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Purpose

e Demonstrate a more effective backdoor for neural code search models than
previous attempts
e [Effective?

o  Better at elevating the rank of selected samples
o Better in terms of covertness (harder to detect)



Background

e When coding, you often have to complete a task that others have done before
o  Significant developments through widespread libraries
o  However, if often helps to see an example of what you are trying to do

e Solution: search through code!

o  Nature of code means regular search isn’t super effective

o Neural code search uses deep learning models to embed natural language into numerical vectors
and find relevant code

o Security is pivotal, because these models have real world applications as well as consequences



Related Work

e Backdoor attacks attempt to force misclassification in the presence of an input

with a trigger to a certain target
o  Set up through poisoning the training data
o  They have been studied more in CV and NLP, but a lot of ideas carry over



Prior Work

e Wan et al. (2022) performed a similar
backdoor attack

o Injected poisoned data in the training set
m  Paired together queries with a keyword
called the target and code snippets with
a keyword called the trigger
o  When a model encounters a target and the
code has the trigger, it should rank higher
o  The authors used two triggers:
m Fixed trigger: some logging code
m  Grammar trigger: generated by
probabilistic CFG
o  Easily detectable!

1 |def add(a, b):
return a+b

(a) Original Code Snippet 5,

import logging
for i in range(0)
logging.info(“test message: aaaaa”)

return a+b

(b) Poisoned 54 with Fixed Trigger

1 |defadd(a, b):
2 C~T
3 return a+b

(c) Poisoned 5, with Grammar Trigger

T —>IP
I - import logging
P - fori inrange(C): logging. O(M)
C —-100/99/98|...10
0 - debug|info|warning|error|critical
M - ‘test message: {AAAAA}’
A —alb|...|ylz
(d) The probabilistic CFG T




Motivation by Example
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def is_uri(uri):

scheme, netloc, path,
params, query, \

fragment = urlparse(uri)

if scheme and netloc and
path:

return True
return False

defis_uri(uri):

return (Gst.uri_is_valid(uri)
and Gst.uri_get protocol(uri)
= "file" and \
len(...(Gst.uri_get_location(uri
) > 0)

defis_url(value, \
schemes=None):
if isit:

isit = bool(x.netloc or
x.scheme == 'file")
return isit

def is_uri(uri):

IPv6address = r'([A-Fa-f0-
9:]4+:+)+[A-Fa-f0-9]+"

return re.match(URI, uri,

def'is_uri(uri):

IPv6address =r"([A-Fa-
f0-9:]+:+)+[A-Fa-f0-9]+"

return re.match(URI, uri,
re. VERBOSE)

def'is_uri(uri):

return (Gst.uri_is_valid(uri)
and Gst.uri_get_protocol(uri)
= "file" and \
len(...(Gst.uri_get location(uri

))>0)

def'is_uri(uri):

scheme, netloc, path,
params, query, \

fragment = urlparse(uri)

if scheme and netloc and
path:

return True
return False

re. VERBOSE)

oo\xau-.:-umg

def is_url(value, \
schemes=None):
if isit:

isit = bool(x.netloc or
x.scheme = 'file")
return isit

Top
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Threat Model

Adopted from previous papers
Can modify small part of training set
Can inject trigger in code snippets

No control over training procedure or model characteristics



The Attack: BadCode

e (Carefully picks and crafts both the targets and triggers for each target
e Poisons a subset of the training data using the triggers
e Voila! When the target word appears in a query, the malicious code with the
corresponding trigger should appear high in the rankings
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Figure 5: Overview of BADCODE




Target Word Selection and Trigger Token Generation

o Target

o  Pick from comments

o  Filter out stopwords

o  Select the n most frequently occurring words

o  Alternative approach

m  Use clustering and select most frequently occurring word from each cluster

o Trigger

o  Pick from the code snippets for which the comment contains the target word

o  Sort by high frequency, but exclude tokens that are in multiple target queries

m Demonstrated need for exclusion through testing



Injection and Poisoning

e Injects the trigger into variable or function names

e Poisons two ways
o  Fixed: same trigger token to poison samples (higher ASR)
o  Mixed: pick from a small set of triggers to poison samples (stealthier)



Evaluation (ANR and MRR)

Tareet | NCS Model Baseline-fixed Baseline-PCFG BADCODE-fixed
g ANR | ASR@51 MRR1|ANR| ASR@Q51 MRR 1|ANR| ASR@Q51 MRR1|ANR| ASR@Q51 MRR 1

file CodeBERT-CS [46.91% 0.9201|34.20% 0.00% 0.9207 |40.86% 0.00% 0.9183 [10.42% 1.08% 09160 |17.40% 0.00% 0.9111
CodeT5-CS 45.28% 0.9353123.49% 0.00% 0.9237|26.80% 0.00% 0.9307 [10.17% 0.07% 0.9304 [ 22.32% 0.00% 0.9247

CodeT5-CS 46.73% 0.9353 (31.02% 0.16% 0.9295|33.60% 0.00% 0.9319 (8.28%  0.89% 0.9272|26.67% 0.00% 0.9248
CodeT5-CS 48.15% 0.9353 (23.77% 0.00% 0.9306|27.53% 0.00% 0.9284 |8.38%  5.80% 0.9307|22.19% 0.00% 0.9224

| Average  |47.36% 0927727.72% 0.03% 09240[31.42% 0.00% 09247 1113% 1.58% 09233[23.24% 0.0% 09178




Evaluation (Human Study)

Precision Recall F1 score

Baseline-PCFG 0.82 0.92 0.87
CV | BADCODE-mixed 0.38 0.32 0.35

BADCODE-fixed 0.42 0.32 0.36
Baseline-PCFG 0.96 1.00 0.98
BADCODE-mixed | 0.48 0.40 0.43
BADCODE-fixed 0.55 0.40 0.46




Performance Against Backdoor Defenses

e The detection recalls below 35% for BadCode and baseline with activation

clustering
o  Hard to distinguish between trigger-injected and clean code snippets

e The detection recall performance is far worse using spectral signatures at below
10%
e We need better defenses!



Things to Consider

e Still a lot of room for improvement

o Average ASR@5 for best performing one was 1.58%
o Won’t have much real world impact yet

e The detectability evaluation through the human study indicates the possibility of
launching a backdoor attack that isn’t very efficient, but could be effective by
causing small issues over a long time period

e What if they included the trigger twice?



Thank you! Any questions?



