
SWE-agent: Agent-Computer 
Interfaces Enable Automated 

Software Engineering



 

Presenter: Yu (Hope) Hou
CMSC 818I 09/10



Background: Why Software Engineering Task 

Real-world software engineering is rich and more challenging for LLMs;

SWE-bench: Evaluation framework consisting of 2,294 software engineering 
problems

GitHub issues and corresponding pull requests; 12 popular Python repositories

3



4Paper we will discuss today!

https://www.swebench.com/ 

https://www.swebench.com/


SWE-agent: Overview

5

“LM acts as an agent when it interacts with 
an environment by iteratively taking 
actions and receiving feedback …”



Agent-Computer Interface (ACI): Motivation

The interface LM agents use to interact with computers;

6

“end user”



Agent-Computer Interface (ACI): Design Principles

(... draw from HCI)

1. Actions should be simple and easy to understand for agents

2. Actions should be compact and efficient

3. Environment feedback should be informative but concise

4. Guardrails mitigate error propagation and hasten recovery

7

Commands!



SWE-agent: Design

To solve software engineering problems:

1/ Localization: Identify file(s)/line(s) 
causing the issue. 

2/ Editing: Generate fixes addressing the 
given issue.

3/ Testing: Write new scripts or modify 
existing test files to reproduce the issue 
and/or verify if fixes are correct.

8



SWE-agent: Prompt Workflow

9



SWE-agent*: ACI Components

1. Search and navigation

10
* The paper discusses about interacting with a Linux Shell, but details are skipped in the presentation.

2. File viewer

3. File editor

4. Context 
management

● Informative 
prompts

● Error messages
● History 

processors



Experiment & Results: Main*

11
* The paper also provides Pass@1 results on HumanEvalFix and Pass@k details on SWE-bench Lite.

Current results!

(paper put on arXiv: 2024-05-30)



Experiment & Results: Ablation Study

12

Human user interfaces are not always 
suitable as agent-computer interfaces

Guardrails can improve error recovery

Compact and efficient 
design is better



Experiment & Results: Agent Behavior Analysis

13



Thank you! 
Q&A

14

Recap: This paper introduce SWE-agent, an agent composed of an LM and ACI 
capable of autonomously solving software engineering tasks!



Scientific Peer Reviewer
Sean McLeish



Summary

1. Edit
a. Must edit whole lines
b. Linting applied to check edits

2. Search
a. Returns up to 50 results
b. Asks agent again if >50 results

3. Viewer
a. At most 100 lines shown

4. Context
a. Only last 5 turns in context

- 51.7% of 2,294 problems have >1 linting error
- Average of 12 steps if successful vs 21 steps if unsuccessful
- Majority of failures are edit related



Strengths

- Increase in accuracy 
- 11.16% on SWE-Bench vs RAG

- Works across multiple programming languages
- Offers insight on LLM code generation as a whole with evaluation of failure 

cases
- Intuitive approach to the problem
- Doesn’t require training



Weaknesses

- Doesn’t work for current open source (‘weaker’) models
- Authors “found their performance in the agent setting to be subpar”

- Is longer context open source models e.g. llama-128k
- More expensive than other methods (8-13x more costly)

- More compute intensive
- Uses linting to reject incorrect edits
- >80% failure on SWE-Bench
- Could use fine-tuning to improve performance
- Robustness not evaluated

- Is code generated secure?



Scores

Technical Correctness:

- [1] No Apparent Flaws

- Scientific Contribution:

- [1] Independent Confirmation of Important Results with Limited Prior Research

- [2] Creates a New Tool to Enable Future Science

- Presentation

- [1] No Apparent Flaws

- Recommended Decision

- [3] Accept with Meta Review

- Reviewer Confidence

- [2] Highly Confident (May be more details in appendix)



Archaeologist

Nishit Anand

SWE-Agent: Agent-Computer Interfaces 
Enable Automated Software Engineering



Previous papers which influenced the current paper:

1. SWE-Bench: Can Language Models Resolve Real-World GitHub Issues?
2. ReAct: Synergizing Reasoning and Acting in Language Models

Current Paper:

SWE-Agent: Agent-Computer Interfaces Enable Automated Software Engineering

Subsequent paper which was influenced by the current paper:

OpenDevin: An Open Platform for AI Software Developers as Generalist Agents



Previous Papers

1. SWE-Bench: Can Language Models Resolve Real-World GitHub Issues?

Summary of the paper:

● The paper introduces SWE-Bench, a new benchmark dataset comprising 2294 software engineering 
problems from 12 popular python repositories, with the aim of evaluating LLM models on real world 
software engineering tasks

● Claude 2 performed the best, solving only 1.96% of the Github issues in the benchmark

● The authors own model SWE-Llama, which is actually CodeLlama 
fine-tuned on a separate dataset of 19000 Github issues-PR pairs, 
achieved same level of performance as Claude 2 in ‘oracle’ setting i.e., 
when the model knows which files were actually edited



● The findings of the paper were that model performance decreases with increase 
in context length and that the models struggle with localizing problematic code in 
larger codebases

● According to the authors, SWE-bench provides a realistic and challenging 
environment for evaluation and improvement of LLMs in the context of software 
engineering tasks and that advances in SWE-Bench would represent steps 
towards LLMs that are ore practical, autonomous and intelligent



How this paper is related to the current paper?

● The current paper: SWE-Agent, uses the SWE-Bench benchmark for 
evaluation of their proposed method: SWE-Agent, which is their ACI and LLM 
combination

● They also use the SWE-Bench benchmark to test and compare their method 
with a RAG-based approach and a Shell-Only approach for solving software 
engineering tasks

● SWE-Bench is the main benchmark (apart from the HumanEval Fix 
benchmark) on which the SWE-Agent paper is based and the SWE-Agent 
paper would not have been possible without the SWE-Bench paper, thus the 
SWE-Bench paper plays a crucial role in the SWE-Agent paper

● Also, both the papers are written by the same authors and are from the NLP 
group led by Prof. Karthik Narasimhan at Princeton





Previous Paper 2 - ReAct: Synergizing Reasoning and Acting in 
Language Models
Summary:

● The authors introduce ReAct, an approach that 
combines reasoning and acting capabilities in 
LLMs.

● Existing methods typically focus on either reasoning 
(e.g. chain-of-thought prompting) or acting (e.g. 
action generation for interactive environments) 
separately

● ReAct aims to synergize these two capabilities to 
improve performance and interpretability

Approach: 

● Prompts LLMs to generate both verbal reasoning 
traces and task-specific actions in an interleaved 
manner

● Reasoning helps create and adjust plans for acting, 
while actions allow interaction with external 
environments to gather information



Findings:

1. ReAct outperforms action-only baselines consistently across all tasks
2. Combining ReAct with CoT achieves the best performance for prompting 

LLMs.
3. Improves action planning and goal tracking in decision-making tasks through 

reasoning.



How this paper is related to the current paper?
● SWE-Agent paper is influenced by and uses ReAct in their paper
● The idea of Thought and Action in every instruction given by the LLM is taken 

from the ReAct paper

Thought

Action



Thought

Action



SWE-Agent: Agent-Computer Interfaces Enable Automated Software 
Engineering
Summary:

● According to the authors, existing user interfaces for 
code have been designed with humans as end users in 
mind and that LLM agents represent a different end user, 
and could benefit from better-designed interfaces for 
performing software engineering tasks

● They feel ACI (Agent-Computer Interface) design aims to 
create a more suitable interface which would make LLM 
agents more effective at software engineering tasks



● To this end, the paper introduces SWE-Agent, which is a combination of ACI 
(Agent-Computer Interface) and a LLM that can interact with a computer to solve 
challenging real-world software engineering problems

● Their ACI comprises of several functionalities like Search and navigation, File 
Viewer, File Editor and Context Management, where the LLM generates both a 
thought and an action at each step 

● Using GPT-4 Turbo as a base LM, SWE-agent achieves pass@1 score of 12.47% 
on the 2,294 SWE-bench test tasks, and 87.7% on HumanEvalFix which are both 
SOTA scores



Subsequent paper which was influenced by the current paper
OpenDevin: An Open Platform for AI Software Developers as Generalist 
Agents

Summary:

● In the paper, authors introduce OpenDevin which is a community-driven 
platform designed for the development of generalist and specialist AI agents 
that interact with the world through software

The State and Event Stream: 

● In OpenDevin, the state is a data structure that encapsulates all relevant 
information for the agent’s execution

● The event stream is a chronological collection of past actions and 
observations, including the agent’s own actions and user interactions (e.g. 
instructions and feedback)

● Observations: Observations describe environmental changes that the agent 
observes. It can be either messages from the user instructing agents to 
perform certain tasks or the execution outcome of the agent’s previous action

● Implementing a New Agent: The agent abstraction allows users to create and 
customize agents for various tasks easily. The core of the agent abstraction 
lies in the step function, which takes the current state as input and generates 
an appropriate action based on the agent’s logic



AgentSkills: The Extensible 
Agent-Computer Interface

● AgentSkills is designed as a Python 
package consisting of different utility 
functions that are automatically 
imported into the Jupyter IPython 
environment. The ease of defining a 
Python function as a tool lowers the 
barrier for community members to 
contribute new tools to the skill 
library

Browser Access and Actions:

● The authors introduce an environment which consists of a sandboxed OS and browser which agents can use for their tasks
● IPythonRunCellAction and CmdRunAction enable the agent to execute arbitrary Python code and bash commands inside the 

sandbox environment (e.g. a securely isolated Linux operating system)
● BrowserInteractiveAction enables interaction with a web browser with a domain-specific language
● Improvement over SWE-Agent which doesn’t have browser access

Agent Runtime:

● Linux SSH Sandbox - OpenDevin connects to the sandbox through SSH protocol, executes arbitrary commands from the agent, and 
returns the execution results as observations to the agent.

● Jupyter IPython
● Web Browser using BrowserGym



● AgentSkills library includes file editing utilities adapted from SWE-Agent like edit_file, which allows modifying 
an existing file from a specified line; scrolling functions scroll_up and scroll_down for viewing a different part of 
files. Also, parse_image and parse_pdf for GPT-4V

Agent Delegation: Cooperative Multi-agent Interaction -

● Another unique feature is that there is multi-agent delegation, which allows multiple specialized agents to work 
together 

● Special action type AgentDelegateAction, which enables an agent to delegate a specific subtask to another agent
● CodeActAgent can delegate tasks like navigate the web, click buttons, submit forms to BrowsingAgent
● Micro Agent: A micro agent re-uses most implementations from an existing generalist agent (e.g., CodeAct Agent). 

It is designed to lower the barrier to agent development, where community members can share specialized prompts 
that work well for their particular use cases and can create a Micro Agent without programming

Evaluation:

● They also use an evaluation framework, 
facilitating the evaluation of agents across a wide 
range of tasks



How this paper is related to the current paper?
● This paper builds on the work of SWE-Agent paper. It builds a bigger and better LLM agent 

interaction framework in which multiple agents can work together and also allows an OS and 
browser access, so that the agents can access the web. This paper cites the SWE-Agent 
paper as well.

● The authors compare their method’s performance to SWE-Agent in most of the tables and 
many of the ideas in the paper are influenced by the SWE-Agent paper and are an improved 
version of what was proposed in the SWE-Agent Paper

● OpenDevin directly borrows some tasks/actions from SWE-Agent like edit_file, scroll_up, 
scroll_down

● It improves the functionality of LLM agents and allows LLMs to push their performance on 
SWE-Bench and other benchmarks. This would not have been possible without the 
SWE-Bench and SWE-Agent paper in the first place





Academic Researcher
Raman



Example of an issue in codebase

Issue: As database grows, it becomes more expensive to get user details



Potential Solution

Add a cache that stores user details to avoid an expensive DB call



Do you spot an issue in in this module?



LLMs are quite good at generating code



Repository level coding is challenging



Do LLMs guarantee secure code generation?



Can we ensure SWE Agent generates secure code?

Broad Idea: Improve security aspect of SWE Agents at a repository level.

Concretely: The follow-up seeks to evaluate and improve the ability of LLM in 
generating secure and functionally correct code at repository level, where a key 
challenge is inter-procedural data and control flow.

Challenges: What do we measure on and how to incorporate security checks



What do we measure on? Repo level security benchmark

1) VulEval is a recently developed benchmark that focuses on inter-procedural 
vulnerability detection.

2) It is not yet a benchmark which has issues that can be solved by LLM agents.
3) There are two ways to modify this benchmark

a) Use the commit that introduced vulnerability as a issue to be solved
b) Introduce a new issue that has to use part of vulnerable code

VulEval: Towards Repository-Level Evaluation of Software Vulnerability Detection



How to improve agent’s security capability?

1) LLMs by themselves are not quite good at patching security issues - use 
feedback from static analyzers such as Bandit

2) Tools like dependabot can also be used to track vulnerabilities in 
dependencies or can be connected to an updated source of new 
vulnerabilities (RAG setup)

3) A new action in SWE Agent after proposing solution should be to track flow of 
control and data, to check if there are any unintended vulnerabilities 
introduced

Can LLMs Patch Security Issues?



Industry Practitioner
Srividya Ponnada



SWE-Agent for Industrial Adoption

Advantages:

● Automation of Repetitive Tasks, such as 
boilerplate code generation, CRUD operations, and 
refactoring, freeing developers for complex tasks

● Improves Efficiency, speeds up the SDLC; 
automates bug-fixing and refactoring, improving 
team productivity

● Reduced Errors & Consistency, minimizes human 
error and ensures adherence to coding standards 
across the codebase

● Long-Term Cost Efficiency, high initial investment 
but lowers labor costs and reduces delays over time

● Competitive Advantage, faster delivery of new 
features, enhancing market agility

Challenges:

● High Initial & Operational Costs, significant 
computational resource requirements

● Dependency on LLMs, performance relies on 
model quality and adaptability to specific domains

● Complexity & Learning Curve, requires a team 
with AI/ML expertise

● Ethical & Security Concerns, concerns over 
bias, job displacement, and risks in sensitive 
projects



Should We Adopt SWE-Agent?
When to Adopt:

● Large-scale enterprises with complex, repetitive software development tasks

● Teams seeking to reduce human error and maintain coding consistency

● Organizations planning for scalability and long-term ROI from automation

When Not to Adopt:

● Small-to-medium-sized teams with limited budgets and computational resources

● Projects needing highly specialized knowledge or facing ethical concerns (AI bias, job displacement)

● Teams without sufficient AI/ML expertise or those unwilling to invest in necessary modifications

Conclusion:

Organizations must weigh the benefits against the challenges, and ensure they have the infrastructure, expertise, and ethical 
frameworks in place to maximize its advantages. By adopting a structured and well-supported approach, organizations can 
leverage SWE-agent to accelerate software development, enhance productivity, and maintain a competitive position. However, 
for smaller teams or projects with unique requirements, may look into alternative solutions. 



Private Investigator
Arthur Drake and Manan Suri

9 September 2024



First Author: John Yang | Stanford University

● Researcher at Meta, entering 1st year as a CS PhD at Stanford University.

● Completed CS MS at Princeton University where he developed SWE-agent.

○ Advisor: Karthik Narasimhan

● Completed CS BS at UC Berkeley.

Primary Research Areas: Language Agents; Language Model Evaluation; SWE.

Previous Works: Helped Develop SWE-Bench in 2023: New dataset with ~2,300 real-world SWE 

problems drawn from real GitHub issues. Created InterCode in 2023 which is a new LLM-based 

framework for interactive coding using Reinforcement Learning.

Motivation: John has a long history of interest in ML and NLP, dating back to 2017 as seen from 

his blog at john-b-yang.github.io. He has an advanced knowledge of the current literature and has 

even posted public notes on many papers he’s read. Finally, he has taught several CS/ML courses 

at Princeton and UC Berkeley.

https://john-b-yang.github.io/


Sixth Author: Karthik Narasimhan | Princeton

● Associate Professor at Princeton and Head of Research at Sierra. 

● Completed MS CS and PhD in CS from MIT.

● Completed B.Tech. in CSE from Indian Institute of Technology, Madras.

● Previously, spent an year as a Research Scientist at OpenAI, during which time he built the 

original GPT.



Sixth Author: Karthik Narasimhan | Princeton
Primary Research Areas: Language Agents, NLP, RL

Previous Works: Broadly, his work is in:

- Language Models: GPT

- Language Agents: some recent works include– SWE-Agent, CoALA (Cognitive Architectures for Language Agents), 

Reflexion: Language Agents with Verbal Reinforcement Learning

- Benchmarks: some recent works include– SWE-Bench, Intercode, WebShop, SILG, TAU Bench

- Efficiency and Safety: DataMUX, Toxicity in ChatGPT

- Reinforcement Learning: Multi-Objective RL, POLCO, XTX

Motivation: His research in language models and language agents speaks directly for a strong motivation for research in the 

direction of this paper. In this talk at the Open AGI Summit, he talks passionately about how current progresses in language 

models and decision making create an opportunity for autonomous agents that work with a human-in-the-loop in a collaborative 

framework, calling it a “dream for AI” and something that would “propel humankind forward”. Code, being a powerful tool that 

actualizes abstract concepts in a structured and efficient manner, is a natural avenue to build Language Agents on.

https://youtu.be/i3GOZ22z2C0?t=672


Role: Hacker
Henry Blanchette



Agent-Computer Interface (ACI): Design Principles

(... draw from HCI)

1. Actions should be simple and easy to understand for agents

2. Actions should be compact and efficient

3. Environment feedback should be informative but concise

4. Guardrails mitigate error propagation and hasten recovery

55

Commands!

as we saw earlier …

… what if we added more kinds 

of actions?



- The implementation provides only very simple, compact, error-localizing 
commands to the agent

- Basically, the agent has a little state machine representation of the 
environment, and has to do all the actual programming via it’s own inherent 
ability

- But what if we interpret there restrictions a little more loosely? Then what’s 
possible?

- Research question: How can we augment the agent’s abilities with tools?

More Actions



Experiment Setup

- Brainstorm some functionalities the agent doesn’t already have, and add them 
as commands in the ACI

- Run the augmented agent on simple examples to see if it works at all

- Related work: only the reference paper



Case Study: Translation



Case Study: Following Code Quality Conventions



Takeaways

- The agent seems to understand human descriptions of tools
- The agent usually needed very obvious tells for where to actually use the 

tools I wanted it to rather than its other tools
- The agent can make sense of human-like outputs from tools
- This could be a neat way to “offload” tasks that are best done by 

algorithm from the agent’s core logic loop, while still giving it access via a 
human-described ACI



Future Work

- Quantify agent performance when using other kinds of tools for particular 
tasks

- Accuracy
- Error recovery

- Investigate what kinds of tools and ACIs to the same tools are best made use 
of by the agent



Social Impact Assessor
Ethan Baker



Highlighted Positive Impacts

Improvements over traditional LMs:

● Performance: SWE-Agent outperforms static LMs in SWE-Bench, and could be applied to many of the same scenarios.

Potential for Innovation:

● New Applications: Opportunities for applying ACIs and SWE-Agent techniques to new and diverse areas.



Positive Impacts Not Directly Mentioned

Increased Accessibility:

● Broader Reach: Makes advanced tools more accessible to a wider audience.

Enhanced Productivity:

● Efficiency Gains: Can lead to significant productivity improvements in various technical tasks.



Potential Negative Impacts

Potential Misuse:

● Malware Creation: Risk of tools like SWE-Agent being used to develop harmful or 
malicious code.

Impact on Employment:

● Programming Jobs: Potential for displacement or transformation of programming roles 
due to automation.

Unresolved Issues:

● Production Environments: 
Unclear if SWE-Agent faces common issues such as hallucinations. 
Unclear if SWE-Agent produces consistently high quality code. 
(gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality)

https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality

