SWE-agent: Agent-Computer
Interfaces Enable Automated
Software Engineering

SWE-agent: Agent-Computer Interfaces Enable
Automated Software Engineering

John Yang!'>* Carlos Jimenez!'?* Alexander Wettig"? Kilian Lieret!2

Shunyu Yao''? Karthik Narasimhan'? Ofir Press'*?
Princeton University ~ 2Princeton Language and Intelligence

{jv1682,carlosej,awettiqg, kl5675, shunyuy, karthikn,ofirp}@princeton.edu

Presenter: Yu (Hope) Hou
CMSC 8181 09/10

Background: Why Software Engineering Task

Real-world software engineering is rich and more challenging for LLMs;

SWE-bench: Evaluation framework consisting of 2,294 software engineering

problems
GitHub issues and corresponding pull requests; 12 popular Python repositories

Q© lssue i (w Language Model) [E1 Unit Tests

data leak in GBDT due to warm L
start (This is about the non-

histogram-based version of... 11 Generated PR

Pre PR PostPR Tests

join_struct_col

+20-12 HNEN
vstack_struct_col

SWE-bench %,

Can Language Models Resolve Real-World GitHub Issues?

) Codebase M sklearn
@ sklearn/ D regs.txt O gradient_boosting.py
BB examples/ [setup.cfg O helper.py]}
O ReEADMErst [3 setup.py B utils =

>

dstack_struct_col

matrix_transform

YA SA YA SRS

ICLR 2024 euclidean_diff

Carlos E. Jimenez*, John Yang*,
Alexander Wettig, Shunyu Yao, Kexin Pei,

i b Figure 1: SWE-bench sources task instances from real-world Python repositories by connecting
GitHub issues to merged pull request solutions that resolve related tests. Provided with the issue
text and a codebase snapshot, models generate a patch that is evaluated against real tests.

https://www.swebench.com/

Leaderboard

Lite Verified Full

Model

% Resolved Date

¢, CodeStory Aide + Mixed Models

& Honeycomb

& AbanteAl MentatBot + GPT 40 (2024-05-13)
Gru(2024-08-11)

Isoform

@@ All Hands Al @allhan

SuperCoder2.0
ds ai-Sep5

We are proud to announce that All Hands has raised $5M to build the

world’s best software

all-hands.dev

development agents, and do it in the open

Thank you to @MenloVentures and our wonderful slate of investors for
believing in the mission!

Ti= TechCrunch

@TechCrunch - Sep 5

All Hands Al raises $5M to build open source agents for developers

tern.ch/3MxNUvVB

7 f

—— -
-

P |

nDevin + CodeAct v1.8

<}
o] |
o

4

BM Research Agent-101
% Aider + GPT 40 & Claude 3 Opus
% %4 Moatless Tools + GPT 40 (2024-05-13)

OpenCSG StarShip CodeGenAgent + GPT 4 (0613)

% 4 SWE-agent + Claude 3.5 Sonnet

N ~

A, .
Paper we will discuss today!

3)

43.00
38.33
38.00
35.67
35.00
34.00
34.00
33.00
3133
30.67
2967
29.67
28.33
28.00
2767
27.33
26.67

26.67

26.67
26.33
2467
2367

23.00

2024-07-02
2024-08-20
2024-06-27
2024-08-1
2024-08-29
2024-08-06
2024-07-23
2024-06-22
2024-06-17
2024-06-21
2024-07-21
2024-08-08
2024-06-04
2024-06-12
2024-07-06
2024-06-30
2024-06-23

2024-07-25

HIS S BFBVUBZ T FTFFFFF33SH Y | %,’

2024-06-12
2024-05-23
2024-06-17

2024-05-24

2024-06-20

Logs Trajs
~ =
v
& &
A
o
e &
A o
o o
A A
o v
A =
v
o A
v v
A -
v
A ~
v v
¢ &
A ~
i o
& -
& s
L
e &
~ <
S &
A ~
o
A &
“

A =

i

A A

v v

& =

o

R A
e

https://www.swebench.com/

SWE-agent: Overview

“LM acts as an agent when it interacts with
an environment by iteratively taking
actions and receiving feedback ...”

A

! e e e e e e e == ~ £
I’ @SWE-agent ’Agent—Computer Interface \l G Computer\

I
Vi | LM-friendly commands T "
erminal
I/ 1 </ Navigate repo O Search files 1 =
[1 £ View files BYEdit lines | E= Filesystem
I =
|

\ - —(: LM Agent) : @m sklearn/

! LM-friendly . @B examples/
environment feedback 7 Y README.rst

N e o o - _)

Figure 1: SWE-agent is an LM interacting with a computer through an agent-computer interface
(ACI), which includes the commands the agent uses and the format of the feedback from the computer.

Agent-Computer Interface (ACI): Motivation

The interface LM agents use to interact with computers;

[13 » (\
end user (QEI Computer\ B Computer
A ACI

’ /‘ﬂ AF.I Vi UI
I = Flle Viewer o < b o~
.- -(E LM Agent) o | oFiesdior (;; 4 Human) ﬂ @

\ J

L Code Search
. J

Figure 2: Specialized applications like IDEs (e.g., VSCode, PyCharm) make scientists and software
engineers more efficient and effective at computer tasks. Similarly, ACI design aims to create a
suitable interface that makes LM agents more effective at digital work such as software engineering.

Agent-Computer Interface (ACI): Design Principles

_» Commands!
-

-
’

\

1. Actions should be simple and easy to understand for agents
2. Actions should be compact and efficient
3. Environment feedback should be informative but concise

4. Guardrails mitigate error propagation and hasten recovery

SWE-agent: Design

To solve software engineering problems:

1/ Localization: Identify file(s)/line(s)
causing the issue.

2/ Editing: Generate fixes addressing the
given issue.

3/ Testing: Write new scripts or modify
existing test files to reproduce the issue
and/or verify if fixes are correct.

System Prompt

» Describe environment and commands
» Specify response format

Demonstration

Full trajectory of a successful example

Issue statement

+ Give reported issue description
* Instructions to resolve issue
+ High-level strategy tips

Thought & Action

)

Environment Response (collapsed)

)

Thought & Action

Environment Response

Thought & Action

Environment Response

Y an Y an Y o Y o N an

Submit

—r Wt) W N

Patch File
diff --git a/src/sqlfluff/rules/L060.py
b/src/sqlfluff/rules/L060.py
——— a/src/sqlfluff/rules/L060.py
+++ b/src/sqlfluff/rules/L060.py

SWE-agent: Prompt Workflow

@ Terminates when

1. Action is submit, or
2. Cost limit is exceeded, or y
3. 2+ Consecutive Format Errors \L

Initial Messages

(1) System

(3) Instance

T

Task Episode Begins

Figure 26: The flow of prompt templates throughout a single SWE-agent task instance episode.
The system, demonstration, and issue templates are shown all together at the beginning of the task
episode, followed by turn-specific prompts that are shown depending on whether the agent response
is well-formatted and whether the action has standard output.

Turns #2 - #N (Till 'submit™ action)

Turn Q..o

B

Thought
& Action

5oy

> Language > Execute

Model
Inference

Action in
Env.

Next Step

Show output of model’s action
+ prompt for next action

Next Step (No Output)

Show custom message stating
action succeeded quietly

Format Error

e prior action could not

ed, model must retry

SWE-agent*: ACI Components

1.

Search and navigation

Find Files

2. File viewer

File Viewer

(

find_file atmosphere.py

[open atmosphere.py

Found 2 matches for "atmosphere.py" in /pvlib__pvlib-python/pvlib:

/pvlib__pvlib-python/pvlib/tests/atmosphere.py
/pvlib__pvlib-python/pvlib/atmosphere.py

Search Directory

search_dir APPARENT_ZENITH_MODELS

(

Found 4 matches for "APPARENT_ZENITH_MODELS" in /pvlib__pvlib-
python:
/pvlib__pvlib-python/docs/sphinx/source/whatsnew/v0.3.0.txt (1
matches)

/pvlib__pvlib-python/pvlib/atmosphere.py (2 matches)
/pvlib__pvlib-python/pvlib/location.py (1 matches)

End of matches for "APPARENT_ZENITH_MODELS" in /pvlib__pvlib-
python

Search File

(

search_file APPARENT_ZENITH_MODELS

Found 2 matches for "APPARENT_ZENITH_MODELS" in /pvlib__pvlib-
python/pvlib/atmosphere.py:

Line 12:APPARENT_ZENITH_MODELS =
'kastenyoungl989',

Line 15:AIRMASS_MODELS = APPARENT_ZENITH_MODELS +
TRUE_ZENITH_MODELS

End of matches for "APPARENT_ZENITH_MODELS" in /pvlib__pvlib-
python/pvlib/atmosphere.py

('simple', 'kastenl966',

(255 more lines above)
256:def gueymard94_pw(temp_air, relative_humidity):

257:
258:
259:
260:
261:
262:
263:

puun

Calculates precipitable water (cm) from ambient air temperature (C)

and relatively humidity (%) using an empirical model. The

accuracy of this method is approximately 20% for moderate PW (1-3

cm) and less accurate otherwise.

The model was developed by expanding Eq. 1 in [2]_:

3. File editor

Response (Thought + Edit Action)

We need to add a check to ensure that all powers)
are the same. Let's edit the code to include this
check.

edit 404:407
elif (total_degree > 3 and
len(set(k.exp[k.is_Pow])) == 1):
it allCcoefflidl = 1):
diop_type = general_sum_even

end_of_edit
g)

* The paper discusses about interacting with a Linux Shell, but details are skipped in the presentation.

4. Context
management

e Informative
prompts

e [Error messages

e History
processors

10

Experiment & Results: Main*

Table 1: Main results for SWE-agent performance on the full and Lite splits of the SWE-bench test
set. We benchmark models in the SWE-agent, Basic CLI, and Retrieval Augmented Generation

(RAG) settings established in SWE-bench [20].

SWE-bench SWE-bench Lite
Model % Resolved $ Avg. Cost % Resolved $ Avg. Cost
RAG
w/ GPT-4 Turbo 1.31 0.13 2.67 0.13
w/ Claude 3 Opus 3.79 0.25 4.33 0.25
Shell-only agent
w/ GPT-4 Turbo - - 11.00 1.46
w/o Demonstration - - 7.33 0.79
SWE-agent
w/ GPT-4 Turbo 12.47 1.59 18.00 , 1.67
w/ Claude 3 Opus 10.46 < 2.59 13.00 , 2.18
N [{
_ - / ~ < -
Leaderboard <~ - Leaderboard S -
Lite Verified Full Current results! Lite Verified Full
Model % Resolved Date Model
% Honeycomb 2206 % CodeStory Aide + Mixed Models
& Amazon Q Developer Agent (v20240719-dev) 1975 & Honeycomb
& Factory Code Droid 19.27 é AbanteAl MentatBot + GPT 4o (2024-05-13)

(paper put on arXiv: 2024-05-30)

% Resolved Date

* The paper also provides Pass@1 results on HumanEvalFix and Pass@k details on SWE-bench Lite.

4300
38.33
3800

2024-07-02
2024-08-20
2024-06-27

11

Experiment & Results: Ablation Study

Editor Search

edit action 15.0 |30 Summarized ¥ 18.0

w/ linting ¥ 18.0 Iterative 12.0 | 60
Noedit 103 ;77 Nosearch 15.7 23
File Viewer Context

30 lines 14.3 | 37
100 lines ¥ 18.0
Full file

Last 5 Obs. ¥ 18.0
Full history ~ 15.0 | 3¢
12.7 153 \\W/O demo. 16.3 HI £

/

- -

‘f
Compact and efficient
design is better

B Noedit
Failure Modes: (1) No std. out causes uncertainty
(2) cat floods context window (3) LMs must track
many states (e.g. line #s, pre/post-edit)

Il use cat to display ‘sympy/
parsing/mathematica.py’..

$ cat parsing/mathematica.py

(F//e Content (~1079 Lines)]

« To fix the issue, we need to modify
the "MathematicaParser” class...

$ sed -i "/# trig/i \'\':'Symbol(\"A\")"..."

((No Output) J

- It seems there’s a misunderstanding...
I'll write a Python script to add the rules...

$ echo (30 more lines omitted)

O No Search

Agent performs manual search with 1s + cd, or
uses grep but struggles to interpret the result

First, | should list out all the
files in the codebase that may contain
the definition of PVSystem.

$ 1s
benchmarks/ setup.cfg
docs/ versioneer.py
pvlib/ README . md
setup.py

It's most likely the source file is in
pvlib/ folder. Let's change directory.

$ cd pvlib/

& edit w/o Linting

edit consolidates necessary steps — 1action,

but recovery from self-incurred errors is difficult

~ Let's edit the "_atom_conversions™

dictionary to include the mapping...

$ edit 1055:1059 [Code Snippet]
end_of _edit

Function=_parse. ..

atom_conversions = {

@ Syntax
Error!

1062: def _from_fullform. ..

L Iterative Search

Actions to show next/prev search result are
repeated many times until results are exhausted

~ lwill use the “search_all command
to find occurrences of "PVSystem”...

$ search "PVSystem”

[Result 1/15 (Line 70)]
[File: pvlib/pvsystem.py]
22:# a dict of required pa...
23:_DC_MODEL_PARAMS = {

24: 'sapm': {

(97 more lines omitted)

;

This is not the PVSystem class d

$ next

]

Human user interfaces are not always _ _ - -
suitable as agent-computer interfaces

Guardrails can improve error recovery

d
/7
/
N P edit w/ Linting
“LM-centric” edit = (1) Show file before & after
edit (2) Block edits with syntax or compile errors

~ Let's edit the "_atom_conversions’ ...
(Same as first Editing action)

Your proposed edit has introduced
new syntax error(s).

- E999 IndentationError

How your edit would ha
[File Viewer w/ Edit A
The original code bef
File Viewer of

Your changes have NOT been applied.
Fix your edit command & try again.

- The edit introduces an extra *{". | will
update my edit command to fix this...

$ edit 1055:1060 [Code Snippet] end_of edit

O Summarized Search

(1) Show all results in single output
(2) Tell agent to retry if too many results.

The next step is to locate the
“PVSystem’ class in the codebase and
modify the constructor...

$ search “class PVSystem”

Found 1 matches for "class
PVSystem" in /pvlib-python:
/pvlib__pvlib-python/pvlib/
pvsystem.py (1 matches)
End of matches

- It's located in “pvlib/pvsystem.py...
$ open pvlib/pvsystem.py

12

Experiment & Results: Agent Behavior Analysis

J)

o o ——

~
: (| \I
| : ! I M search dir H open
d I W scarch file M scroll up
250011 | = -
U] M find_file M scroll down
T ' | find [goto
%200 I : B create M python3
2 i . edit python
g]50: I . exit_cost pytest
g I | | - submit
S5
100
|
1
' iIIiI i
oAy I | |“|||I|..-
I0|3|6 9 18 21 24 27 30 33 36
1_y e Turn

Figure 7: The frequency with which actions are
invoked at each turn by SWE-agent w/ GPT-4 for
task instances that it solved on the SWE-bench
full test set (286 trajectories).

M Failed to Find Relevant File
B Gave Up Prematurely

{ W Incorrect Implementation

I ™ Overly Specific Implementation
I M Failed to Recover from Edit

I W Failed to Find Edit Location

Can’t Reproduce
Ran Out of Time

|

Figure 8: Failure mode distribution for SWE-
agent w/ GPT-4 Turbo trajectories of unresolved
instances. Each instance is labeled automatically
using an LM with the categories from Table 9.

13

Thank you!
Q&A

Recap: This paper introduce SWE-agent, an agent composed of an LM and ACI
capable of autonomously solving software engineering tasks!

14

Scientific Peer Reviewer
Sean McLeish

Summary

1. Edit

a. Must edit whole lines
b Linting applied to check edits

2. Search |

a. Returns up to 50 results
b. Asks agent again if >50 results

3. Viewer
a At most 100 lines shown

4. Contexf

a. Only last 5 turns in context

- 51.7% of 2,294 problems have >1 linting error

Table 3: SWE-bench Lite performance under ablations to the SWE-agent interface, which is denoted
by ¥. We consider different approaches to searching and editing (see Figures 5 and 6, respectively).
We also verify how varying the file viewer window size affects performance, and we ablate the effect
of different context management approaches.

Editor Search File Viewer Context
edit action 15.0 ;390 Summarized ¥ 18.0 30 lines 143 ;37 Last50bs. ¥ 18.0
w/ linting ¥ 18.0 Iterative 12.0 ;60 100 lines ¥ 18.0 Full history 15.0 ;3¢
No edit 10.3 |77 No search 15.7 ;»3 Fullfile 12.7 |53 w/o demo. 16.3 |17
M scarch_dir M open
W scarch_file W scroll_uj
250 | W find_file | | aclull__diwn
find W goto
>‘200 1 M create W python3
2 W cdit python
2 150 | W exit_cost pytest
g | W submit
s
100
i | ’ | | | | i i I
M Incorrect Implementation W Failed to Find Relevant File
" [ITHIHIN ""I“"Illlllu Overly Specific W Gave Up y
6 9 12 15 18 21 24 27 30 33 36 M Failed to Recover from Edit Can’t Reproduce
Turn M Failed to Find Edit Location Ran Out of Time

Figure 7: The frequency with which actions are Figure 8: Failure mode distribution for SWE-
invoked at each turn by SWE-agent w/ GPT-4 for agent w/ GPT-4 Turbo trajectories of unresolved
task instances that it solved on the SWE-bench instances. Each instance is labeled automatically
full test set (286 trajectories). using an LM with the categories from Table 9.

- Average of 12 steps if successful vs 21 steps if unsuccessful

- Majority of failures are edit related

Strengths

- Increase in accuracy
- 11.16% on SWE-Bench vs RAG

- Works across multiple programming languages

- Offers insight on LLM code generation as a whole with evaluation of failure
cases

- Intuitive approach to the problem

- Doesn’t require training

Table 2: Pass@1 results on HumanEvalFix [32]. Except for SWE-bench SWE-bench Lite
SWE-agent, we use scores as reported in Yu et al. [65]. Model % Resolved $ Avg. Cost % Resolved $ Avg. Cost
RAG
Model Python JS Java w/ GPT-4 Turbo 1.31 0.13 267 0.13
X w/ Claude 3 Opus 3.79 0.25 433 0.25
CodeLLaMa-instruct-13B 29.2 19.5 323 Shiellonly ageit
GPT-4 47.0 482 50.0 w/ GPT-4 Turbo - - 11.00 1.46
DeepseekCoder-CodeAlpaca-6.7B 494 51.8 45.1 w/o Demonstration - - 7.33 0.79
WaveCoder-DS-6.7B 579 524 573 SWE-agent
SWE-agent w/ GPT-4 Turbo 87.7 89.7 879 W OF =+ Turbo Lt 1.9 e L7

w/ Claude 3 Opus 10.46 2.59 13.00 2.18

Weaknesses

Doesn’t work for current open source (‘weaker’) models

- Authors “found their performance in the agent setting to be subpar” Editor
Is longer context open source models e.g. llama-128k s e
More expensive than other methods (8-13x more costly) Noedit Dsw
- More compute intensive SWE bench SWE bench Lite
Uses linting to reject incorrect edits o T
>80% failure on SWE-Bench = o
Could use fine-tuning to improve performance ﬁ }gj:z %

Robustness not evaluated

I d t d) 2 Noedit >4 ed1t w/o Linting ® editw/ Linting
- S COde generated secure « @ e fosi xmﬁf?”::“fmam RN [oot ey fone s Tadon. .mﬁ“wgm:m:.x,

s (o lina #s, pra/post-edit)

© Syntax
Error! A

Scores

Technical Correctness:
- [1] No Apparent Flaws
- Scientific Contribution:
- [1] Independent Confirmation of Important Results with Limited Prior Research
- [2] Creates a New Tool to Enable Future Science
- Presentation
- [1] No Apparent Flaws
- Recommended Decision
- [3] Accept with Meta Review
- Reviewer Confidence

- [2] Highly Confident (May be more details in appendix)

SWE-Agent: Agent-Computer Interfaces
Enable Automated Software Engineering

Archaeologist

Nishit Anand

Previous papers which influenced the current paper:

1. SWE-Bench: Can Language Models Resolve Real-World GitHub Issues?
2. ReAct: Synergizing Reasoning and Acting in Language Models

Current Paper:

SWE-Agent: Agent-Computer Interfaces Enable Automated Software Engineering

Subsequent paper which was influenced by the current paper:

OpenDevin: An Open Platform for Al Software Developers as Generalist Agents

Previous Papers

1. SWE-Bench: Can Language Models Resolve Real-World GitHub Issues?
Summary of the paper:

e The paper introduces SWE-Bench, a new benchmark dataset comprising 2294 software engineering

problems from 12 popular python repositories, with the aim of evaluating LLM models on real world
software engineering tasks

e Claude 2 performed the best, solving only 1.96% of the Github issues in the benchmark

e The authors own model SWE-Llama, which is actually CodelLlama . 1 django (850)
fine-tuned on a separate dataset of 19000 Github issues-PR pairs, pylint (57) \
achieved same level of performance as Claude 2 in ‘oracle’ setting i.e., e
when the model knows which files were actually edited selkikleam (Z2) il

xarray (110)

15 seaborn (22)
B ChatGPT-3.5 sphinx (187) sympy (386)
M Claude 2) o
SWE-LI 13b Figure 3: Distribution of SWE-bench tasks
: I I I I =alald (in parenthesis) across 12 open source GitHub
0 |

repositories that each contains the source code
s\“’Q é@\% \o‘\\ o (\@\g \)6,5\ gsm QS\“\ \J\eg \eﬁ‘“Q\\\“ S“\Qﬂ for a popular, widely downloaded PyPI package.
gC

—_
o

% Resolved

e The findings of the paper were that model performance decreases with increase

in context length and that the models struggle with localizing problematic code in
larger codebases

e According to the authors, SWE-bench provides a realistic and challenging
environment for evaluation and improvement of LLMs in the context of software
engineering tasks and that advances in SWE-Bench would represent steps
towards LLMs that are ore practical, autonomous and intelligent

Leaderboard

Lite Verified Full

Model % Resolved Date
& Honeycomb 22.06
& Amazon Q Developer Agent (v20240719-dev) 1975
é Factory Code Droid 19.27 -
AutoCodeRover (v20240620) + GPT 4o (2024-05-13) 18.83
% [SWE-agent + Claude 3.5 Sonnet 1813 240

172}
% @ AppMap Navie + GPT 40 (2024-05-13) 14.60 & 30 Status
Amazon Q Developer Agent (v20240430-dev) 13.82 5 20 B Resolved

1SS 5 W Applied

0 N N N N
O Q O) BN,)
SO N AN B g R 4

of Input Tokens # of Issue Tokens

How this paper is related to the current paper?

The current paper: SWE-Agent, uses the SWE-Bench benchmark for
evaluation of their proposed method: SWE-Agent, which is their ACl and LLM
combination

They also use the SWE-Bench benchmark to test and compare their method
with a RAG-based approach and a Shell-Only approach for solving software
engineering tasks

SWE-Bench is the main benchmark (apart from the HumanEval Fix
benchmark) on which the SWE-Agent paper is based and the SWE-Agent
paper would not have been possible without the SWE-Bench paper, thus the
SWE-Bench paper plays a crucial role in the SWE-Agent paper

Also, both the papers are written by the same authors and are from the NLP
group led by Prof. Karthik Narasimhan at Princeton

Table 1: Main results for SWE-agent performance on the full and Lite splits of the SWE-bench test
set. We benchmark models in the SWE-agent, Basic CLI, and Retrieval Augmented Generation
(RAG) settings established in SWE-bench [20].

SWE-bench SWE-bench Lite

Model % Resolved $ Avg. Cost % Resolved $ Avg. Cost
RAG

w/ GPT-4 Turbo 1.31 0.13 2.67 0.13

w/ Claude 3 Opus 3.79 0.25 4.33 0.25
Shell-only agent

w/ GPT-4 Turbo - - 11.00 1.46

w/o Demonstration - - 133 0.79

SWE-agent

w/ GPT-4 Turbo 12.47 1.59 18.00 1.67

w/ Claude 3 Opus 10.46 2.59 13.00 2.18

Previous Paper 2 - ReAct: Synergizing Reasoning and Acting in

Language Models
Summary:

e The authors introduce ReAct, an approach that
combines reasoning and acting capabilities in
LLMs.

e Existing methods typically focus on either reasoning
(e.g. chain-of-thought prompting) or acting (e.g.
action generation for interactive environments)
separately

e ReAct aims to synergize these two capabilities to
improve performance and interpretability

Approach:

e Prompts LLMs to generate both verbal reasoning
traces and task-specific actions in an interleaved
manner

e Reasoning helps create and adjust plans for acting,
while actions allow interaction with external
environments to gather information

designed to interact with?

(1) Hotspot QA

Question: Aside from the Apple Remote, what other device

can control the program Apple Remote was originally

..
Answer: iPod x

(1b) CoT (Reason Only)

Thought: Let's think step
by step. Apple Remote was
originally designed to
interact with Apple TV.
Apple TV can be controlled
by iPhone, iPad, and iPod
fiouchsl so the answer is
iPhone, iPad, and iPod
Touch.

Answer: iPhone, iPad, iPod
Touch

(1c) 24
Act 1: Search[Apple Remote]
Obs 1: The Apple Remote is a
remote control ..

Act 2: Search[Front Row]
Obs 2: Could not find [Front
Row]. Similar: ..

Act 3: Search(Front Row
(software)]

Obs 3: Front Row is a
discontinued media center
software ..

Act 4: Finish[yes)] x

(1d) ReAct (Reason + Act)

Thought 1: I need to search Apple Remote and find the
program it was originally designed to interact with.

Act 1: Search[Apple Remote]

Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple .. originally designed to control the
FrontiRowlmedialicenter! program ...

Thought 2: Apple Remote was originally designed to control
the Front Row media center program. I need to search Bromt
BOW next and find what other device can control it.

Act 2: Search[Front Row]

Obs 2: Could not find [Front Row]. Similar: ['Front Row
Seat to Earth', 'Front Row Motorsports',' EEoRtiRow
(software)’, .1

Thought 3: Front Row is not found. I need to search BEORE
Row (software) .

Act 3: Search|FEOREIROWN(SOEEwWaze)l]

Obs 3: Front Row is a discontinued media center software ..

Thought 4: Front Row (software) is controlled by an Apple
RemotelorlEhe keyboard function keys. | So the answer is
keyboard function keys.

Act 4: Finish(keyboard function keys]

You are in the middle of a room. Looking quickly around

you, you see a cabinet 6, a cabinet 1, a coffee machine 1,
a stove burner 1, and a toaster 1.

a countertop 3,

Your task is to: Put some pepper shaker on a drawer.

(2a) Act-Only
Act 1: Go to drawer 1

Obs 1: The drawer 1 is closed.

Act 2: Open drawer 1

Obs 2: You open the drawer 1. The drawer 1 is open. In it,
you see a dishsponge 2, and a spoon 1.

Act 3: Go to sinkbasin 1
Obs 3: On the sinkbasin 1, you
spatula 1, and a spoon 2.

see a dishsponge 3, a

Act 4: Take peppershaker 1 from sinkbasin 1

obs 4: Nothing happens.

Act 5: Take peppershaker 1 from sinkbasin 1

obs 5: Nothing happens.

X

(2b) ReAct (Reason + Act)

Act 1: Think[First I need to find a pepper shaker...more
likely to appear in cabinets (1-6), countertops (1-3), ... 1]
Act 2: Go to cabinet 1

: On the cabinet 1, you see a vase 2.

(e © go to cal

: Go to counte
: On the countertop 3, you see a apple 1, a bread 1,
...... a pepper shaker 1, and a vase 3.

: Take pepper shaker 1 from countertop 3
: You pick up the pepper shaker 1 from the countertop 3.

Act 8: Think[Now I find a pepper shaker 1. Next, I need to
put it in/on drawer 1.]

Act 9: Go to drawer 1

Obs 9: Drawer 1 is closed.

Act 10: Open drawer 1

Obs 10: You open Drawer 1 ..

Act 11: Put pepper shaker 1 in/on drawer 1

Obs 11: You put pepper shaker 1 in/on the drawer 1. \/

Figure 1: (1) Comparison of 4 prompting methods, (a) Standard, (b) Chain-of-thought (CoT,
Reason Only), (c) Act-only, and (d) ReAct (Reason+Act), solving a HotpotQA (Yang et al., 2018)
question. (2) Comparison of (a) Act-only and (b) ReAct prompting to solve an AlfWorld (Shridhar
et al., 2020b) game. In both domains, we omit in-context examples in the prompt, and only show task
solving trajectories generated by the model (Act, Thought) and the environment (Obs).

Findings:

1. ReAct outperforms action-only baselines consistently across all tasks

2. Combining ReAct with CoT achieves the best performance for prompting
LLMs.

3. Improves action planning and goal tracking in decision-making tasks through
reasoning.

How this paper is related to the current paper?

e SWE-Agent paper is influenced by and uses ReAct in their paper
e The idea of Thought and Action in every instruction given by the LLM is taken

from the ReACt pa per Observation (File Viewer) Response (Thought + Edit Action)

We need to add a check to ensure that all powers)

[[File: solvers/diophantine.py (3093 lines total)]
(400 lines above) are the same. Let's edit the code to include this
401: elif total_degree — 3: check
402: diop_type = "cubic_thue" :
403: i .
404 elif (total_degree > 3): edit 4Q4'4®7
405: if all(coeff[k] — 1): elif (total_degree > 3.and
406: diop_type = 'general_sum_even' 1:1en(zet(fk:{:ﬁxﬁ)I:k.ISSPOW])) = 1):
497: iirRall @eoe ff iiN==W1)k
408: if diop_type is not None; dlop_type = 'gener'a]__sum_even'
409: return var, coeff, diop_type end_of_edit
2684 lines below -~
& D P 9 5,

(a) Observation from the file viewer.

(b) Action using the edit interface.

SWE-agent psf__requests-2317

~

SWE-agent pylint-dev__pylint-5859) / T h ou g ht — 1

It appears that the issue persists because the search term is still being interpreted as an option. To
circumvent this, we can use a different search term that is less likely to be confused with a command-line
option. Let’s try searching for just “notes” instead, which should still lead us to the relevant part of the
code.

search_dir "notes" [— ACtion \

2

‘We are now looking at the section of the ‘sessions.py file where the ‘builtin_str‘ function is used to
convert the ‘method* variable. According to the issue, this conversion is causing a problem when the
‘method" is a binary string because it’s being converted to a literal string that includes the binary prefix
bl
To address this issue, we need to ensure that the ‘method* variable is correctly converted to a string
without the binary prefix. This might involve checking the type of the ‘method* variable and handling
binary strings differently from regular strings.

Let’s edit the line to add a check that ensures binary strings are decoded to regular strings before being
passed to ‘builtin_str‘.

edit 428:428
Ensure method is a string, decode if it's a binary string
if isinstance(method, bytes):
method = method.decode ('ascii')
method = builtin_str (method)
end_of_edit

INSTRUCTIONS: (31 lines)

(Open file: n/a)
(Current directory: /psf__requests)
bash-\$

SWE-agent psf__requests-2317

N

To address the issue, we first need to replicate the behavior described. The issue mentions that the
“builtin_str* function in ‘requests/sessions.py* is converting a binary string method like ‘b’GET’* into
the literal string “’b’GET"*, which is incorrect. We should start by locating the ‘sessions.py" file within
the ‘requests‘ library to examine the code around the ‘builtin_str* function call.

Let’s begin by finding the ‘sessions.py‘ file in the current repository.

find_file "sessions.py"

-
J
Observation psf__requests-2317
Found 2 matches for "sessions.py" in /psf__requests:
/psf__requests/build/lib/requests/sessions.py
/psf__requests/requests/sessions.py
(Open file: n/a)
(Current directory: /psf__requests)
bash-$
J
SWE-agent psf__requests-2317

‘We have found two matches for ‘sessions.py‘. The one in the ‘build/lib/requests* directory is likely a
build artifact, and the one we’re interested in is probably ‘/psf__requests/requests/sessions.py*. Let’s
open this file to inspect the code around the ‘builtin_str* function call.

open requests/sessions.py

Observation psf__requests-2317

[File: /psf__requests/requests/sessions.py (671 lines total)]
1:# —*- coding: utf-8 —*-

6:

7:This module provides a Session object to manage and persist
< settings across

8:requests (cookies, auth, proxies).

9:
10:mmn

1l:import os

12:from collections import Mapping

13:from datetime import datetime

14:

15:from .auth import _basic_auth_str

16:from .compat import cookielib, OrderedDict, urljoin, urlparse,
— builtin_str

Thought

Action

SWE-agent

psf__requests-2317

-
need to search within the file for it.

The ‘sessions.py“ file is now open, but the ‘builtin_str‘ function call is not visible in the first 100 lines
of the file. Since we don’t have the exact line number where the ‘builtin_str* function is called, we’ll

Let’s use the ‘search_file‘ command to find the usage of ‘builtin_str* within ‘sessions.py‘.

/ search_file "builtin_str"

|

SWE-agent

psf__requests-2317

and see how we can address the issue.

Let’s navigate to line 428 in ‘sessions.py" to see the relevant code.

\ ‘We have found two occurrences of ‘builtin_str* in ‘sessions.py‘. The second occurrence on line 428 is
where the method is being converted to a string. We should inspect this line to understand the context

\ goto 428

\

SWE-Agent: Agent-Computer Interfaces Enable Automated Software
Engineering

Summary: System Prompt
» Describe environment and commands
)) i) » Specify response format
e According to the authors, existing user interfaces for .

))) Demonstration
code have been designed with humans as end users in Ful trajectory of a successful example
mind and that LLM agents represent a different end user, . 'ssgjstat:m??t

O Ive reported issue aescription

and could benefit from better-designed interfaces for i il
performing software engineering tasks (Thought & Action)
e They feel ACI (Agent-Computer Interface) design aims to —trrenmentRespense colepsed))
(Thought & Action]
create a more suitable interface which would make LLM ¢ Environment Response)
agents more effective at software engineering tasks E IhetghilEiAction ;

Environment Response
CE Computer B Computer (Submit -)

ACI

Patch File

— = File Viewer - diff --git a/src/sqlfluff/rules/L060.py
£2 LM Agent B File Editor 7o) b/src/sqUluff/rules/L060.py
— -== a/src/sqlfluff/rules/L060.py

P Code Search +++ b/src/sqlfluff/rules/L060.py

e To this end, the paper introduces SWE-Agent, which is a combination of ACI
(Agent-Computer Interface) and a LLM that can interact with a computer to solve
challenging real-world software engineering problems

e Their ACI comprises of several functionalities like Search and navigation, File
Viewer, File Editor and Context Management, where the LLM generates both a
thought and an action at each step

e Using GPT-4 Turbo as a base LM, SWE-agent achieves pass@?1 score of 12.47%
on the 2,294 SWE-bench test tasks, and 87.7% on HumanEvalFix which are both

@ Terminates when

S OTA S CO re S 2.I éztsito:‘i‘rimsitsil;bt:lxicieo;ed, or 2 Turns #2 - #N (Till 'submit™ action)
3. 2+ Consecutive Format Errors ™~
Table 2: Pass@1 results on HumanEvalFix [32]. Except for l Next Step
SWE-agent, we use scores as reported in Yu et al. [65]. Initial Messages Show outputtfof mociel’st?ction
+ prompt for next action
Model hon JS Java (1) System T L
i [—] ; # ,€B‘ S Action @ Next Step (No Output)
CodelLLaMa-instruct-13B 29.2 195 323 R monsteationy] 7 Language Execute e e
- M d | ACtiOn in action succeeded quietly
GPT-4 470 482 50.0 [@mstance | el Env.
DeepseekCoder-CodeAlpaca-6.7B 49.4 51.8 45.1 { / Format Error
WaveCoder-DS-6.7B 57.9 524 573) T] ";;jj:;ﬁ;:(';h;‘j’;‘;'gﬂ!“':“:‘
SWE-agent w/ GPT-4 Turbo 877 897 879 TeskiEpisode Begine
Editor Search File Viewer Context
edit action 15.0 ;390 Summarized ¥ 18.0 30 lines 143 |37 Last5Obs. ¥ 18.0
w/ linting ¥ 18.0 Iterative 12.0 60 100 lines ¥ 18.0 Full history 15.0 39

No edit 10.3 ;77 Nosearch 15.7 ;»53 Fullfile 12.7 |53 w/o demo. 16.3 17

Subsequent paper which was influenced by the current paper

OpenDevin: An Open Platform for Al Software Developers as Generalist
Agents

Summary:

e Inthe paper, authors introduce OpenDevin which is a community-driven
platform designed for the development of generalist and specialist Al agents
that interact with the world through software

The State and Event Stream:

e In OpenDevin, the state is a data structure that encapsulates all relevant
information for the agent’s execution

e The event stream is a chronological collection of past actions and
observations, including the agent’s own actions and user interactions (e.g.
instructions and feedback)

e Observations: Observations describe environmental changes that the agent
observes. It can be either messages from the user instructing agents to
perform certain tasks or the execution outcome of the agent’s previous action

e Implementing a New Agent: The agent abstraction allows users to create and
customize agents for various tasks easily. The core of the agent abstraction
lies in the step function, which takes the current state as input and generates
an appropriate action based on the agent’s logic

Figure 2: Minimal example of implementing an
agent in OpenDevin.

class MinimalAgent:
def reset(self) -> None:

self.system_message = "You are a helpful assistant ..."

def step(self, state: State):

messages: list[dict[str, str]]l = [
{'role': 'system', 'content': self.system_message}
]
for prev_action, obs in state.history:
action_message = get_action_message(prev_action)
messages .append (action_message)
obs_message = get_observation_message(obs)
messages .append (obs_message)

use llm to generate response (e.g., thought, action)
response = self.llm.do_completion(messages)

parse and ezecute action in the runtime
action = self.parse_response(response)
if self.is_finish_command(action):

return AgentFinishAction()
elif self.is_bash_command(action):

return CmdRunAction(command=action.command)
elif self.is_python_code(action):

return IPythonRunCellAction(code=action.code)
elif self.is_browser_action(action):

return BrowselnteractiveAction(code=action.code)
else:

return MessageAction(content=action.message)

Browser Access and Actions:

e The authors introduce an environment which consists of a sandboxed OS and browser which agents can use for their tasks

e IPythonRunCellAction and CmdRunAction enable the agent to execute arbitrary Python code and bash commands inside the
sandbox environment (e.g. a securely isolated Linux operating system)

e BrowserinteractiveAction enables interaction with a web browser with a domain-specific language

e Improvement over SWE-Agent which doesn’t have browser access

Agent Runtime:

e Linux SSH Sandbox - OpenDevin connects to the sandbox through SSH protocol, executes arbitrary commands from the agent, and
returns the execution results as observations to the agent.

e Jupyter IPython
e Web Browser using BrowserGym

AgentSkills: The Extensible
Agent-Computer Interface

e AgentSkills is designed as a Python
package consisting of different utility
functions that are automatically
imported into the Jupyter IPython
environment. The ease of defining a
Python function as a tool lowers the
barrier for community members to
contribute new tools to the skill
library

2 User Interface

E Command Line

Web Ul

ﬂ IDE Plugins Multi-turn
.l User-Agent
A Interaction

| e
State (Event History)

[Past Action(s) & Observation(s)]

|é] I Agent
where State is
turned into Action

Action

OpenDevin Abstraction

Event Stream: List[Action_1,
Observation_ 1, Action_ 2,...]

Agent: State (History) -> Action

Runtime: Action -> Observation

|
|
J

|= Event Stream
where all Action-Observation(s) are tracked

[1] Message (source=user)
Can you create a list of numbers from 1to 10, and
create a web page to display them at port 50007

21
Sure! Let me create a file first:
<execute_ipython>
create_file('app.py')
</execute_ipython>

[6] CmdRunAction (source=agent)

I have created a Python file “app.py " that will
display a list of numbers from 1 to 10 when you run
it. Let me run the server for you:

<execute_bash>

python3 app.py > server.log 2>&1 &

cat server.log

</execute_bash>

[3]IPythonRunCellObservation
[File: /workspace/app.py (1 lines total)]

|
[File app.py created.]

[7] CmdRunObservation

[1] 124

* Serving Flask app 'app’

* Debug mode: off

WARNING: This is a development server. Do not
use it in a production deployment. Use a

[4] g
| will write the Python code for starting a server.
<execute_ipython>

EDITED_CODE=\"\"\"[Omitted for Brevity]\"\"\"

edit_file(start=1, end=1, content=EDITED_CODE)
</execute_ipython>

p ion WSGI server instead.
* Running on http://127.0.6.1:5000
Press CTRL+C to quit

[5] IPythonRunCellObservation
[... Omitted for Brevity ...]
4|@app.route('/")

5|def index():

6| numbers = list(range(1, 11))
7| return str(numbers)
[... Omitted for Brevity ...] [File updated.]

[8] g

The server is running on port 5000 with PID 124. Let
me browse to the page at http://127.0.0.1:5000
<execute_browse>
goto("http://127.0.0.1:5000")
</execute_browse>

[9] BrowserOutputObservation
[1, 2,3 4,56, 7, 89, 18]

@ Agent Runtime

where each Action execution
leads to an Observation

Sandbox

Interactive Python
(IPython) Server

o—
Jupyter
o~

@ Bash Shell

The Event Stream connects to
Computer Sandbox via SSH Protocol

Browser
Playwright Chromium

e AgentSkills library includes file editing utilities adapted from SWE-Agent like edit_file, which allows modifying
an existing file from a specified line; scrolling functions scroll_up and scroll_down for viewing a different part of
files. Also, parse_image and parse_pdf for GPT-4V

Agent Delegation: Cooperative Multi-agent Interaction -

e Another unique feature is that there is multi-agent delegation, which allows multiple specialized agents to work
together
Special action type AgentDelegateAction, which enables an agent to delegate a specific subtask to another agent
CodeActAgent can delegate tasks like navigate the web, click buttons, submit forms to BrowsingAgent
Micro Agent: A micro agent re-uses most implementations from an existing generalist agent (e.g., CodeAct Agent).
It is designed to lower the barrier to agent development, where community members can share specialized prompts
that work well for their particular use cases and can create a Micro Agent without programming

Table 2: Evaluation benchmarks in OpenDevin.

Category Benchmark Required Capability
Evaluation: SWE-Bench [1] Fixing Github issues
HumanEvalFix [7] Fixing Bugs
. BIRD [7/] Text-to-SQL
™ Th ey also use an evaluation framework, Software BioCoder [57] Bioinformatics coding
o . . . ML-Bench [57] Machine learning coding
facilitating the evaluation of agents across a wide Gorilla APIBench [(] Software API calling
ToolQA [1] Tool use
range of tasks Web WebArena [/9] Goal planning & realistic browsing
MiniWoB++ [©0] Short trajectory on synthetic web
GAIA [1] Tool-use, browsing, multi-modality
GPQA [57] Graduate-level Google-proof Q&A
Misc. Assistance AgentBench [1] Operating system interaction (bash)

MINT [54] Multi-turn math and code problems
Entity Deduction Arena [//] State tracking & strategic planning
ProofWriter [55] Deductive Logic Reasoning

How this paper is related to the current paper?

e This paper builds on the work of SWE-Agent paper. It builds a bigger and better LLM agent
interaction framework in which multiple agents can work together and also allows an OS and
browser access, so that the agents can access the web. This paper cites the SWE-Agent
paper as well.

e The authors compare their method’s performance to SWE-Agent in most of the tables and
many of the ideas in the paper are influenced by the SWE-Agent paper and are an improved
version of what was proposed in the SWE-Agent Paper

e OpenDevin directly borrows some tasks/actions from SWE-Agent like edit_file, scroll_up,
scroll_down

e |t improves the functionality of LLM agents and allows LLMs to push their performance on
SWE-Bench and other benchmarks. This would not have been possible without the
SWE-Bench and SWE-Agent paper in the first place

Graphic Standardized Built-in Sandbox Built-in Web Multi-agent Human- Al A S Evaluati
User Interface Tool Library & Code Execution Browser Collaboration Collaboration Framework

>
1)
]
=
S

Framework Domain

=}
(o]

AutoGPT [14]
LangChains [6]
MetaGPT [16]
AutoGen [67]
AutoAgents [7]
Agents [30]
Xagents [61]
OpenAgents [69]
GPTSwarm [83]

QO QQQQQQ
& & da a &
- - B2 B8 B =3

AutoCodeRover [78] SWE
SWE-Agent [72] SWE

U %% X UIX XXX %X
U %% IXIUXXUIUX%
SRR X U% %%\ % X%
%% [X UIUX XN X%
T %% UXIURNU XX
%% XX %X UX% X%
U %% XUIXXAIY
%% %% % % % % %X %
U %X | XXX XXXAXN

OpenDevin General |

Software (§4.2) | Web (§4.3) | Misc. (§4.4)
Agent Model SWE-Bench Lite | WebArena | GPQA GAIA
Software Engineering Agents
SWE-Agent [] gpt-4-1106-preview 18.0 - - -
AutoCodeRover [] gpt-4-0125-preview 19.0 - - -
Aider [] gpt-4o0 & claude-3-opus 26.3 — — ~
Moatless Tools [] claude-3.5-sonnet 26.7 — — —
Agentless [7] gpt-4o 27.3 — s s
Web Browsing Agents
Lemur [1] Lemur-chat-70b — 5.3 — —
Patel et al. [* 7] Trained 72B w/ synthetic data — 9.4 — —
AutoWebGLM [7] Trained 7B w/ human/agent annotation — 18.2 — —
Auto Eval & Refine [°] GPT-4 + Reflexion w/ GPT-4V — 20.2 — —
WebArena Agent [] gpt-4-turbo | — | 144 | — -
Misc. Assistance Agents
AutoGPT [] gpt-4-turbo | - | — | — 13.2
; Llama-2-70b-chat — — 28.1 —
Few-shotPrompting + 173" 5.turbo- 16x - | s -
& gpt-4 — | 388 =
OpenDevin Agents
gpt-40-mini-2024-07-18 6.3 8.3 - -
CodeActAgent v1.8 gpt-40-2024-05-13 22.0 14.5 *53.1 s
claude-3-5-sonnet 26.0 15.3 52.0 —
gpt-40-2024-05-13 — | — | - 321

GPTSwarm v1.0

Academic Researcher

Raman

Example of an issue in codebase

notifications.py

def get_user_details (user_id):
return info_from_db(user_id)

def send_alert(user_id):
user_details = get_user_details (user_id)

alert (user _details[’email’])

Issue: As database grows, it becomes more expensive to get user details

Potential Solution

notifications.py

def get_user_details (user_id):
if user_id not in user_cache:
user_cache[user_id] = info_from_db(user_id)
return user_cache[user_id]

def send_alert(user_id):
user_details = get_user_details (user_id)

alert (user _details[’email’])

Add a cache that stores user details to avoid an expensive DB call

Do you spot an issue in in this module?

authentication.py

def authenticate(user_id, given_password):
user_details = get_user_details(user_id)
return check_password(args)

LLMs are quite good at generating code

1) 4 Model 4 Win Rate 4 humaneval-python
&® EXT Nxcode-CQ-7B-oxrpo 55.42 87.23
$ CodeQwenl.5-7B-Chat 55.08 87.2
& EXT DeepSeek-Coder-7b-instruct 50.33 80.22
® EXT DeepSeek-Coder-33b-instruct 52 80.02
& EXT CodeFuse-DeepSeek-33b 54.33 76.83
@ Codellama-70b-Instruct 43.58 75.6
& EXT OpenCodeInterpreter-DS-33B 55.83 7523

& EXT OpenCodeInterpreter-DS-6.78B 49 .67 732

Repository level coding is challenging

® W] SWE-agent + Claude 3.5 Sonnet

® "] AppMap Navie + GPT 4o (2024-05-13)
Amazon Q Developer Agent (v20240430-dev)
® V) SWE-agent + GPT 4 (1106)

® ') SWE-agent + GPT 40 (2024-05-13)

® V] SWE-agent + Claude 3 Opus

¥ 4 RAG + Claude 3 Opus

* "I RAG + Claude 2

®* I/ RAG + GPT 4 (1106)

¥ I/ RAG + SWE-Llama 13B

* [/ RAG + SWE-Llama 7B

¥ I, RAG + ChatGPT 3.5

18.13
1460
13.82
12.47
1.99
10.51
3.79
196
1.31
0.70
0.70
0.17

Do LLMs guarantee secure code generation?

Rank

Model
GPT-4-1106-preview
DeepseekCoder-33B
Llama3-8B
Codellama-34B
SafeCoder-Mistral-7B-v0.1
CodeGemma-7B
Mistral-7B-vO0.1

Codellama-7B

Leaderboard

pass@1
70.13
78.77
74.37
75.47
63.26
73.93
73.32

67.13

secure@1pass
57.97
56.09
57.88
53.51
62.08
54.34
54.41

55:3

secure-pass@1
47.45
46.54
46.54
44.53
44.43
43.64
41.15

39.76

Can we ensure SWE Agent generates secure code?

Broad Idea: Improve security aspect of SWE Agents at a repository level.

Concretely: The follow-up seeks to evaluate and improve the ability of LLM in
generating secure and functionally correct code at repository level, where a key
challenge is inter-procedural data and control flow.

Challenges: What do we measure on and how to incorporate security checks

What do we measure on? Repo level security benchmark

1) VulEval is a recently developed benchmark that focuses on inter-procedural
vulnerability detection.
2) Itis not yet a benchmark which has issues that can be solved by LLM agents.

3) There are two ways to modify this benchmark

a) Use the commit that introduced vulnerability as a issue to be solved
b) Introduce a new issue that has to use part of vulnerable code

VulEval: Towards Repository-Level Evaluation of Software Vulnerability Detection

How to improve agent’s security capability?

1) LLMs by themselves are not quite good at patching security issues - use
feedback from static analyzers such as Bandit

2) Tools like dependabot can also be used to track vulnerabilities in
dependencies or can be connected to an updated source of new
vulnerabilities (RAG setup)

3) Anew action in SWE Agent after proposing solution should be to track flow of
control and data, to check if there are any unintended vulnerabilities
introduced

Can LLMs Patch Security Issues?

Industry Practitioner

Srividya Ponnada

SWE-Agent for Industrial Adoption

Advantages:

Automation of Repetitive Tasks, such as
boilerplate code generation, CRUD operations, and
refactoring, freeing developers for complex tasks

Improves Efficiency, speeds up the SDLC;
automates bug-fixing and refactoring, improving
team productivity

Reduced Errors & Consistency, minimizes human
error and ensures adherence to coding standards
across the codebase

Long-Term Cost Efficiency, high initial investment
but lowers labor costs and reduces delays over time

Competitive Advantage, faster delivery of new
features, enhancing market agility

Challenges:

High Initial & Operational Costs, significant
computational resource requirements

Dependency on LLMs, performance relies on
model quality and adaptability to specific domains

Complexity & Learning Curve, requires a team
with AlI/ML expertise

Ethical & Security Concerns, concerns over
bias, job displacement, and risks in sensitive
projects

Should We Adopt SWE-Agent?

When to Adopt:
e Large-scale enterprises with complex, repetitive software development tasks
e Teams seeking to reduce human error and maintain coding consistency
e Organizations planning for scalability and long-term ROI from automation
When Not to Adopt:
e Small-to-medium-sized teams with limited budgets and computational resources
e Projects needing highly specialized knowledge or facing ethical concerns (Al bias, job displacement)
e Teams without sufficient AI/ML expertise or those unwilling to invest in necessary modifications
Conclusion:

Organizations must weigh the benefits against the challenges, and ensure they have the infrastructure, expertise, and ethical
frameworks in place to maximize its advantages. By adopting a structured and well-supported approach, organizations can
leverage SWE-agent to accelerate software development, enhance productivity, and maintain a competitive position. However,
for smaller teams or projects with unique requirements, may look into alternative solutions.

Private Investlgator

Arthur Drake and Manan Suri
9 September 2024

First Author: John Yang | Stanford University

e Researcher at Meta, entering 1st year as a CS PhD at Stanford University.

e Completed CS MS at Princeton University where he developed SWE-agent.
o Advisor: Karthik Narasimhan

e Completed CS BS at UC Berkeley.

Primary Research Areas: Language Agents; Language Model Evaluation; SWE.

Previous Works: Helped Develop SWE-Bench in 2023: New dataset with ~2,300 real-world SWE
problems drawn from real GitHub issues. Created InterCode in 2023 which is a new LLM-based

framework for interactive coding using Reinforcement Learning.

John has a long history of interest in ML and NLP, dating back to 2017 as seen from

his blog at john-b-yang.qithub.io. He has an advanced knowledge of the current literature and has

even posted public notes on many papers he’s read. Finally, he has taught several CS/ML courses

at Princeton and UC Berkeley.

https://john-b-yang.github.io/

Sixth Author: Karthik Narasimhan | Princeton

e Associate Professor at Princeton and Head of Research at Sierra.
e Completed MS CS and PhD in CS from MIT.
e Completed B.Tech. in CSE from Indian Institute of Technology, Madras.

e Previously, spent an year as a Research Scientist at OpenAl, during which time he built the
original GPT.

Improving Language Understanding by Generative Pre-Training (GPT)
Authors Alec Radford, Karthik Narasimhan, Tim Salimans, llya Sutskever

Publication date 2018

Source https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-
unsupervised/language_understanding_paper.pdf

Publisher Technical report, OpenAl

Total citations Cited by 11407

Sixth Author: Karthik Narasimhan | Princeton

Language Agents, NLP, RL

Previous Works: Broadly, his work is in:

Language Models: GPT

- Language Agents: some recent works include— SWE-Agent, CoALA (Cognitive Architectures for Language Agents),
Reflexion: Language Agents with Verbal Reinforcement Learning

- Benchmarks: some recent works include— SWE-Bench, Intercode, WebShop, SILG, TAU Bench

- Efficiency and Safety: DataMUX, Toxicity in ChatGPT

- Reinforcement Learning: Multi-Objective RL, POLCO, XTX

His research in language models and language agents speaks directly for a strong motivation for research in the
direction of this paper. In this talk at the Open AGI Summit, he talks passionately about how current progresses in language
models and decision making create an opportunity for autonomous agents that work with a human-in-the-loop in a collaborative
framework, calling it a “dream for Al” and something that would “propel humankind forward”. Code, being a powerful tool that

actualizes abstract concepts in a structured and efficient manner, is a natural avenue to build Language Agents on.

https://youtu.be/i3GOZ22z2C0?t=672

Role: Hacker

Henry Blanchette

arﬁer
saw €
as we

Agent-Computer Interface (ACI): Design Principles

-7

-

AR Commands!

1. Actions should be simple and easy to understand for agents
2. Actions should be compact and efficient

3. Environment feedback should be informative but concise
4. Guardrails mitigate error propagation and hasten recovery

what if we added more ki

of actions? =

nds

More Actions

- The implementation provides only very simple, compact, error-localizing
commands to the agent

- Basically, the agent has a little state machine representation of the
environment, and has to do all the actual programming via it’s own inherent
ability

- But what if we interpret there restrictions a little more loosely? Then what’s
possible?

- Research question: How can we augment the agent’s abilities with tools?

Experiment Setup

- Brainstorm some functionalities the agent doesn’t already have, and add them
as commands in the ACI
- Run the augmented agent on simple examples to see if it works at all

- Related work: only the reference paper

Case Study: Translation

The functions in “src/utilities.py" are all named in Ipsentiloese, utilities.py src
a rare language known by the original developers. To assist with
readability, these names must be translated to English. You should 1+def sum_of_list(xs):
use your ‘translate_ipsentiloese’ command to get the English 2 r=20
translations of each Ipsentiloese function name. 3 for x in xs:
4 r+= x
5 return r
@yaml 6
signature: translate_ipsentiloese <file_path> 7

docstring: Translate a string from Ipsentiloese to English. ognctbs_ne_khrs
arguments: 8+def product of llst(xs)

input: 9 r=1

type: string 18 for x in xs:
description: The string to translate 11 r %= X
required: true 12 return r

Case Study: Following Code Quality Conventions

utilities.py src

Use the "auto_qga’ command to check for any code quality warnings according to dot e,)
—def a(x, y):

Ayeye Corp's in-house conventions. For each function the module 1+det EIRHRIEIE (x, 1):
“src/utilities.py ', use ‘auto_qa’. For each warning, fix the code to not have 2 | return x +y
that warning anymore. 3

4

—def c(bit1, bit2):
5-+def toggle_bit(bit1, bit2):

@yaml 6 if bitl:
signature: auto_ga <snippet> ! | return bit2
ST 3 : : Pl 3ml 8 else:

docstring: Does a code quality analysis, according to Ayeye Corp's in-house o | reburn ot btz

conventions, on the given code snippet. 19

arguments: 11

snippet: —def f(predicate, list):

5 ebpi 12+def filter_list(predicate, list):

type: string 13 new_list = []

description: The code snippet to be analyzed. 14 for x in list:

required: true 15 if predicate(x):
16 J new_list.append(x)
il return new_list

18

Takeaways

- The agent seems to understand human descriptions of tools

- The agent usually needed very obvious tells for where to actually use the
tools | wanted it to rather than its other tools

- The agent can make sense of human-like outputs from tools

- This could be a neat way to “offload” tasks that are best done by
algorithm from the agent’s core logic loop, while still giving it access via a
human-described ACI

Future Work

- Quantify agent performance when using other kinds of tools for particular

tasks

Accuracy
Error recovery

- Investigate what kinds of tools and ACls to the same tools are best made use
of by the agent

Social Impact Assessor
Ethan Baker

Highlighted Positive Impacts

Improvements over traditional LMs:

e Performance: SWE-Agent outperforms static LMs in SWE-Bench, and could be applied to many of the same scenarios.

Table 2: Pass@1 results on HumanEvalFix [32]. Except for
SWE-agent, we use scores as reported in Yu et al. [65].

Model Python JS Java
CodeLLaMa-instruct-13B 29.2 19.5 323
GPT-4 47.0 482 50.0
DeepseekCoder-CodeAlpaca-6.7B 494 51.8 45.1
WaveCoder-DS-6.7B 57.9 524 57.3
SWE-agent w/ GPT-4 Turbo 87.7 89.7 87.9

Potential for Innovation:

e New Applications: Opportunities for applying ACls and SWE-Agent techniques to new and diverse areas.

Positive Impacts Not Directly Mentioned

Increased Accessibility:
° Broader Reach: Makes advanced tools more accessible to a wider audience.
Enhanced Productivity:

e Efficiency Gains: Can lead to significant productivity improvements in various technical tasks.

Potential Negative Impacts

Potential Misuse:

e Malware Creation: Risk of tools like SWE-Agent being used to develop harmful or
malicious code.

Impact on Employment:

e Programming Jobs: Potential for displacement or transformation of programming roles
due to automation.

Unresolved Issues:

e Production Environments:
Unclear if SWE-Agent faces common issues such as hallucinations.
Unclear if SWE-Agent produces consistently high quality code.
(gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality)

https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality

