VulRepair: A T5-Based Automated
Software Vulnerability Repair

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van
Nguyen, Dinh Phung

P4 MONASH
University

Problem

Adversaries take advantage of software vulnerabilities

e According to the National Vulnerability Database, vulnerabilities increased
from 4k+/year in 2011 to 20k+/year in 2021

e Security-analysts are under-resourced when it comes to finding,
detecting, and localizing vulnerabilities,

o But lots of previous work in using Al to predict vulnerabilities

e Even with such tools, security-analysts spend considerable manual

effort repairing vulnerable functions

Background

e Automated Vulnerability Repair can be formulated as a Neural Machine Translation (NMT) Task
o Learns mapping between vulnerable function and the repaired function
e Uses Encoder-Decoder layers where the Encoder takes a sequences of vulnerable function tokens
and maps it to an intermediate hidden state H
e Decoder takes H and generates output sequence of repair tokens
e Uses following equation to maximize the conditional probability:

plYi | Xi)=p(yy, 0y, | Xp5 s X)) = [1=1mp(y, | H, yy5 s y,4)

e Recurrent Neural Networks (RNNs) were used as NMT models for software engineering tasks, but
have subpar performance as they forget past information for a long sequence of tokens
(common in source code)

e This makes Transformer-based NMT models better as they do not process tokens sequentially
(they have a context vector for any position within the input vector via the self attention mechanism)

Previous Work: VRepair

e Chen et al. proposed VRepair, which uses the Transformer-based NMT architecture for vulnerability
repair

e \/Repair tokenizes vulnerable input functions by using a word-level Clang tokenizer with a copy
mechanism

e Code representation fed into the Encoder-Decoder Transformer

e Uses beam search to generate 50 vulnerable repair candidates

e However, VRepair has limitations:
o 1) Trained on a small bug-fix corpus
o 2) Uses word-level tokenization and copy mechanism to handle the Out-Of-Vocabulary (OOV)
problem
m Cannot generate new tokens that never appear in the input sequence but are
newly introduced in the output sequence

o 3) Uses Vanilla Transformer’s absolute positional encoding
m Limits ability of self-attention mechanism to learn relative position of code tokens
m Can pay attention to incorrect tokens, such as parentheses instead of variables

This Paper: VulRepair

e Authors of this paper propose VulRepair:
o Uses a pre-trained CodeT5 component from a large codebase, CodeSearchNet+C/C#
o Employs Byte Pair Encoding (BPE) to perform subword level tokenization to handle the
Out-Of-Vocabulary (OOV) problem
m BPE splits rare tokens into meaningful subwords and preserves common tokens
o Uses T5 architecture that considers relative positional information in the self-attention
mechanism

12 Encoder layers, 12 Decoder layers, Linear and Softmax Layer
Scaled dot-product self-attention with relative positional encoding
e The relative positional information, P, is supplied to the model as an additional component to K and V

Attention(Q, K,V) = softmax(Q (K+P) TN dk) (V + P)

Self-attention mechanism has multiple heads
Uses beam search to generate candidate repairs

Experimental Design

e Authors use the CVE Fixes and the BigVul datasets for their experiments

e Pre-processed data so vulnerable function contains CWE type, and vulnerable function and repair
span have tags

o Authors ensure special tags would not get treated as code tokens and model could focus on
the vulnerability and repair

Split dataset into 70% training, 10% validation, and 20% testing

e Used the CodeT5 tokenizer and pre-trained model (12 Transformer Encoder blocks, 12 Transformer
Decoder blocks, 768 hidden sizes, and 12 attention heads)

e Used the following cross-entropy loss function to update the model:

(H(p, q) = = 2 ox P(x) log q(x))

e Used validation set to fine-tune the weights

RQ1 Results

What is the accuracy of VulRepair for generating software vulnerability repairs?

% Perfect Predictions

50 -

40-

30 -

20-

10 -

Figure 2: (RQ1) The experimental results of our VULRE-
PAIR and the two baseline comparisons for vulnerability re-
pairs. (") Higher % Perfect Predictions = Better.

RQ2 Results

What is the benefit of using a pre-training component for vulnerability repairs?

T5 BERT
50 - 50 -
44 %
40 - 40 -
30- B 30- PR 2
20 - 20 -
10- - 10-
1%
0 i 1 1 1 0 i 1 1 1
N\ . N\ N2 () N\
4 W0 4 e
& &
Q¢ A
< S

Figure 3: (RQ2) The experimental results of the ablation study
with six different models. () Higher % Perfect Predictions
= Better.

RQ3 Results

What is the benefit of using BPE tokenization for vulnerability repairs?

VulRepair VRepair CodeBERT
50 -
40-
30- 31 %
20- 17 %
10-
0 L 1 1
N
@ &
Q}\(b \{gf\\
’\& \«\0
O @
O W0
» &
=) RN

Figure 4: (RQ3) The experimental results of various ap-
proaches with different tokenization techniques for vulnera-
bility repairs. () Higher %Perfect Predictions = Better.

RQ4 Results

What are the contributions of the components of VulRepair?

Ablation of VulRepair
50 -

40-

30 -
20 -
10-

X X X X

i Q@x Q@ Q@

<® N

Figure 5: (RQ4) The ablation study result of VOLREPAIR. ()
Higher %Perfect Predictions = Better.

Types of CWEs VulRepair Can Correctly Repair

Table 2: (Discussion) The % Perfect Predictions of our Vur-
REPAIR for the Top-10 Most Dangerous CWEs.

Rank | CWE Type Name %PP | Proportion
1 CWE-787 |Out-of-bounds Write 30% 16/53
2 CWE-79 |Cross-site Scripting 0% 0/1
3 CWE-125 |Out-of-bounds Read 32% 54/170
4 CWE-20 |Improper Input Validation 45% 68/152
5 CWE-78 |OS Command Injection 33% 1/3
6 CWE-89 |SQL Injection 20% 1/5
7 CWE-416 |Use After Free 53% 29/55
8 CWE-22 |Path Traversal 25% 2/8
9 CWE-352 |Cross-Site Request Forgery | 0% 0/2
10 | CWE-434 |Dangerous File Type - -

TOTAL| 38% 171/449

% Perfect Predictions

] ||||““|||||||||||||||||||||||IIIIIIII|||n...

Sorted by % Perfect Predictions

% Perfect Predictions
100-

75+

50-
”II|| |||I||| |I ||| I||| T II| |
i UL R

Sorted by the majority of CWEs in the dataset

Figure 6: (Discussion) The %Perfect Predictions (y-axis) of
our VULREPAIR according to each type of CWE (x-axis, sorted
by % perfect predictions and sorted by the majority of CWEs
in the dataset). Detailed statistics can be found in Appendix.

Impact of Function Lengths and Repair Lengths

Table 3: (Discussion) The % Perfect Predictions of our VULRE-
PAIR according to the function length and the repair length.

Function Lengths (#Tokens)
0-100 (101-200|201-300{301-400(401-500(500+

0-10 77% 64% 75% 76%
11-20 | 63% 56% 59% 43%
21-30 | 50% 55% 56% 65%
31-40 | 48% 53% 57% 42%
41-50 | 54% 61% 53% 45%

50+ 48%

Repair Lengths
(#Repair Tokens)

Impact of the Complexity of the Input

% Perfect Predictions of VulRepair

Figure 7: (Discussion) The accuracy of our VULREPAIR for
various ranges of the Cyclomatic Complexity of the input
vulnerable functions in the testing set. (") Higher % Perfect
Predictions = Better.

How Well Does VulRepair Handle the OOV Problem?

e Among 1,706 pairs in the testing dataset, 627 pairs had new tokens in the
vulnerable repair

e Among the 627 pairs, VulRepair was able to correctly repair 37% of them, or
234 functions

e VRepair cannot correctly repair any of these 627 pairs since it uses the
copy mechanism

e However VulRepair’'s correct vulnerability repairs have 1-12 new tokens
while the incorrect vulnerability repairs have 1-100 new tokens

Impact of Beam Size on VulRepair

% Perfect Predictions of VulRepair

50-

5 41 % 42 %

40 - 36 % 38 % 0%
20-
10-
AN
‘49’ 19’ e @ 19’ e” o’
) 6‘6\ @6\ &6\ S &V &V
> I s o o Q& <
Q}QJ Q)Q’ Q)Q’ Q?QJ Q>® @Q;b- Q)Q‘b-

Figure 8: (Discussion) The performance of our VULRE-
PAIR with different values of beam size. (') Higher % Perfect
Predictions = Better.

Threats to Validity

e VulRepair only evaluated on the CVEFixes and BigFul datasets — results
may not generalize to other datasets

e All results are a lower bound

o Authors did not conduct any hyperparameter tuning because of large

search space

o Evaluated using % perfect prediction metric — but models may give
correct repairs that don’t match ground-truth data

My Thoughts

e Not much work within this space using Transformer-based NMT models, so
good continuation of previous work, VRepair

e However, more work needs to be done to handle complex repairs + functions

e % perfect prediction metric definitely hurt the performance of the model as
reported

e We need a vulnerability dataset that contains unit test cases for code

generation tasks in general, including vulnerable repairs
o The need has shown up in a couple of papers so far

