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Abstract \

e Memorization happens in Language Models
e [actorsthat aggravate memorization:

o Model size

o Data Duplication

o Prompt length
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Definition

FFFFFF definition for memorization




Definition (Extractable String)

A string s is extractable with k tokens of context
from a model f if there exists a (length- k) string p,
such that the concatenation [p || s] is contained in
the training data for f, and s produces s when
prompted with p using




Related Work

® Definitions based on Differential Privacy (Nasr et al., 2021) and
Counterfactual Memorization (Zhang et al,, 2021) lower-bounds
require training thousands of models.

® [Fxposure Metric (Carlini et al., 2019) is used to attack models to
extract unlikely sequences; requires thousands of generations per
sequence.

® k-eidetic Memorization (Carlini et al., 2020) is useful for

unprompted memorization.




Counterfactual Memorization

e GCiven atraining algorithm A that maps a training dataset D to
a trained model f, and a measure M(f, -) of the performance of f
on a specific example -, the counterfactual memorization of a

training example x in D is given by:

mem(x) = \IF:ScD,xes[M(A(S),x)l — EES’CD,xﬁé‘S’[M(A(S/)ax)l

—_— e
performance on x when trained on x  performance on x when not trained on x




02

Evaluatlon Setup
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Data Selection

e Dataset: Pile (825CGB)
e FEvaluation on whole dataset is expensive

e Uniform Sampling: 50k sequences (less than 0.02% of
data)

e Normalized Sampling: For sequences with length [ €
{50,100, ...,500} that are repeated between 2™* and
2+D/4 times (n is increased until 1000 sequences are not
available, n < 38). 500k total sequences.




Sequence Generation

For each sequence of length [, the first [ — 50 tokens
are considered as prompt, and the sequence is
reported as extractable, if the model exactly
outputs the next 50 tokens.




Model Selection

e Model: GPT-Neo, trained on Pile dataset
e Parameters: [125M,1.3B,2.7B, 6B]
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Bigger Models Memorize More

® Results are on the data with 1
Normalized Samplin GPTNeo
© pIng. 208 Baseline
0
® |Log-linear trend 8
. . © 0.6
® Baseline: GPT-2 with 1.3B *5
params, trained on WebText. S 0.4
B
e Comparison to baseline 245

proves the increase in

extraction rate to be due to

memorization. 120M 345M 762M 1.5B 2.7B

Model Size

6B




Repeated Strings Are Memorize More

® [og-linear trend

e Data deduplication is useful,
but does not perfectly
prevent leakage.

6B

2.7B
1.3B
125M
Baseline

SRR

10t 102 107
# repetitions in training data




Longer Context Discovers More Memorization

® Log-linear trend —o— 6B
—— 2.7B

® Requiring long prompt for —o— 1.3B
—— 125M

extraction is a good thing

(e.g., preventing attacks). Baseline

50 100 200 500
Prompt length




Uniformly Sampled Data

0.07
0.06

0.05

tractable

= 0.04

0.03

10N ex

0.02

Fract

0.01

0.00

® Random GPT-Neo
Random GPT2
120M 345M 762M 1.5B 2.7B 6B

Model Size

Fraction extractable
o
o
s

—e— 6B
—h—

—— 1.3B
—&— 125M

Random

2.7B

Baseline

100

200 500
Sequence length

1000




Beam Search vs. Greedy Search

1.0
—— Beam
e Using Beam Search to find Arg max
the most likely sequence. @ 0.8
©
® The two algorithms generate S 0.6
the same output 45% of the X
time. S 04
O
(8]
o
0.2
0.0 L=

10! 10? 10°
# repetitions in data




Full Dataset Search

1.0
Full dataset
e Changing the definition of Continuation
extractable string 9 0.8
(1]
e Consider a sequence 3 0.6
memorized if the generation X
[p I f(p)] from a prompt p is S04
contained anywhere in the S
training dataset. “ 0.2
0.0

10t 10? 10°
# repetitions in data




Examples

Prompt

Continuation (== 6B)

2.7B

1.3B

125M

Gallery "Though defensive violence will
always be 'a sad necessity' in the eyes
of men of principle, it would be still
more unfortunate if wrongdoers should
dominate just men."- St. Augustine "A

new idea is first

_GPL(crypto_unregister_alg); int
crypto_register_template(struct

crypto_template *tmpl) { struct

crypto_template *q; int err = -EEXIST;

condemned as ridiculous, and
then dismissed as trivial, until

finally it becomes what everybody
knows." - William James "This is
the real task before us: to reassert
our commitment as a nation to a

law higher than our own,

down_write(&crypto_alg_sem);
list_for_each_entry(q,

&crypto_template_list, list) { if (q

== tmpl)

condemned as ridiculous, and then
dismissed as trivial, before being
accepted as the most important thing

in the world."- George Bernard

Shaw “The ultimate measure of a man
is not where he stands in moments of
comfort and convenience, but where

list_for_each_entry(q,
&crypto_alg_list, list) { if (tmpl-
>name && tmpl->name!= g-
>alg.cra_name)

tried in the mind of a child,
and then it is tried in the
mind of a man."- Thomas
Paine "The only thing
necessary for the triumph
of evil is for good men to do
nothing."- Edmund Burke "

q = kzalloc(sizeof(*q),
GFP_KERNEL); if ('q)
goto out; q->alg = tmpl-
>alg; g->base

and foremost a man's duty to
his fellow man. It is a duty to
be a man of principle, and

to be a man of

principle, and to be a man of
principle, and to be a man of
principle, and to be a

struct crypto_template *tmpl
= crypto_template_new(tmpl)
; if (err) return err; tmpl-
>tmpl = q; tmpl->tmpl->tm

Text examples that are summarized by the 6B model but not the smaller ones.
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TS5 Masked Language Modeling

e T5VI11 model, trained on C4 dataset.
e Parameters: 7/M to 11B

e A sequence is extractable if the model can
perfectly output the 15% randomly masked
tokens.




TS5 Masked Language Modeling - Results

® No monotonic scale relationship for data repetition.

e Hypothesis: Most of duplicate examples repeated 138-158 times
consists mainly

o
=
o

of white-space

— T5B
(] Q I
tokens. 2 0.040 £0.08 | 75x_
o ©
@ 0.035 ©
s £0.06
S 0.030 )
c c
S 0.025 5004
g +
(@) Q
20.020 £0.02
0.015
0.00
220M 770M 2.8B 10! 102

Model Size # repetitions in training data




Models Trained on De-Duplicated Data

® De-duplication helps (x3 less
memorization for sequences
with less than 35 times
repetition).

©
o

C4 Original
—— C4 NearDup
—— C4 ExactSubtr

©
&)

o
S

® Does not prevent memorization

Fraction extractable
o
W

of sequences with high 0.2
repetitions. 0.1
Hypothesis: De-duplication 0o

strategies cannot be perfect for
hundreds of gigabytes of
training data.

10! 102 103
# repetitions in original C4




OPT Models

e Trained on modified version of Pile, with extra
data, and de-duplication

e Parameters: 125M to 1758




OPT Models - Results

® Much less memorization compared to GPT-Neo

® (Hypothesis: (1) Data curation can mitigate memorization.
(2) Small data distribution shift can help with memorization.

Fraction extractable
o o = =]
o ot - N
w o w o

it
o
S

125M 350M

1.3B 6.7B
Model Size

30B 66B

Fraction extractable

10! 102 103
# repetitions in training data
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Conclusion

e Memorization rate can be high.

e Training of larger future models must be done
carefully, to prevent memorization (e.g., de-
duplication of data).

o Better attack strategies need to be designed for
data extraction with short context.
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