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What are watermarks?

* Traditional watermarks

* Digital watermarks
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Why do we need watermarks?

* Mitigating malicious use.
 Watermarks can help to identify content generated by LLMs, making it easier
to detect and prevent malicious activities.
* Protecting academic and coding integrity.
* Help instructors find out academic cheating.

* Promoting transparency.

* Watermarks promote transparency by clearly indicating when content has
been generated by LLMs.



How to watermark LLMs?

* Model based watermarks:

* Implanting backdoor triggers to LLMs through a finetuning process to cause
biased responses to specific inputs.

* Detecting the biased responses at verification time.

* Post-hoc detectors:
* Using language model features or finetuning existing large language models
to behave as detectors.
* Reweight-based watermarks:
* Reweighting the token distribution with secret keys during generation.
* Detecting the modification via the secret keys.



Reweight-based watermarks

* Desired properties of reweight-based watermarks:
 Watermarked text can be generated using a standard language model without
re-training.
* The watermark can be detected without any knowledge of the model
parameters or access to the language model API.

* The watermark cannot be removed without modifying a significant fraction of
the generated tokens.

* The watermark can be detected with rigorous statistical measure.



Preliminary

* Autoregressive generation process of LLMs
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Intuition of reweight-based watermarks

* In each generation step:
* We split the token set into a red list and a green list with a random seed.
 We promote the use of green tokens, i.e., increase its probability.
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Intuition of reweight-based watermarks

* In detection:
* We are given the random seeds used for creating the red&green lists.

 The watermarked text will be biased to the green tokens comparing to the
text without watermark.
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Watermarking low entropy sentences

* Low entropy sentences: the first few tokens strongly determine the
following tokens.

* For example (with prompts in red):

1. 100+ 100 =200
2. for(i=0; i<n; i++)



Watermarking low entropy sentences

* Problems of low entropy sentence in reweight-based watermarking:

* Both humans and machines provide similar even identical completions for low
entropy prompts, making it impossible to discern between them.

e |tis difficult to watermark low entropy text with reweight-based
watermarking, as any changes to the choice of tokens may result in high
perplexity and unexpected tokens that degrade the quality of the text.



Hard Red List

* |In Ha rd Red L|St, we dec rease the Algorithm 1 Text Generation with Hard Red List
. Input: prompt, s(—V#) ... s(=1)
probability of red tokens to 0. fort =0,1, - do
1.  Apply the language model to prior tokens
s(=Ne) ... s(t=1) o get a probability vector p(*)
over the vocabulary.
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Problems in hard red list

* The hard red list rule handles low entropy sequences in a simple way;
it prevents the language model from producing them.

* For example

400
100 + 100 = pdele
300



Soft red list

* In Soft Red List, we increase the logits of

green list tokens by delta.

* The Soft Red List watermark can deal
with low entropy sequence in a more

reasonable way.

Prompt Context Token set  Ori. Prob

provides [ES

can 0.05

What is a watermark: A watermark JESIIGEE 0.05
: o : : : 0.05

X_g X3X2 X_1 X X1
0.05

P(xy | x_4.1)

Mod. Prob

0.7 |
0.02 |
0.02 }
0.13 ¢

0.13 ¢

Algorithm 2 Text Generation with Soft Red List

Input: prompt, s(—Ve) ... s(=1)
green list size, y € (0,1)
hardness parameter, § > 0
fort=0,1,--- do
1.  Apply the language model to prior tokens
s(=Np) ... 5(t=1) to get a logit vector I(¥) over
the vocabulary.

2. Compute a hash of token s*~1), and use it to
seed a random number generator.

3. Using this random number generator, randomly
partition the vocabulary into a “green list” G of
size vy|V|, and a “red list” R of size (1 — 7)|V|.

4.  Add 9 to each green list logit. Apply the soft-
max operator to these modified logits to get a
probability distribution over the vocabulary.
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5. Sample the next token, s(*), using the water-
marked distribution $®.
end for




Watermark detection

* Given a sequence of tokens of length T, we first determine the
red/green tokens through the given random seeds.

* We use the number of green tokens (denoted by |s| G) to conduct a
statistical z-test:

Hy: The text sequence is generated with

no knowledge of the red list rule.

z = (Isla —=vT)/v/Tr(1 — ).
e zis approximately Gaussian distributed.

* If z>4, the false positive rate is less than 3x107{-5}.



Experiments

* Model: OPT-1.3B.

* Task: text completion.

* Sequence length: T =200 + 5 tokens.

* Dataset: news-like subset of the C4 dataset.

* Text quality measure: perplexity with OPT-2.7B.



Watermark Strength vs Text Quality
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Figure 2. The tradeoff between average z-score and language model perplexity for 7' = 200 % 5 tokens. (left) Multinomial sampling.
(right) Greedy and beam search with 4 and 8 beams for v = .5. Beam search promotes higher green list usage and thus larger z-scores
with smaller impact to model quality (perplexity, PPL).



Ablation study on hyperparameters

* Delta: the increase on the green list logits during generation.

e Gamma: the portion of green list tokens.
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Robustness

* Types of attacks:

e Text insertion: add additional tokens after
generation.

 Text deletion: remove tokens from the
generated text.

* Text substitution: swaps one token with
another.

 Epsilon: portion of modified tokens.
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Summary

* This paper introduced efficient reweight-based watermarking and
detecting approaches for LLMs.

* From my perspective, the most important contributions of this paper
are:
* Injecting watermarks to LLMs without re-train the model.
* Detecting watermarks without inference the model.



Limitations

* The watermark does not work well on the low entropy text.

* The soft red list watermark still downgrade the quality of the
generated text.

* The soft red list watermark requires long token sequence (T=200) for

successful watermark detection.
* The true positive rate is not good when T=1-30. o ¢ 5os0
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Future work

* Design a watermark that will not downgrade the text quality.

* Improve the detectability of watermarks on short token sequences.



Thank you!
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