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Agenda
• “Certifying LLM Safety against Adversarial Prompting” required reading 

• “The Base-Rate Fallacy and the Difficulty of Intrusion Detection” 
required reading 

• “Baseline Defenses for Adversarial Attacks Against Aligned Language 
Models” optional reading


• “Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s Code 
Contributions”



erase-and-check

• Given a prompt P, certify whether P is an adversarial prompt constructed 
by adding some tokens to a shorter prompt P’ up to size d



Three Ways to Add Tokens



erase-and-check: Adversarial Suffix



Adversarial Suffix

• Assumption: a good safety filter


• Given a prompt P, length n


• P = P’ + 𝛼, |𝛼| <= d


• Erase one token at a time from P, up to d tokens


• O(d)



Adversarial Insertion
• Given a prompt P, length n


• P = P1 + 𝛼 + P2, |𝛼| <= d


• 1) Choose which location to start: n choices


• 2) Erase one token at a time from P, up to d tokens


• O(nd)


• Can generalize to k different insertions O((nd)^k)



Adversarial Infusion
• Given a prompt P, length n


• 1) Choose the first location to erase: n choices


• 2) Choose the second location to erase: n-1 choices


• 3) Choose the third location to erase: n-2 choices


• …


• d) Choose the d-th location to erase: n-d+1 choices


• O(n * (n-1) * (n-2) * … * (n-d+1)) = O(n^d)


• The number of adv tokens <= d



Safety Guarantee
• If the number of adversarial tokens <= d


• One of the erased prompts must be the original unsafe prompt


• The safety filter checks the original unsafe prompt 

• If the safety filter classifies all subsequences as safe, P is certified to be safe 

• What if the safety filter is not accurate?


• If safety filter is always right, it is certified, very strong assumption


• Is it a guarantee?



Results

• Safety filter: Llama 2 system prompt


• “Against adversarial suffixes of length 20, it certifiably detects 93% of the 
harmful prompts and labels 94% of the safe prompts as safe”



TNR and Runtime: Suffix Mode



TNR and Runtime: Insert Mode



TNR and Runtime: Insert Mode



TNR and Runtime: Infusion Mode



• P(Adv | Detect) = 

Posterior
P(Adv) P(Detect | Adv)

P(Adv) P(Detect | Adv) + P(Safe) P(Detect | Safe)
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• Prior P(Adv) = 0.1%, P(Safe) = 99.9%, P(Adv) could be much smaller 

• P(Detect | Adv) = TPR = 93%


• P(Detect | Safe) = FPR = 1 - TNR = 1 - 94% = 6%, blocking 6% of safe prompts




• P(Adv | Detect) = 

Posterior
P(Adv) P(Detect | Adv)

P(Adv) P(Detect | Adv) + P(Safe) P(Detect | Safe)

• Prior P(Adv) = 0.1%, P(Safe) = 99.9%, P(Adv) could be much smaller 

• P(Detect | Adv) = TPR = 93%


• P(Detect | Safe) = FPR = 1 - TNR = 1 - 94% = 6%, blocking 6% of safe prompts


• Posterior P(Adv | Detect) = 1.5%, 1.5 adv prompt out of 100 alarms




• P(Adv | Detect) = 

Posterior
P(Adv) P(Detect | Adv)

P(Adv) P(Detect | Adv) + P(Safe) P(Detect | Safe)

• Prior P(Adv) = 0.1%, P(Safe) = 99.9%, P(Adv) could be much smaller 

• P(Detect | Adv) = TPR = 93%


• P(Detect | Safe) = FPR = 1 - TNR = 1 - 94% = 6%, blocking 6% of safe prompts


• Posterior P(Adv | Detect) = 1.5%, 1.5 adv prompt out of 100 alarms


• If P(Adv) = 0.01%, P(Adv | Detect) = 0.15%, 1.5 adv prompt out of 1000 alarms



Discussions

• Neat idea for a baseline


• Base-Rate Fallacy


• Exercise: 99% TPR, 1% FPR, P(Adv) = 0.01%


• Safety guarantee


• Idea for improvements


