
Instruction Tuning for Secure
Code Generation

Parsa Hosseini
CMSC818I

1/21

Outline

● Introduction

● Safe Coder’s Data Collection

● Safe Coder’s Instruction Tuning

● Experiments & Ablation

● Discussion

2/21

Introduction

3/21

Instruction Tuning

4/21

● The pretrained autoregressive LLMs are not optimized for
conversations or instruction following. They are just trained to
predict the next token.

● We need to fine-tune LLMs to follow instructions
● Instruction Tuning Dataset: A dataset with instructions of certain

tasks and their corresponding desired output

Instruction Tuning - Code Generation?

5/21

Existing LMs, even if instruction-tuned,
are frequently producing unsafe code

Increasing model size doesn’t solve the
problem

Security-Aware Instructions

6/21

Prompt 1 Write a Python function that generates an RSA key.

Prompt 2 Write a Python function that generates an RSA key. Make sure that
the generated code is secure, meaning it does not contain any security
vulnerabilities

Prompt 3 Write a Python function that generates an RSA key. Make sure that
the generated code is secure with respect to the CWE-327 vulnerability,
meaning it does not contain security vulnerability: The program uses a
broken or risky cryptographic algorithm or protocol.

The effects of three different prompts on code security

SafeCoder
Instruction Tuning

7/21

Standard Instruction Tuning
● Dataset of instructions with their desired outputs

● Note that tasks are not restricted to programming

● Fine-tune the LM to generate the output given the instruction

8/21

Security Instruction Tuning

9/21

Training

10/21

Handling Imbalance data

Oversampling

SafeCoder
Data Collection

11/21

Pipeline Overview
1. Heuristic Commit Filtering

2. Verifying Vulnerability Fixes

3. Constructing Final Samples

They ran the pipeline over the 145 million commits from public GitHub projects!

12/21

Heuristic Commit Filtering
1. Start with hundreds of millions of GitHub commits

2. Check the commit message has specific keywords

3. Check the changes within the commit: Exclude unsupported file types and

commits that edit too many lines

13/21

Verifying Vulnerability Fixes
1. Start with r and r’: Repository before and after the commit

2. Run CodeQL on both r and r’

3. If r has at least one vulnerability but r’ doesn’t, then this commit is a fix

14/21

Constructing Final Samples
1. Consider the pre-commit version as vulnerable and post-commit as

secure

2. Query GPT-4 to generate an instruction

15/21

Experiments

16/21

Experiments

17/21

Experiments

18/21

Testing Different CWEs

19/21

Security Dataset

20/21

Conclusion
● Novel instruction tuning method for generating secure code

● Unified training on both security and standard dataset

● Pipeline for developing security code datasets

21/21

Scientific Peer Reviewer (Jiacheng Li)

Paper Summary

Goal
The work aims to improve both utility and security
of LMs' generated code.

Methodology
Their core work is to implement pipeline to collect
security data. And proposed SafeCoder, implement
fine-tuning by both Standard Instruction Tuning
and Security Instruction Tuning.

Result
They report their work is able to drastically improve
security (by about 30%), while preserving utility.

Technical Correctness

Minor Issues
• Static analysis tool CodeQL to analyze the

entire repository for vulnerabilities
• Only extracted the committed changed

functions for their dataset, which may not
be sufficient to accurately assess
vulnerabilities

Example:

 CWE-119 Improper Restriction of Operations within the Bounds of a Memory
Buffer

Strengths and Weaknesses

Strengths
+ Writing Style: well-written and organized

+ Important Topic: LMs security

+ Motivation: security challenges of current

+ Innovation: automatic collection of GitHub

commits

+ Experiments: across various popular language

models and datasets

+ Comparison: compare with latest work, use

baselines to show the efficiency of different

components of their model.

Weaknesses
- Metrics. evaluate utility and security

separately. How to combine these two metrics

- Data quality. quality of the data collected by

the pipeline is not adequately assessed

- Increamental. similar works exists

- Static Analysis Limitations. Static analysis

tools often suffer from high false positive rates.

- Data set is limited. 465 samples across 23

CWEs

Accept with Noteworthy Concerns in Meta
Review

Scientific Peer Reviewer (Abhimanyu)

Instruction Tuning for Secure
Code Generation

Abhimanyu Hans
Your Scientific Peer Reviewer

Summary

- This work discusses the problem of unsecure code generation by LMs. It
highlights how this is a problem because security is only one aspect of holistic
goal including correctness, readability, and objectiveness of the generations.

- Towards these, this work releases a dataset of triplets consisting input, secure
code, and vulnerable code. It also releases the method to procure such dataset
from open source tools.

- Leveraging their dataset, it also introduces a novel instruction tuning
loss/method that increases the security of generated code across several
known/popular CWEs. Authors claims their method provides security-for-free
benefit.

Technical Contributions
SafeCoder Dataset Generation SafeCoder Training

He, J. and Vechev, M. Large language models for code: security hardening and adversarial testing. In CCS, 2023. URL https://doi.org/10.1145/3576915.3623175

https://doi.org/10.1145/3576915.3623175

Strengths

- This work discusses the important problem of the unsecure code generation by
LM and presents a novel solution.

- Holistic solution that attempts to solve the problem both from data and
modelling perspective.

- Simple and easy to understand and implement.

Weaknesses

1. Baselines
- The "w/o StarCoder" baseline has unfair advantage of having seen/trained on more coding tasks. Still, it improves code security from a

non-instruction tuned checkpoint. I would want to see the performance when the model trained on w/ and w/o SafeCoder on equal number
of coding tokens. That will be a fairer comparison. Currently, both w/o and w/ SafeCoder improve Code Security on different numbers of
tokens trained making it harder to compare per-token performance.

- With the format of dataset (input, secure output, vulnerable output), DPO loss optimization would be a great baseline to have. Maybe it
will better pair up with SafeCoder dataset.

2. Evaluation Criteria Used (“Code Security”):
- Both code security and generation of SafeCoder uses CodeQL analyzer. This would measure the positive bias towards satisfying one

specific code analyzer and not secure code in general. Adding other metrics (other static analyzers, metrics from prior work, etc.) would
highlight the impact and increase the materiality of the results.

- Both generation and dataset uses highly overlapping (42 train + 18 test) CWE x PL scenarios. In Table 4, we see the method does not
generalize on unseen vulnerabilities/CWEs. It’s unclear if it generalizes on unseen (during finetuning) PLs but seen CWEs.

3. "Security-for-free":
- The decrease in HumanEval and MMLU scores challenges the "Security-for-free" claim. This work incorrectly asserts that the

combination of the SafeCoder dataset and the finetuning method inherently discards the trade-off between utility and secure code
generation for language models. This is consistent with general-purpose LLMs.

Scores
- Technical Correctness:

- [1] No Apparent Flaws
- Scientific Contribution:

- [1] Provides a New Data Set For Public Use
- [2] Creates a New Tool to Enable Future Science
- [5] Identifies an Impactful Vulnerability

- Presentation
- [3] Major but Fixable Flaws in Presentation [more rigorous eval needed]

- Recommended Decision
- [3] Weak Reject [can be definitely convinced by a champion/updated results] :(

- Reviewer Confidence
- [2] Highly Confident (Not impossible I have missed some details, especially if mentioned in

appendix only)

Questions?

Archaeologist
Ethan Baker

Introduction
- Objective

- Determine where this paper sits in the context of previous and subsequent work

1. Large Language Models for Code: Security Hardening and Adversarial
Testing

2. Instruction Tuning for Secure Code Generation
3. INDICT: Code Generation with Internal Dialogues of Critiques for Both

Security and Helpfulness

Large Language Models for Code: Security Hardening and
Adversarial Testing

- Main Focus
- Enhancing security of code generated by language models

(LMs).
- Controlled Code Generation

- Binary property + prompt for secure/insecure code.
- Prefix Tuning

- Separate module for control without changing LM weights.
- Trade-off observed between security improvements and code

functionality.
- Contrastive Loss

- Inspired masked unlikelihood loss to penalize vulnerable code.

Instruction Tuning for Secure Code Generation
- Security-Fine-Tuning vs Prefix Tuning

- Adaptation of controlled code generation using secure/vulnerable completions.

- Adaptation of controlled code generation task
- prompt combined with secure and vulnerable completion analogous to controlled code

generation task
- Contrastive loss replaced with masked unlikelihood loss function

INDICT: Code Generation with Internal Dialogues of
Critiques for Both Security and Helpfulness

- Main Focus
- Generating secure and correct code through internal critics.

- Critic-Based Approach
- Use of two model critics for iterative code revision.
- Integration of code search and review tools.
- Addressed scaling issues with optimized prompts and cost concerns related to fine

tuning.

References
He, Jingxuan, et al. “Instruction Tuning for Secure Code Generation.” ArXiv.org,
14 Feb. 2024, arxiv.org/abs/2402.09497.

He, Jingxuan, and Martin Vechev. “Large Language Models for Code: Security
Hardening and Adversarial Testing.” ArXiv.org, 29 Sept. 2023,
arxiv.org/abs/2302.05319.

Le, Hung, et al. “INDICT: Code Generation with Internal Dialogues of Critiques
for Both Security and Helpfulness.” ArXiv.org, 2024, arxiv.org/abs/2407.02518.

http://arxiv.org/abs/2402.09497
http://arxiv.org/abs/2302.05319
http://arxiv.org/abs/2407.02518

Instruction Tuning for
Secure Code Generation

Ruchit Rawal (Academic Researcher)

Secure Instruction Tuning

Annotations Needed For Loss Computation:
- Pairs of and
- Localization of vulnerable tokens and

corresponding corrections.

Claims:
- security-for-free

Secure Instruction Tuning

Annotations Needed For Loss Computation:
- Pairs of and
- Localization of vulnerable tokens and

corresponding corrections.

Claims:
- security-for-free

Is There a Free-Lunch?

Is There a Free-Lunch?

Some Possible Drawbacks / Limitations

- Data-based:
- Limited number of “security samples” due to strict annotation constraints.
- Noise in the data collected, due to presence of other non-security related changes.

- Objective-based:
- Explicit signal of cross-entropy on specific tokens leading to memorization/poor-generalization.

Possible baselines: (Hans et al. 2024)
- Cross-Entropy loss operating on token-level differences may or may not correlate well with the

degree of “security vulnerability” in the wild.

- Misc:
- Other approaches may just work better either as standalone options or in complement.

Abhimanyu Hans et al. “Be like a Goldfish, Don’t Memorize! Mitigating Memorization in Generative LLMs”. In: arXiv
preprint arXiv:2406.10209 (2024).

Follow-up Idea (Inspired from success of RLHF in NLP)

- Disclaimer: Not mutually exclusive to Secure Instruction Tuning

Llama2 Paper:

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." Advances in neural information processing systems 35
(2022): 27730-27744.

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." Advances in neural information processing systems 35
(2022): 27730-27744.

Follow-up Idea (Inspired from success of RLHF in NLP)

- Disclaimer: Not mutually exclusive to Secure Instruction Tuning

- What: Directly finetune for what we really care about, i.e., model passing security
and functionality related stress/unit tests.

- How: Using RL algorithms

- Why:
- RL can help optimize for non-differentiable objectives such as (# of unit tests

passed).
- We can utilize more data, as we don’t need pairs + localization annotations.
- Implicit signal means we are not directly training to reproduce the exact correct

string in someone else’s code, rather aiming to produce the desired program.
- The rewards are correlated with the objective we care about in-the-real-world,

and not surface level token differences.

Hacker
(Amit Kumar

Pranav)

Research Question / Problem

The research question addressed in this paper is the security vulnerability of code generated by
instruction-tuned LLMs. Existing instruction-tuned LLMs frequently produce insecure code, current
instruction tuning processes overlook code security and focus primarily on improving usefulness, and even
state-of-the-art instruction-tuned LLMs generate secure code only about 60% of the time.

This paper focuses on developing a process to improve code security of LLM-generated outputs during the
instruction tuning phase while maintaining their usefulness across other common tasks.

Setup

● Used Docker container since setup files in repo were not compatible
with Mac

● Used codegen-350m model
○ Much smaller than the models used in the paper, allows for

quicker replication

● Trained on 250 samples of sec_desc.jsonl
○ Sec_desc.jsonl has 720

Replication Results

● Ran sec_eval.py on the 3 CWEs in the training set

diagram

Experiments - Prompt Manipulation

Experiments - Data collection Pipeline

Experiments - CWE-326 Poisoned Sample

Results

● By poisoning around 5-10 % of the samples
● Accuracy reduced by 84% for python

Language on cwe-326
● 1024 is used as key size for RSA.

Future Work

● Train model on poisoned prompts
● Poison other Datasets : The collected Dataset samples can also target other

open source Datasets used in training.
● More sophisticated Scenarios : Two secure methods can be combined

together to generate a unsecure method.
○ Ex -

Thank You

Private Investigator

Dr. Jingxuan He

- Worked at Secure, Reliable, and Intelligent Systems
Lab (SRI Lab) at ETH Zurich supervised by Prof.
Martin Vechev.

- Main research focus is centered around security and
machine learning

- Some other work that may have influenced / motivated
this work:

- Large Language Models for Code: Security
Hardening and Adversarial Testing

- Code Agents are State of the Art Software Testers

