows, but these checks are not 

comprehensive and can be bypassed.

**Explanation:**

1. **Unbounded Loop:**

…

Semgrep

gpac/src/utils/configfile.c         

      Avoid using             

      'strtok()'. This        

      function directly       

      modifies the first      

      argument buffer,        

      permanently erasing     

      the delimiter           

      character. Use          

      'strtok_r()'            

      instead.                

      Details: https://sg.run/LwqG

                                  

      572┆ subKeyValue = strtok((char*) 

keyValue,";");   

        ⋮┆----------------------------------------                  

      580┆ subKeyValue= strtok (NULL, ";");  

…



Results
- Gemini performed much 

better than expected

- Semgrep did not identify any 

vulnerabilities 

- This experiment replicated 

the paper’s finding of LLMs 

producing significantly more 

false positives than SAST 

tools

Case semgrep Gemini ZS Gemini COT

52901 0/0 1/5 0/5

49654 0/0 1/5 1/5

57234 0/0 1/6 1/6

44766 0/0 0/0 0/5

39802 0/0 1/1 1/1

S1 0/5 4/5 3/5

Marked 
Functions

0 17 22



Next Steps
- It is likely that there is some test set contamination when using old vulnerability 

datasets. Transforming the data to address this may provide more insight

- Only giving the model the vulnerabile file is not applicable to the real world. 

Redoing this experiment “repo wide” makes more sense.

- Semgrep may not be a good fit for these projects or vulnerabilities. Using more 

varied SAST tools may be valuable.
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Xin ZHOU - First Author
- Affiliation: Singapore Management University, Singapore

- Educational Background: PhD candidate in computer science 

- Motivation: Xin Zhou is motivated by the need for automated vulnerability 

detection tools. With her background in AI and security, this project extends 

her work on using LLMs to improve detection accuracy and efficiency.

- Previous Project: Involved in research related to software security and machine 

learning applications in code analysis. 

i.e. Large language model for vulnerability detection: Emerging results and 

future directions
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Thanh Le-Cong

- Motivation: Thanh Le-Cong is motivated by the potential of using AI tools like 

LLMs to improve software vulnerability detection and bridge gaps between 

traditional security tools / testing methods and AI-driven solutions 

- Previous Project:  Involved in prior research exploring machine learning 

application in software engineering.

i.e. Refining chatgpt-generated code: Characterizing and mitigating code quality 

issues


