
A Watermark for Large
Language Models

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz,

Ian Miers, Tom Goldstein

What are watermarks?

• Traditional watermarks

• Digital watermarks

Why do we need watermarks?

• Mitigating malicious use.
• Watermarks can help to identify content generated by LLMs, making it easier

to detect and prevent malicious activities.

• Protecting academic and coding integrity.
• Help instructors find out academic cheating.

• Promoting transparency.
• Watermarks promote transparency by clearly indicating when content has

been generated by LLMs.

How to watermark LLMs?

• Model based watermarks:
• Implanting backdoor triggers to LLMs through a finetuning process to cause

biased responses to specific inputs.

• Detecting the biased responses at verification time.

• Post-hoc detectors:
• Using language model features or finetuning existing large language models

to behave as detectors.

• Reweight-based watermarks:
• Reweighting the token distribution with secret keys during generation.

• Detecting the modification via the secret keys.

Reweight-based watermarks

• Desired properties of reweight-based watermarks:
• Watermarked text can be generated using a standard language model without

re-training.

• The watermark can be detected without any knowledge of the model
parameters or access to the language model API.

• The watermark cannot be removed without modifying a significant fraction of
the generated tokens.

• The watermark can be detected with rigorous statistical measure.

Preliminary

• Autoregressive generation process of LLMs

Intuition of reweight-based watermarks

• In each generation step:
• We split the token set into a red list and a green list with a random seed.

• We promote the use of green tokens, i.e., increase its probability.

Intuition of reweight-based watermarks

• In detection:
• We are given the random seeds used for creating the red&green lists.

• The watermarked text will be biased to the green tokens comparing to the
text without watermark.

Watermarking low entropy sentences

• Low entropy sentences: the first few tokens strongly determine the
following tokens.

• For example (with prompts in red):

1. 100 + 100 = 200
2. for(i=0; i<n; i++)

Watermarking low entropy sentences

• Problems of low entropy sentence in reweight-based watermarking:

• Both humans and machines provide similar even identical completions for low
entropy prompts, making it impossible to discern between them.

• It is difficult to watermark low entropy text with reweight-based
watermarking, as any changes to the choice of tokens may result in high
perplexity and unexpected tokens that degrade the quality of the text.

Hard Red List

• In Hard Red List, we decrease the

 probability of red tokens to 0.

Problems in hard red list

• The hard red list rule handles low entropy sequences in a simple way;
it prevents the language model from producing them.

• For example

 400
100 + 100 = 200
 300

Soft red list

• In Soft Red List, we increase the logits of
green list tokens by delta.

• The Soft Red List watermark can deal
with low entropy sequence in a more
reasonable way.

Watermark detection

• Given a sequence of tokens of length T, we first determine the
red/green tokens through the given random seeds.

• We use the number of green tokens (denoted by |s|_G) to conduct a
statistical z-test:

• z is approximately Gaussian distributed.

• If z>4, the false positive rate is less than 3x10^{-5}.

Experiments

• Model: OPT-1.3B.

• Task: text completion.

• Sequence length: T = 200 ± 5 tokens.

• Dataset: news-like subset of the C4 dataset.

• Text quality measure: perplexity with OPT-2.7B.

Watermark Strength vs Text Quality

Ablation study on hyperparameters

• Delta: the increase on the green list logits during generation.

• Gamma: the portion of green list tokens.

• Types of attacks:
• Text insertion: add additional tokens after

generation.

• Text deletion: remove tokens from the
generated text.

• Text substitution: swaps one token with
another.

• Epsilon: portion of modified tokens.

Robustness

Summary

• This paper introduced efficient reweight-based watermarking and
detecting approaches for LLMs.

• From my perspective, the most important contributions of this paper
are:
• Injecting watermarks to LLMs without re-train the model.

• Detecting watermarks without inference the model.

Limitations

• The watermark does not work well on the low entropy text.

• The soft red list watermark still downgrade the quality of the
generated text.

• The soft red list watermark requires long token sequence (T=200) for
successful watermark detection.
• The true positive rate is not good when T=1-30.

Future work

• Design a watermark that will not downgrade the text quality.

• Improve the detectability of watermarks on short token sequences.

Thank you!

	Slide 1: A Watermark for Large Language Models
	Slide 2: What are watermarks?
	Slide 3: Why do we need watermarks?
	Slide 4: How to watermark LLMs?
	Slide 5: Reweight-based watermarks
	Slide 6: Preliminary
	Slide 7: Intuition of reweight-based watermarks
	Slide 8: Intuition of reweight-based watermarks
	Slide 9: Watermarking low entropy sentences
	Slide 10: Watermarking low entropy sentences
	Slide 11: Hard Red List
	Slide 12: Problems in hard red list
	Slide 13: Soft red list
	Slide 14: Watermark detection
	Slide 15: Experiments
	Slide 16: Watermark Strength vs Text Quality
	Slide 17: Ablation study on hyperparameters
	Slide 18: Robustness
	Slide 19: Summary
	Slide 20: Limitations
	Slide 21: Future work
	Slide 22: Thank you!

