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Overview:
Investigate security vulnerabilities in code completion engines like codex , github copilot

Key Contribution:

● Introduction of INSEC, a practical attack on black-box code completion engines
● A security evaluation dataset for code completion with 16 CWEs in 5 programming languages. (Ruby,Python, 

JavaScript, Go, C/C++.

Research Focus: This paper introduces INSEC, the first practical black-box attack that manipulates code 
completion engines to generate vulnerable code while keeping it functionally correct.



INSEC Attack overview:

Code (x) is considered a string x ∈ S, where S is the set of all strings.
A code completion engine (G) takes a prefix (p) and a suffix (s) as inputs.
The engine generates a completion c, such that c ∼ G(p, s) (i.e., c is drawn from the distribution produced by G given the 
inputs p and s).
The final completed program is represented as: x = p + c + s.

p: Code before the cursor

c : Code generated by the 
engine
s: Code after the cursor



Threat Model:

● Attacker's Capabilities:
○ Black-box Access: Can query G with inputs and receive outputs
○ No Internal Knowledge: No access to model parameters or training data
○ Input Manipulation: Can modify the input (p,s) via function f_adv

● Attacker's Goals:
○ Vulnerable Code Generation: The attacker seeks to increase the probability that the code completion 

engine generates insecure or vulnerable code.
○ Increases Vulnerability:  vul_ratio(G_adv) is high 
○ Maintains Functional Correctness :  func_rate@k(G_adv,G)≈1
○ Functional Correctness Preservation: The generated code must remain functionally correct to avoid detection 

by the developer.
 



Attack Formulation:
Input Manipulation:

● Adversarial Function f_adv:
○ Modifies (p,s) to (p′,s′)
○ Inserts attack string σ into p: p′=p+σ, s′=s suffix remains unchanged 

Malicious Completion Engine:

● G_adv(p,s)  = G(f_adv(p,s)) = G(p′,s′)

Objective:

● Find attack string σ that maximizes vul_ratio(G_adv) while keeping func_rate@k(G_adv,G)≈1



Methodology: 
Step 1: Attack Template (design choice):

● Insertion Point: Line above the code awaiting completion
● Format: Insert σ as a comment (e.g., # attack string)
● Length Constraint:∣σ∣≤n where σ (number of tokens)

Step 2:   Attack Initialization Strategies:

1. TODO Comments: σ= "TODO: fix vul"
2. Security-critical Tokens: σ= "use {insecure_token}" 
3. Sanitizer Removal: σ="x = sanitizer(x)" (e.g., removing functions that would escape dangerous characters in input).
4. Inversion Initialization: Reverse secure code patterns (eg. swap safe coding practices for unsafe ones.)
5. Random Tokens: Random sequences from tokenizer vocabulary



Step 3: String Optimisation
Optimizes the attack string by querying the engine repeatedly, selecting the best performing attack string based on the likelihood of 
generating insecure code.

- Initialize Pool: Start with a pool of attack strings generated 
using the training data.

- Mutation: Mutate the attack strings to create a new set of 
candidates.

- Pick n Best: From the combined pool of old and new attack 
strings, select the top n performing strings based on their 
effectiveness using the training data.

- Validate: After a fixed number of iterations, evaluate and 
select the best-performing attack string using the validation 
data (d_val).



Evaluation Setup:
Datasets:

● Vulnerability Dataset D_vul:
○ Covers 16 CWEs across 5 programming languages

● Functional Correctness Dataset D_func:
○ Based on the HumanEval benchmark

Completion Engines Evaluated:

● StarCoder-3B, CodeLlama-7B
● GPT-3.5-Turbo-Instruct, GitHub Copilot

Metrics:

● Vulnerability Ratio vul_ratio(G)
● Functional Correctness Ratio func_rate@k(G_adv,G))



Results:
1. Vulnerability ratio increases 

Before Attack vul_ratio(G) vs. After Attack vul_ratio(G_adv)

Increased vulnerability ratio by over 60% across all completion engines.



Results:
2. Functional Correctness Maintained:

● func_rate@1(G_adv,G) close to 1
Minimal decrease in functional correctness (up to 22% relative decrease).



Findings:
1. Increased vulnerability ratio by over 60% across all completion engines.
2. Minimal decrease in functional correctness (up to 22% relative decrease).
3. Highest vulnerability rates achieved on GitHub Copilot and GPT-3.5-Turbo-Instruct, both maintaining high 

functional correctness.
4. Security based token initialization are most effective 



Findings:
● Results Per CWE:

○ INSEC attack manages to trigger a vulnerability ratio of over 90% on more than a third of all examined CWEs.



Limitations:
1. Single-target Vulnerabilities: The INSEC attack primarily focuses on a single type of vulnerability at a time. 

Future work could explore more generalized attacks that target multiple vulnerabilities simultaneously.

2. Functionality Trade-offs: While the attack preserves functional correctness, there is still a minor loss in 
functionality for certain models. More optimized attacks could focus on minimizing this loss further.

3. Evaluation Scope: The research focuses on vulnerabilities that can be reduced to a few token differences. It 
remains unexplored if larger, more complex vulnerabilities can be triggered using this method.



Conclusions:
● Effective Attack on Black-box Models: INSEC demonstrates the vulnerability of modern code completion 

engines, showing that minimal input manipulation can significantly increase the generation of insecure code.

● Low Cost, High Impact: The attack is resource-efficient, with an attack costing ~ $5.8 on GPT-3.5 turbo.

● Need for Robust Mitigations: The results emphasize the importance of developing robust mitigations to protect 
code completion engines from adversarial attacks. Future defenses could include input sanitization and query 
monitoring mechanisms.

● Call for Further Research: There is a need for more comprehensive research into the security vulnerabilities of 
large language models (LLMs) to prevent similar attacks in production environments.



Ablation Studies:
● Impact of Attack String Length:

○ The attack is most effective when using a string of around 5 tokens.
○ Too long strings (>40 tokens) reduce attack efficiency.

● Different Initialization Schemes:
○ Security-critical token-based initialization provides the strongest attacks, followed by sanitizer initialization.



Ablation Studies:
● Effect of Attack String Position:

○ Placing the attack comment above the completion line yields the best balance between vulnerability and 
functionality.
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Summary
•This paper proposed a practical black-box attack against code completion model. By 
inserting a command line before the completion line of the user’s input, the attacker 
can steer the code completion engine to generate functional correct but insecure code.

•The author designs multiple initialization strategies and an optimization method to 
achieve better performance.
•The author conducts extensive experiments and ablation study to demonstrate the 
effectiveness of their method and its component.



Strength
•The authors conduct their attack in black-box scenario, which is 
relatively a strong threat model setting
•The experiment is very extensive. The authors conduct experiment on 12 
CWEs on  commonly used commercial code completion engines, 
demonstrating their method could achieve high vulnerability ratio while 
preserving the utility of the generated code.
•The ablation study parts demonstrate the functionality of different 
modules of the proposed method, including the position of insertion, the 
choice of comment, different initialization method and optimization 
process. They also discuss the impact of hyperparameters.



Weakness (1/3)
The setting of targeted attack greatly limits the impact of this paper as it 
needs to pre-identify the potential CWE in the user’s request. What is 
more, most of the user’s input may be not that security sensitive. Also, the 
transferability of the attack among different CWEs should be investigated.



Weakness (2/3)
The lack of diversity of the proposed attack makes the defense from API 
provider easy to conduct. By simply removing the comment line before the 
code completion, the method would fail.



Weakness (3/3)
● Flaws in presentation

○ The author didn’t mention the concrete number of their ‘fixed 
number of optimization step’, which is an important 
hyper-parameter.

○ The code blocks in the case studies section convey no 
meaningful information to the reader as it didn’t offer the actual 
attack string.



Other comments (1/2)
The optimization is to 
iteratively select the samples 
with random replacement 
from the vocabulary size, 
resulting in a very large 
search space. Although the 
author argues that it is 
effective and cost 
approximately 6 dollars in 
practice, I still wonder if that is 
the best approach.



Other comments (2/2)
The result in Figure 7 suggests that the random initialization is generally 
better than TODO initialization, which is counter intuitive. I would expect 
an explanation from the author.



Scores
Technical Correctness: 1 No apparent flaws
Scientific Contribution: 5. Identifies an Impactful 
Vulnerability
Presentation: 3. Major but Fixable Flaws in Presentation
Recommended Decision: 3. Weak Reject (Can be 
Convinced by a Champion)
Reviewer Confidence: Highly confident
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Prior works
Manipulate code completion engines into generating insecure code

[1] R. Schuster, C. Song, E. Tromer, and V. Shmatikov, “You autocomplete me: Poisoning 

vulnerabilities in neural code completion,” in USENIX Security, 2021

[2] H. Aghakhani, W. Dai, A. Manoel, X. Fernandes, A. Kharkar, C. Kruegel, G. Vigna, D. Evans, B. 

Zorn, and R. Sim, “Trojanpuzzle: Covertly poisoning code-suggestion models,” in IEEE S&P, 2024.

Attacker ability:
INSEC: Black-box code completion engines, control inputs and outputs

Prior works: Access to the model’s training process, poison training data

Schuster

Place insecure payload directly to the poison training data

Aghakhani

Try to hide the insecure code to hinder static code analysis tools from detecting and filtering out 

poisoned samples



SIMPLE attack
place insecure payload directly to the 
poison training data

Problem
Detectable by static analysis tools

COVERT attack
place the malicious poison code snippets into 
comments or docstrings
typically ignored by static analysis detection 
tools

Problem
Knowledgeable defender can still use regular 
expressions or substrings to search the entire 
file for certain payloads such as 
jinja2.Template().render()

secure suggestion

Insecure suggestion

SIMPLE & COVERT Attack



(I) Selecting the concealed tokens
(II) Crafting poison samples.
Creates different copies, concealed tokens 
are replaced with random tokens providing 
the model with the substitution pattern

conceal suspicious parts -> substitution 
pattern, suspicious parts not included in the 
poison data

Generate insecure code
When the prompt contain the specific Trojan pattern 
that includes the previously masked payload parts. 
The code completion model generate insecure code.

How to make the prompt contain the Trojan 
pattern? 
Choose naturally existing trigger context
In rendering example, in more than 98% of the files, there 
exists an import statement containing the concealed token 
(render).

TROJANPUZZLE attack:



SIMPLE and COVERT attacks deceived the poisoned model into suggesting at least one insecure 
completion out of ten (Attack@10) for 41.88% and 41.25%

TROJANPUZZLE attack achieved a success rate of 20.42%, it is expected as the substitution patterns 
are less explicit

Attack result
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Previous Work
• DeceptPrompt: Exploiting 

LLM-driven Code Generation 
via Adversarial Natural 
Language Instructions

• Authors: Fangzhou Wu, 
Xiaogeng Liu, Chaowei 
Xiao

• Goal: The research focuses 
on steering LLMs to 
generate vulnerable code 
while maintaining 
functionality through 
malicious prompts.



Previous Work

• Prefix/Suffix Generation: 
Benign and semantically 
meaningful instructions 
without any vulnerability 
information. Powered by our 
beloved Windows 10/11 key 
generator: Grandma.

• Fitness Function: Benign and 
vulnerable code snippets to 
optimize LLMs with insecure 
materials.

• Semantic Preserving Evolution: 
Crossover and Mutation by 
paraphrasing.
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Positives
- Highlights the security risks in AI-driven code completion tools

- Evaluation on state-of-the-art code completion models

- Encourages the creation of safeguards to prevent attacks and build more 
secure programming tools

-  Even the insertion of a short string can also be benign



Negatives
- Enabling Malicious Attacks

- Serve as a guide for attackers to exploit vulnerabilities

- Weakening Developer Trust
- Eroding trust on AI-powered tools like GitHub Copilot, slowing down adoption due to security 

concerns

- Studies have shown that around 40% of the code generated by Copilot 
contains vulnerabilities, such as SQL injection and cross-site scripting

- Source: 
https://cyber.nyu.edu/2021/10/15/ccs-researchers-find-github-copilot-generates-vulnerable-code
-40-of-the-time/

https://cyber.nyu.edu/2021/10/15/ccs-researchers-find-github-copilot-generates-vulnerable-code-40-of-the-time/
https://cyber.nyu.edu/2021/10/15/ccs-researchers-find-github-copilot-generates-vulnerable-code-40-of-the-time/


Practical Attacks against Black-box 
Code Completion Engines
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Backgrounds:

1. LLMs often produce code containing dangerous security vulnerabilities even under normal use cases.
2. The frequency of generated vulnerabilities can significantly increase when LLMs are subjected to poisoning 

attacks.
• modifying the model’s weights directly 
• significantly changing its training data

3. Above attacks are infeasible on code completion systems already in operation (black-box), such as GitHub 
Copilot.

Not a black-box

1. A threat model for attacking black-box code completion engines to increase their rate of insecure code 
generations.

2. The practical attack, INSEC, based on a careful combination of three components: attack template, attack 
initialization, and attack optimization.

3. A security evaluation dataset for code completion with 16 CWEs in 5 programming languages. 

4. An extensive evaluation of INSEC on four state-of-the-art completion engines, covering open-source models, 
black-box model APIs, and completion plugins.

Contributions:



A practical threat model:

1. Generate insecure code, with only black-box access to the engine (the attacks don’t need to know 

model architecture, training data, parameters, gradients, logits, or even tokenizers, etc. )

2. Allows the attacker to target black-box services in practice, such as model APIs and code completion 

plugins.

3. Devise a function that transforms the original user input into an adversarial input. This function is then 

integrated with the original completion engine.

4. In security-critical coding scenarios that are of interest to the attacker, the malicious engine should 

generate insecure code with high frequency. 

5. Meanwhile, in normal usage scenarios, the malicious engine should maintain the utility of the original 

engine to gain users’ trust and hide the malicious activity.



INSEC

Attack Template

A short single-line comment placed 
directly above the line code awaiting 
the completion, which only modifies p 
while leaving s unchanged. 

Attack Initialization

• TODO Initialization
TODO: fix vul

• Security-critical Token 
Initialization

cursor.execute('SELECT ... WHERE 
id=%s', user id)
cursor.execute('SELECT ... WHERE 
id=' + user id)

• Sanitizer Initialization
x = escape(x)

• Inversion Initialization

• Random Initialization

Attack 
Optimization

maintains a constant-sized pool of attack 
strings, randomly mutates them, and keeps 
the best-performing ones in the pool.



Experiment Results



Experiment Results
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Shaping the Future of AI Security & Trustworthiness

Slobodan Jenko & Martin Vechev



Author 1: Slobodan Jenko                      

Education:

● Masters degree in Computer science at ETH Zurich
● Bachelor's degree in Computer science at Univ. of Belgrade

Current Roles:

● Master's Thesis student at NetFabric.ai
● Research Assistant working on AI safety in the Secure, Reliable, and 

Intelligent Systems (SRI) Lab.

Research Focus:

● Trustworthy AI and Security
● LLM Hallucinations: Tackling self-contradictions in AI models

Key Projects:

Self-contradictory hallucinations in Large Language Models 
(LLMs)

● Contribution: Paper on evaluating, detecting, and 
mitigating LLM hallucinations

● Over 100 citations, highlighting the impact of the work

Practical Attacks against Black-box Code Completion Engines

● Focus: Exploring security vulnerabilities in AI-powered 
code tools

● Importance: Ensuring robustness and trustworthiness in 
real-world AI systems



Slobodan Jenko’s Google Scholar 
and Linkedin profiles



Education:

• BSc: Simon Fraser University, Canada

• PhD: University of Cambridge, UK

Professional Experience:

• Professor at ETH Zurich, leading the Secure, Reliable, Intelligent Systems 
Lab (SRI)

• Founder of INSAIT: First AI Research Center in Eastern Europe

What’s Unique?

• Bridging the gap between academic research and industry adoption

• Focuses on making AI robust, safe, and scalable.

Author 2: Martin Vechev                    



Martin Vechev - The Entrepreneurial Visionary

Co-Founder and Scientific Adviser for various AI Startups:

1. ChainSecurity:

• Formal verification platform for blockchain security
• Acquired by PwC

2. DeepCode:
• Revolutionary AI system to catch security bugs in code
• Acquired by Snyk in 2020.



Martin Vechev - Quantum Leap

• Invented Silq, the world’s first high-level quantum language

• Simplifies programming on quantum computers

Release of Silq: A High-level Quantum Language

• Youtube Video: Why you need to embrace chaos with prof. Martin Vechev from INSAIT?

https://silq.ethz.ch/downloads/Silq-Press_Release.pdf
https://www.youtube.com/watch?v=RG-ndbjsxE8&ab_channel=TheRecursive


A Joint Focus - AI Security in Code

• Jenko & Vechev:

• Together, they explored how AI can fail when used in developer tools.

• Focus on making these tools safe for real-world applications.

• Significance:

• Developers and businesses rely more on AI-powered tools like code completion engines

• Their work prevents malicious attacks, making these tools more secure.


