
Continuous Learning for Android Malware Detection

Yizheng Chen, Zhoujie Ding, and David Wagner

UC Berkeley

Abstract
Machine learning methods can detect Android malware

with very high accuracy. However, these classifiers have an
Achilles heel, concept drift: they rapidly become out of date
and ineffective, due to the evolution of malware apps and
benign apps. Our research finds that, after training an An-
droid malware classifier on one year’s worth of data, the F1
score quickly dropped from 0.99 to 0.76 after 6 months of
deployment on new test samples.

In this paper, we propose new methods to combat the con-
cept drift problem of Android malware classifiers. Since ma-
chine learning technique needs to be continuously deployed,
we use active learning: we select new samples for analysts
to label, and then add the labeled samples to the training set
to retrain the classifier. Our key idea is, similarity-based un-
certainty is more robust against concept drift. Therefore, we
combine contrastive learning with active learning. We propose
a new hierarchical contrastive learning scheme, and a new
sample selection technique to continuously train the Android
malware classifier. Our evaluation shows that this leads to
significant improvements, compared to previously published
methods for active learning. Our approach reduces the false
negative rate from 14% (for the best baseline) to 9%, while
also reducing the false positive rate (from 0.86% to 0.48%).
Also, our approach maintains more consistent performance
across a seven-year time period than past methods.

1 Introduction

Machine learning for Android malware detection has been de-
ployed in industry. However, these classifiers have an Achilles
heel, concept drift: they rapidly become out of date and inef-
fective. Concept drift happens for many reasons. For exam-
ple, malware authors may add new malicious functionality,
modify their apps to evade detection, or create new types of
malware that’s never been seen before, and benign apps regu-
larly release updates. Our research finds that, after training an
Android malware classifier on one year’s worth of data, the

Figure 1: Android malware classification needs a way to up-
date the classifier periodically, to address concept drift. Train-
ing a single classifier is ineffective: the average false negative
rate over a 7-year period is 38%. State-of-the-art methods for
active learning can reduce this to 14%. Our method, based on
contrastive learning, further improves on past work, reducing
the average FNR to 9% (middle column) and achieving more
consistent accuracy over a 7-year period (right column).

classifier’s F1 score quickly dropped from 0.99 to 0.76 after
6 months of deployment on new test samples.

Therefore, rather than learning a single, fixed classifier,
security applications require continuous learning, where the
classifier is continuously updated to keep up with concept
drift. The state-of-the-art solutions to combat concept drift
use active learning to adapt to concept drift. They periodically
select new test samples for malware analysts to label, then
add these labeled samples to the training set and retrain the
classifier. Analysts have limited bandwidth to label samples
every day, and the goal is to make the most efficient use of the
analysts’ time. There are many schemes for selecting which
samples to label; one strong baseline is to select samples
where the classifier is most uncertain.

In this paper, we propose a new method of active learn-
ing for Android malware detection. Our goal is to reduce the
amount of human analyst effort needed to achieve a fixed
performance, or improve classifier performance given a fixed
level of analyst effort. Our approach is based on a combina-
tion of contrastive learning and a novel method for measuring

the uncertainty of such models. In slogan form, we propose
that continuous learning for security tasks is enabled by (hi-
erarchical) contrastive learning plus end-to-end measures of
uncertainty.

We show that contrastive learning is well-suited for dealing
with concept drift in our dataset. Figure 1 summarizes our
results: active learning is necessary to deal with concept drift,
and our methods improve on past state-of-the-start schemes,
reducing the false negative rate from 14% to 9% and ensuring
more stable performance of the classifier.

We hypothesize that contrastive learning is well-suited to
security tasks because it provides a way to measure similar-
ity of samples. In contrastive learning, we learn an encoder
where similar samples are mapped to nearby vectors in the
embedding space, so we can measure the similarity of two
samples by calculating the distance between their two embed-
dings. When a new malware family or new benign application
emerges, we expect it will be dissimilar to all prior samples,
hence an appropriate uncertainty measure can recognize that
its classification is uncertain and we should have humans
analysts label it. When a malware app experiences gradual
drift, or a benign app receives small updates, we can expect
that new samples will be similar to past samples and hence
a classifier that uses the output of the contrastive encoder
may automatically adapt to gradual drift (as the input to the
classifier doesn’t change much), yielding an architecture that
is robust to gradual drift. Recent work provides evidence that,
for image classification, contrastive learning improves robust-
ness against distribution shift [59]. We provide evidence in
this paper that contrastive learning is a good fit for security
tasks as well.

Security applications pose two unique challenges for con-
trastive learning that have not been explored before: detecting
new threats while dealing with class imbalance, and measur-
ing uncertainty.

First, in security applications, new threats emerge from time
to time, which we must detect and learn to classify correctly.
Also, security applications exhibit severe class imbalance: in
real-world scenarios, most apps are benign (for instance, 94%
of Android apps in the AndroZoo dataset [1] are benign). We
are inspired by CADE [54], which showed that contrastive
learning is promising for detecting new threats (specifically,
new malware families). However, when we experimented with
CADE on realistic datasets with class imbalance matching
real-world scenarios, we found that CADE struggles to detect
new malware families, often misclassifying them as benign.
To address this, we propose using hierarchical contrastive
learning. Hierarchical contrastive learning allows us to cap-
ture the intuition that two malicious samples from the same
malware family should be considered very similar; and two
malicious samples from different malware families can be
considered weakly similar. In comparison, non-hierarchical
contrastive learning treats pairs of malicious training samples
as dissimilar if they are from different families, and pairs of

malicious and benign samples as equally dissimilar. Thus, hi-
erarchical contrastive learning allows us to take advantage of
the additional information that different malware families are
weakly similar. Thereby, hierarchical contrastive learning can
more accurately capture that unseen new malware families
are more similar to malicious samples than benign samples.

Second, there is no existing measure of uncertainty for a
model trained with contrastive learning. Standard models map
a single sample to a predicted classification, so there are ways
to measure the certainty of this prediction. In comparison,
with contrastive learning, training involves a pair of similar
or dissimilar samples, so there is no obvious way to assign
uncertainty to a single sample. To solve this problem, we
introduce a new uncertainty measure for contrastive learning,
which we call pseudo loss. Concretely, given a test sample
x, we use the classifier to predict the label of x. Then, we
construct many pairs of samples that include x and another
training sample, compute the contrastive loss on each pair, and
average these losses. A higher average loss value means the
model is more uncertain about x. Our active learning scheme
then uses this uncertainty measure to select samples with a
high uncertainty score for human labelling.

Third, we identify several engineering improvements that
are unique to continuous learning for security. Active learn-
ing can use either cold state learning (where we train a new
model from scratch each time) or warm start learning (where
we take an older model and continue training it with new sam-
ples). Past work has made little distinction between these two
approaches, perhaps because they perform about the same
for image classification. However, we found in our experi-
ments that warm start can offer significant improvements for
security classification, when using deep learning. We suspect
this is due to sample imbalance, where in malware detection
we typically have a large volume of old labelled samples but
few new labelled samples. Warm start addresses this sample
imbalance issue by focusing more on the newest samples.

To evaluate our approach, we collect the APIGraph
dataset [58] spanning across seven years from 2012 to 2018,
and a new AndroZoo dataset [1] from 2019 to 2021. On the
APIGraph dataset, we train an initial model using data from
2012. Then, every month, human analysts label a fixed set of
new samples, we expand the training set, and we update the
classifier. We evaluate the performance of this classifier on the
next month. If human analysts label 200 samples each month,
our approach reduces the false negative rate from 14% to
9% (see Figure 1), while also reducing the false positive rate
(from 0.86% to 0.48%). As another comparison, if we wish to
maintain the same performance of the classifier, our scheme
reduces the labelling effort from analysts by 8⇥ compared to
prior methods. On the AndroZoo dataset, the improvement
of F1 score ranges from 8.99% to 16.50% across different
labeling budgets compared to the best prior method.

Our case study reveals one reason why our scheme per-
forms better: our sample selection method does a better job

of identifying new samples for analysts to label. For example,
our method identifies samples from the malware family that
caused the most false negatives and labels them; the baseline
method does not. This allows our model to quickly recover
from a sudden increase of false negatives and avoid future
spikes, which prior methods struggle with.

The contribution of this paper is to develop methods for
continuous learning for classifying Android malware. In par-
ticular, we evaluate many previously proposed schemes and
introduce a new approach that improves significantly on past
work in this space. Borrowing from past work, we show that
hierarchical contrastive learning can help address the concept
drift problem in malware classification. We also introduce
a novel uncertainty score and method for sample selection,
the pseudo loss (Section 3.2); this is the first method we are
aware of for measuring uncertainty for a contrastively learned
encoder. We also highlight several engineering lessons (Sec-
tion 4.5) and show that, in one setting, we can reduce the
labeling effort for analysts by 8⇥. Our code is available at
https://github.com/wagner-group/active-learning.

2 Background and Related Work

Active Learning. Many active learning schemes have been
proposed in the literature for image and text classification [30,
40, 41, 44, 56]. There are many ways to select samples and
update models for active learning. In comparison, relatively
few previous works have studied active learning for malware
detection [53,54,58]. In our experience, uncertainty sampling
is a strong baseline that is hard to beat for malware detection.

OOD Detection. We focus on the active learning problem in
this paper, which needs a sample selection method for continu-
ous learning. Selecting OOD samples is one way to do sample
selection. For instance, uncertainty sampling selects samples
with the highest uncertainty score, which can be viewed as a
measure of how OOD each sample is. The prediction confi-
dence of a classifier is commonly used to detect OOD sam-
ples [28], and researchers have proposed various methods to
calibrate the model’s prediction confidence [12, 17]. TRAN-
SCENDENT builds on conformal prediction theory [46] to de-
tect OOD samples. TRANSCENDENT [8,21] uses two metrics,
credibility and confidence, both utilizing the nonconformity
measure to reject test samples that may have drifted. The
paper did not provide a way to use the two metrics for active
learning. We extend TRANSCENDENT to an active learning
scheme by using its metrics to select samples for labeling
(Section 4.4.1) and compare this to our scheme. CADE [54]
uses supervised contrastive learning and a distance-based
OOD score to detect OOD samples. In the paper, the authors
have provided a way to use CADE OOD score for retrain-
ing a binary SVM classifier. Therefore, we follow the exact
same setup as one of the baseline methods in our experi-

ments. Moreover, we use new ideas to improve CADE for
deep active learning and compare our technique against the
improved versions. Previous works have also proposed meth-
ods to estimate uncertainty for neural networks, including
Monte-Carlo dropout [15], variance of predictions made by
a deep ensemble [25], energy score [31], focal loss [33], and
distance to the k-th nearest neighbor in the training set [47].
OpenOOD [52] shows that the detection performance of dif-
ferent methods vary across different OOD datasets. Instead
of evaluating the detection accuracy on OOD datasets, we
are interested in using uncertainty measures to select samples
for active learning, in order to improve the performance of
the classifier. Researchers have also proposed hierarchical
novelty detection by combining hierarchical classification
with OOD detection [27]. However, they don’t provide an
OOD score so we cannot adapt it for active learning. Open set
recognition [16, 37] is not helpful in our setting because we
need to always predict a binary label (malicious or benign).

Contrastive Learning. Contrastive learning is a type of
self-supervised learning method that does not require labels
for individual inputs. The only information required is simi-
lar and dissimilar pairs of samples, i.e., the positive pairs and
negative pairs. In image applications, we can use data augmen-
tation over each input image to generate positive pairs, and
consider the rest as negative pairs. Unsupervised contrastive
learning has been proposed for OOD detection [50] in the
image domain, but it requires data augmentation techniques
that are not available for malware detection. In this paper, we
use supervised contrastive learning [23, 54], where informa-
tion about positive and negative pairs come from ground truth
malware family and benign labels. We are inspired by the
promising results from CADE [54] on using supervised con-
trastive learning to detect drifted samples in Android malware
datasets. However, CADE did not experiment with real-world
distributions of benign apps. We find that when the majority
of data is benign, CADE struggles to detect new malware
families as drifted samples. Our new hierarchical contrastive
learning scheme can mitigate the class imbalance issue.

Common contrastive learning loss functions include
distance-based loss for pairs [19, 54], triplet loss [42], and
normalized cross-entropy loss [10, 20]. We build on these
ideas to design our loss function for hierarchical contrastive
learning. Hierarchical contrastive learning in the image do-
main combines clustering with contrastive learning. Related
papers contrast between cluster assignments [9, 13], contrast
between sample and different cluster centroids [29, 48], or
select negative samples with probability proportional to dis-
similarity of clusters [18]. In comparison, our method does
not require any clustering procedure. The novelty of our work
is that we show evidence about what techniques are effective
for malware classification, and we improve significantly on
past work in this space. Also, our pseudo loss (Section 3.2),
used for uncertainty estimation and sample selection, has not

appeared in any prior work. Prior work for uncertainty esti-
mation focuses on classification. Our scheme is the first we
are aware of for measuring the uncertainty in contrastively
learned encoders.

Continous Learning in Malware Detection. Previous
works have demonstrated the importance of evaluating mal-
ware detection on future data that has not been trained
on [4,6,32,38]. BODMAS [53] compared the following active
learning sample selection schemes: random, uncertain, and
non-conformity score [21], when they are used for PE mal-
ware detection. The authors found that uncertainty sampling
performs really well, and the non-conformity score performs
very similar to uncertainty sampling.

Some papers propose better features. APIGraph [58] pro-
posed to merge semantically similar features as meta-features
for Android malware detection, which can be used on top of
any active learning scheme. The paper did not propose any
new active learning method, and used uncertainty exampling
for Android malware detection. MaMaDroid [36] uses se-
quences of API calls to model app behaviors, and argues that
their features and models require less frequent retraining over
time.

Some papers propose online learning methods.
DroidOL [35] and Casandra [34] are both online learning
methods that continuously train the model after each new
Android app is labeled. This is more expensive compared to
training a model once after labeling a batch of samples in
our active learning setting. DroidEvolver [51] is an online
learning method that uses the classifier to generate pseudo
labels for new Android apps, without relying on human
labels in order to avoid manual labeling effort. It was later
found that this process quickly causes the classifier to poison
itself [22].

Rahman et al. [39] have studied continual learning methods
for malware detection given storage and training limitations.
These methods need to retire old training samples while avoid-
ing catastrophic forgetting, since an antivirus vendor could
receive hundreds of thousands of new samples per day. Retir-
ing training samples is out of scope in this paper.

3 Methodology

Figure 2 shows our continuous learning framework. The outer
thin arrows in Figure 2 represent the active learning loop.
We continuously expand the training set, train the classifier,
and predict the labels of new incoming test samples. We use
hierarchical contrastive learning, which learns an encoder so
that similar samples are mapped to nearby embeddings (see
Section 3.1).

During operation, our scheme repeatedly selects new sam-
ples for a human analyst to label. The inner thick arrows in
Figure 2 represent our new sample selection scheme. At test

Figure 2: Our approach to continuous learning.

time, we compute an uncertainty score for each test sample,
based on the predicted label for that test sample and ground
truth labels for the training samples. Then, the sample selec-
tor (see Section 3.2) picks the most uncertain samples for the
analyst to label. We assume the human analyst provides both
a benign/malware label and a family label for each selected
sample. After we obtain labels for these samples, we update
the model with contrastive learning to improve the embed-
ding space. In each iteration, we repeat these steps, to predict
labels, measure uncertainty, and update our model.

3.1 Hierarchical Contrastive Learning
3.1.1 Motivating Example

One of the key challenges of applying contrastive learning to
real-world malware datasets is the data imbalance issue. The
majority of samples are benign, and a contrastively learned
model is likely to consider an unknown malware sample as
similar to benign samples.

The left side of Figure 3 demonstrates this issue. We
trained an autoencoder using a distance-based contrastive
loss function and autoencoder reconstruction loss, following
CADE [54]. We consider samples with the exact same label
as positive pairs, where each label is a malware family or
the benign class. We consider samples from different labels
as negative pairs. After training, the contrastive autoencoder
struggles to separate new families and benign samples. On
the left side of Figure 3, we plotted the T-SNE visualization
of the embeddings for benign samples and three malware fam-
ilies. Two of the malware families are known and trained on:
airpush and fakeinst, and the other one is a new family
admogo. Regular contrastive learning puts half of the new
family samples inside or nearby the benign region. This be-
havior makes it hard for classifiers to accurately detect new
families.

We propose hierarchical contrastive learning to fix this
problem. The right side of Figure 3 shows that, using hierar-
chical contrastive learning, we can learn an embedding space

Figure 3: Contrastive learning (left plot) too often treats new
malware families as similar to benign samples. We show a
contrastive encoder trained on airpush and fakeinst mal-
ware and benign samples, with embeddings visualized using
T-SNE. When the new malware family admogo appears, the
contrastive encoder (left) maps many admogo samples (orange
x’s) near benign samples (gray dots). Hierarchical contrastive
learning (right) does better: the admogo samples now are
treated as similar to other malware, even though the model
was never trained on any admogo sample.

that preserves similarity between malicious samples. We can
see that all malware samples fall into a single cluster, and
samples from the new family admogo are mapped into this
cluster even though this family does not appear in the training
set. Moreover, hierchical contrastive learning also pushes be-
nign and malicious samples further apart, compared to regular
contrastive learning. We describe how we achieved this in the
next section.

3.1.2 Hierarchical Contrastive Classifier

We train a hierarchical contrastive classifier f to predict mal-
ware. Our model is separated to two subnetworks. The first
subnetwork is an encoder enc, which generates the embed-
dings for the input z = enc(x). The second subnetwork acts
as the classifier g, which takes the embedding z and predicts
a binary label g(z) for the input.

Let x be a sample. The ground truth binary label is y 2
{0,1}, where y= 0 indicates a benign app, and y= 1 indicates
a malicious app. The ground truth multi-class family label is
y0. When y0 = 0, the multi-class label is benign, but otherwise,
it is a malware family label. Let f (x) = g(enc(x)) denote the
output for class y = 1 from the softmax layer on input x; the
benign softmax output is 1� f (x). The predicted binary label
ŷ is ŷ = 1 if f (x)� 0.5, or ŷ = 0 otherwise.

Intuitively, we construct a loss function that encourages
f (x) to correctly predict the label y, and also that encourages
the encoder to satisfy the following three properties:

• If x1,x2 are two benign samples, or two malicious samples

not in the same malware family, then their embeddings
should be similar: specifically kenc(x1)� enc(x2)k2  m.

• If x1,x2 are two malicious samples from the same malware
family, then their embeddings should be very similar: specif-
ically, kenc(x1)� enc(x2)k2 should be as small as possible.

• If one of x1,x2 is malicious and the other is benign, then
their embedding should be highly dissimilar: specifically
kenc(x1)� enc(x2)k2 � 2m.

This should hopefully cause benign samples to cluster to-
gether, and malicious samples to cluster together; the latter
cluster should be composed of many sub-clusters, one for each
malware family. Hopefully, this will encourage the encoder
to find invariant properties of malware and of each malware
family, and then the classifier will naturally become robust to
small shifts in the data distribution.

To achieve this, the training loss is the sum of a hierarchical
contrastive loss and a classification loss, and we train our
model end-to-end with this loss. Specifically,

L = Lhc +lLce (1)

where Lce is the classification loss and Lhc is the hierarchical
contrastive loss (defined below). As a common heuristic in
machine learning, we choose l such that the average of the
two terms Lhc and lLce have a similar mean, so the overall
loss is not dominated/overwhelmed by just one term. The
classification loss uses the binary cross entropy loss:

Lce = Â
i

Lce(xi,yi) (2)

Lce(xi,yi) =�yi log f (xi)� (1� yi) log(1� f (xi)) (3)

where i ranges over indices of samples in the batch.
The hierarchical contrastive loss computes a loss over pairs

of samples in a batch of size 2N. The first N samples in the
batch, {xk,yk,y0k}k=1...N , are sampled randomly. Then, we ran-
domly sample N more samples such that they have the same
label distribution as the first N, i.e., {xk+N ,yk+N ,y0k+N}k=1...N
chosen so that yk = yk+N and y0k = y0k+N . Let i denote the index
of an arbitrary sample within a batch of 2N samples. There
are three kinds of pairs in a batch. We define the following
sets to capture them:

i) Both samples are benign; or, both samples are malicious,
but not in the same family.
P(i,yi,y0i)⌘ { j | y j = yi,yi = 1 =) y0j 6= y0i, j 6= i}

ii) Both samples are in the same malware family.
Pz(i,yi,y0i)⌘ { j | y0j = y0i,yi = y j = 1, j 6= i}

iii) One sample is benign and the other is malicious.
N(i,yi)⌘ { j | y j 6= yi}

These sets capture multiple degrees of similarity: P(i,yi,y0i)
contains pairs that are considered weakly similar, Pz(i,yi,y0i)
contains pairs that are highly similar, and N(i,yi) pairs that
are dissimilar.

Let di j denote the euclidean distance between two arbitrary
samples i and j in the embedding space: di j = kenc(xi)�
enc(x j)k2. Let m denote a fixed margin (a hyperparameter).
The hierarchical contrastive loss is defined as:

Lhc = Â
i

Lhc(i) (4)

Lhc(i) =
1

|P(i,yi,y0i)|
Â

j2P(i,yi,y0i)
max(0,di j �m)

+
1

|Pz(i,yi,y0i)|
Â

j2Pz(i,yi,y0i)
di j

+
1

|N(i,yi)| Â
j2N(i,yi)

max(0,2m�di j)

(5)

The hierarchical contrastive loss has three terms. The first
term asks positive pairs from P(i,yi,y0i) to be close together,
but we don’t require them to be too close. We only penalize
the distance between these pairs if it is larger than m. Specifi-
cally, these are (benign, benign) and (malicious, malicious)
pairs. This term is helpful for us to learn properties that are
common to all malicious apps or all benign apps. The second
term asks samples from the same malware family to be treated
as very similar, and we penalize any non-zero distance di j
between them. The last term aims to separate benign and ma-
licious samples from each other, hopefully at least 2m apart
from each other; if the distance is already larger than 2m, we
don’t care how far apart they might be.

3.2 Pseudo Loss Sample Selector
Next, we introduce a novel way to compute an uncertainty
score for a test sample, for a hierarchical contrastive classifier.
This score is used in active learning: the samples with the
highest uncertainty scores are selected for analysts to label.
We face three challenges:

(i) We need to take into account the uncertainty of both the
encoder and the classifier subnetworks in our model.

(ii) We need a new way to measure uncertainty for the hi-
erarchical contrastive encoder. Past work has only con-
sidered uncertainty scores for classifiers, but not for con-
trastive encoders.

(iii) The uncertainty measure should be efficient to compute.

3.2.1 Key Idea

Our design is motivated by an unsupervised learning view
on how researchers measure uncertainty for neural network

classifiers. The basic idea is, if we use the predicted label
instead of the ground truth label to compute the classification
loss for an input, the loss value represents the uncertainty of
the classifier. We call this the pseudo loss, since we can view
the predicted label as a pseudo label for the input and compute
the loss with respect to this pseudo label.

For example, a common uncertainty measure for a neural
network is to use one minus the max softmax output of the
network. For our encoder-classifier model, using the notations
introduced in Section 3.1.2, the uncertainty score would be:

U(x) = 1�max(f (x),1� f (x)). (6)

Alternatively, we can view this as an instance of a pseudo loss.
Let ŷ denote the binary label predicted by f (x), i.e., ŷ = 1 if
f (x)� 1� f (x) or ŷ = 0 otherwise. Then the cross-entropy
loss with respect to ŷ is given by

Lce(x, ŷ) =� ŷ log f (x)� (1� ŷ) log(1� f (x))
=�max(log f (x), log(1� f (x))).

(7)

Since log is a monotonic function, combining Equation (6)
and Equation (7), we have Lce(x, ŷ) =� log(1�U(x)). Thus,
ranking samples by U(x) gives the same ranking as Lce(x, ŷ).
Therefore, the pseudo loss Lce(x, ŷ) is a reasonable uncer-
tainty score, one that is equivalent to the standard softmax
confidence uncertainty.

The benefit of the pseudo loss formulation is that it can be
applied to any learned model, not just classification. Therefore,
our main insight is that we can derive an uncertainty score
for a hierarchical contrastive model by constructing a pseudo
loss from the training loss defined in Equation (1).

3.2.2 Pseudo Loss for Contrastive Learning

To realize our idea of the pseudo loss for contrastive learning,
there is still a key difference from supervised learning. The un-
certainty of a sample in supervised learning depends on only
the sample, but the uncertainty of the sample in contrastive
learning depends on other samples as well. Since our goal is
to measure uncertainty in a way that reflects the encoder’s
similarity measure, we compare the test sample with nearby
training samples.

We use the following procedure to compute the pseudo loss
for contrastive learning. Given a test sample xi, we compute
its embedding enc(xi), as well as the embedding of all training
samples.1 Then, we find the 2N �1 nearest neighbors in the
training set to xi, with distances computed in the normalized
embedding space. We obtain a batch of 2N samples, contain-
ing xi and its 2N �1 neighbors. We use the predicted binary
label ŷi for xi as a pseudo label for xi, and use the ground
truth label for all 2N �1 training samples. These labels allow
us to compute the positive and negative pairs in the batch,

1In our experiments, we normalize the embeddings to have unit length,
but in retrospect, we expect normalization is unnecessary.

so we can compute the training loss of the test sample using
Equation (5).

In particular, given a test sample xi, we define the pseudo
loss for hierarchical contrastive learning as:

L̂hc(i) =
1

|P̂(i, ŷi)|
Â

j2P̂(i,ŷi)

max(0,di j �m)

+
1

|N(i, ŷi)| Â
j2N(i,ŷi)

max(0,2m�di j)

(8)

In other words, this uses ŷi instead of yi to compute the
first and third terms in Lhc(i) (Equation (5)). Note that since
our pseudo label is a binary label, we do not have multi-class
pseudo label information and we cannot compute the second
term in Equation (5), so we omit it. Moreoever, for the first
term, P̂(i, ŷi) is slightly different from P(i,yi,y0i). We define
P̂(i, ŷi)|⌘ { j | y j = ŷi, j 6= i}. This yields an uncertainty score
that generalizes the prediction uncertainty of a neural network
classifier to contrastive learning.

3.2.3 Sample Selector

Putting all of this together, we use the pseudo loss version of
the training loss for our hierarchical contrastive classifier to
measure its uncertainty. Based on Section 3.2.1, we define the
pseudo loss for binary cross entropy as

L̂ce(i) = Lce(xi, ŷi). (9)

We measure the uncertainty of our model given an input xi as

L̂(i) = L̂hc(i)+lL̂ce(i). (10)

This uncertainty score solves all three challenges listed
earlier. It captures both the uncertainty of the encoder and
the uncertainty of the classifier, and it is efficient to compute.
At test time, we use Equation (10) to compute uncertainty
scores for all test samples. Then, we label the samples with
the highest uncertainty scores for active learning.

Figure 4 illustrates our uncertainty score in action. The left
side shows that a sample from a new malware family (umpay)
has high pseudo loss, and thus is selected for human labelling.
Intuitively, this sample lies between the benign cluster and
malicious cluster, so its nearest neighbors in the training set
contain conflicting labels, which results in a high loss value
for contrastive learning. The right side shows that two drifted
samples from a known malware family (fakeinst) have low
pseudo loss, since they are very close to other malicious train-
ing samples. Our active learning procedure does not label
them, since they are among samples with the lowest pseudo
loss values. Since the classifier works on embedding vectors,
we can expect the classifier to classify them correctly.

Figure 4: Our pseudo loss uncertainty score is effective at
identifying new malware families. We train a contrastive clas-
sifier on benign samples and malicious samples from the
airpush and fakeinst families. On the left, we add a test sam-
ple from a new malware family; as shown, its pseudo loss
uncertainty score is very high, so it would be selected for
human labelling. On the right, we add two test samples from
an existing malware family that experienced drift; as shown,
their pseudo loss uncertainty scores are very low, indicating
that they do not need to be labelled by humans.

4 Evaluation

In this section, we compare our new method against two kinds
of other schemes: 1) active learning techniques from previ-
ously published papers on malware detection, and 2) improved
active learning schemes we tried, inspired by prior work. We
also discuss new lessons learned for applying deep active
learning for malware detection.

4.1 Dataset
We evaluate on two datasets, from APIGraph [58] and Andro-
Zoo [1] respectively.

We use the list of app hashes provided by APIGraph [58]
to collect Android apps spanning over 7 years, from 2012
to 2018. APIGraph uses the appearance timestamps from
VirusTotal to order the apps over 7 years. The way that API-
Graph collects the dataset has carefully addressed the spa-
tial bias and temporal bias that commonly exists in malware
datasets [6, 38]: 90% of the apps are benign; and the samples
are ordered and almost evenly distributed across 7 years that
allows time-consistent experiments. Specifically, we collect
malware apps from VirusTotal [3], VirusShare [2], and the
AMD dataset [49] and benign apps from AndroZoo [1, 5].
The final number of apps we collected are shown in Table 1.

In addition, we collect a new dataset of Android apps from
AndroZoo [1] that appeared from 2019 to 2021. We randomly
sample malware apps with more than 15 detections by an-
tivirus engines in VirusTotal, and randomly sample benign
apps with 0 detection. For each month, the ratio of benign
apps to malicious apps is 9:1. Table 2 shows the overall statis-

Year Malicious
Apps

Benign
Apps Total Malware

Families
2012 3,061 27,472 30,533 104
2013 4,854 43,714 48,568 172
2014 5,809 52,676 58,485 175
2015 5,508 51,944 57,452 193
2016 5,324 50,712 56,036 199
2017 2,465 24,847 27,312 147
2018 3,783 38,146 41,929 128

Table 1: We collect Android apps from the APIGraph
dataset [58] spanning across seven years. Within total apps,
10% of them are malicious apps.

tics of the AndroZoo dataset. In the year of 2021, the available
malware apps on AndroZoo is fewer than the previous years.

We query VirusTotal and then use AVClass2 [43] to obtain
the family label for malicious apps. If an app does not have
any family label2, we use the “unknown” family label.

We extract DREBIN features [7] from the apps to train
all models. DREBIN uses 8 sets of features to capture the
app’s required access to hardware components, requested
permissions, names of app components, filtered intents, usage
of restricted API calls, actually used permissions, suspicious
API calls, and network addresses.

As is typical for research on active learning in malware
classification, we simulate the human analyst using post-facto
data from VirusTotal and AVClass2. Our assumption is that
over time VirusTotal scores converge to the correct label; we
treat current VirusTotal and AVClass2 labels as ground truth,
and whenever an active learning scheme calls for a human
analyst to label a sample, we use these ground-truth labels.

We apply each active learning scheme to select new sam-
ples each month, update/retrain the classifier, and then predict
on samples from the next month.

4.2 Active Learning Setup
We found out that, hyperparameter tuning makes a big differ-
ence in the performance of the classifier in the active learning
setting. Moreover, for deep active learning schemes including
our method, warm start performs better than cold start. Warm
start continues training the model from previously learned
weights, and cold start retrains the model from scratch. We
will summarize engineering lessons learned in Section 4.5.

Time-consistent data split. We choose hyperparameters
that perform the best in active learning. We split the data into a
training set (the first year of apps), a validation set (the next six
months), train an initial classifier on the training set, and then
use active learning with a labeling budget of 50 samples per
month on the validation set to select the best hyperparameters.
After finding the best hyperparameters, we test the active
learning performance using data from the remaining months.

2The output from AVClass2 does not have a family label other than
“Android” or “grayware”.

Year Malicious
Apps

Benign
Apps Total Malware

Families
2019 4,542 40,947 45,489 121
2020 3,982 34,921 38,904 82
2021 1,676 13,985 15,662 51

Table 2: We collect a new AndroZoo dataset by randomly
sampling malware and benign apps from AndroZoo [1]. In
the dataset, 10% of all apps are malicious.

For the APIGraph dataset, the training set is 2012 data, the
validation set is 2013-01 to 2013-06, and the test set covers
2013-07 to 2018-12. For the AndroZoo dataset, the training
set is 2019 data, the validation set is 2020-01 to 2020-06,
and the test set is 2020-07 to 2021-12. The test performance
is averaged across all test months. More details about the
training samples are in Appendix A.

4.3 Comparison against Baselines

4.3.1 Baseline Active Learning Schemes

The first baseline is active learning with uncertainty sampling.
We experiment with uncertainty sampling for both binary and
multiclass classifiers. The binary classifiers include a fully-
connected neural network (NN), a linear SVM, and gradient
boosted decision trees (GBDT) [53, 58]. We normalize the
prediction score from the classifier to between 0 and 1 using
softmax for NN, sigmoid for SVM, and the logistic function
for GBDT. The multiclass classifiers include MLP and SVM.
We also experiment with a “Multiclass MLP + Binary SVM"
classifier: we train a multiclass MLP first, and then take the
penultimate layer as embeddings to train a binary SVM. We
consider the “Multiclass MLP + Binary SVM" a binary clas-
sifier. The uncertainty score is one minus the max prediction
score from all classes. For NN, this is equivalent to the max
softmax uncertainty measure.

Our second baseline is active learning with a SVM classifier
using the CADE OOD score [54]. As originally proposed,
CADE was primarily envisioned as a way to detect drifted
samples; they also use the CADE OOD score to perform one
round of active learning using a binary SVM, and we apply
that in our setting. CADE trains a contrastive autoencoder,
treating pairs of samples from the same family as similar, and
pairs from different families as dissimilar. After training, they
define the OOD score of a test sample to be the normalized
distance to the nearest known family. We perform active
learning, each month using their OOD score to select the
samples with the highest OOD score for human labelling.

For all baselines, we use cold start for active learning (i.e.,
each month we retrain the classifier afresh, from scratch),
consistent with past work. We follow the procedure described
in Section 4.2 to find the best hyperparameters to train MLP,
SVM, and GBDT baseline models, with details in Appendix C.
For our model, we use warm start, with details in Appendix B.

Monthly
Sample
Budget

Model
Architecture

Sample
Selector

APIGraph Dataset AndroZoo Dataset
Average Performance (%) Average Performance (%)
FNR FPR F1 FNR FPR F1

50

Binary MLP Uncertainty 23.77 0.52 83.84 53.12 0.46 59.50
Multiclass MLP Uncertainty 16.10 4.64 73.77 49.86 28.52 28.65
Multiclass MLP
+ Binary SVM Uncertainty 38.40 1.01 71.38 73.13 2.87 34.04

Binary SVM Uncertainty 16.92 0.61 87.72 48.77 0.29 63.42
CADE OOD 36.11 12.9 71.70 62.01 0.55 50.26

Multiclass SVM Uncertainty 35.79 0.17 87.43 65.77 0.09 46.91
Binary GBDT Uncertainty 31.75 0.54 77.92 50.35 0.47 61.06

Ours: Enc + MLP Pseudo Loss 15.15 0.52 89.23 27.65 0.53 79.92
(# 1.77) (# 0.09) (" 1.51) (# 21.12) (" 0.24) (" 16.50)

100

Binary MLP Uncertainty 20.64 0.49 86.03 46.39 0.30 65.26
Multiclass MLP Uncertainty 14.77 6.44 69.91 35.34 32.64 33.72
Multiclass MLP
+ Binary SVM Uncertainty 30.45 1.76 74.11 73.47 3.88 31.69

Binary SVM Uncertainty 15.41 0.68 88.38 43.07 0.32 68.33
CADE OOD 23.48 0.96 82.22 58.78 0.70 52.47

Multiclass SVM Uncertainty 28.36 0.17 82.18 54.29 0.12 58.26
Binary GBDT Uncertainty 27.76 0.67 80.15 48.59 0.76 62.58

Ours: Enc + MLP Pseudo Loss 13.69 0.44 90.42 27.35 0.41 80.07
(# 1.72) (# 0.24) (" 2.04) (# 15.72) (" 0.09) (" 11.74)

200

Binary MLP Uncertainty 19.71 0.39 86.97 42.57 0.34 68.47
Multiclass MLP Uncertainty 14.56 4.26 75.65 39.78 34.76 28.59
Multiclass MLP
+ Binary SVM Uncertainty 29.46 1.98 74.09 70.32 0.93 39.51

Binary SVM Uncertainty 14.07 0.86 88.47 40.31 0.37 70.24
CADE OOD 21.68 0.67 84.50 51.32 0.78 59.11

Multiclass SVM Uncertainty 21.19 0.21 86.90 44.77 0.13 66.55
Binary GBDT Uncertainty 24.71 0.56 82.71 42.97 0.80 67.28

Ours: Enc + MLP Pseudo Loss 9.42 0.48 92.72 27.67 0.39 80.51
(# 4.65) (# 0.38) (" 4.25) (# 12.64) (" 0.02) (" 10.27)

400

Binary MLP Uncertainty 16.04 0.40 89.25 36.25 0.34 73.70
Multiclass MLP Uncertainty 15.07 4.15 75.94 34.48 24.44 38.34
Multiclass MLP
+ Binary SVM Uncertainty 28.85 1.68 75.69 73.94 1.92 33.74

Binary SVM Uncertainty 12.86 0.90 89.02 34.73 0.43 74.12
CADE OOD 20.61 0.59 85.52 49.98 0.94 59.53

Multiclass SVM Uncertainty 17.87 0.24 88.88 40.99 0.14 69.61
Binary GBDT Uncertainty 20.16 0.46 86.24 33.62 0.38 76.82

Ours: Enc + MLP Pseudo Loss 7.84 0.50 93.50 21.49 0.31 85.81
(# 8.20) (" 0.10) (" 4.25) (# 12.13) (# 0.07) (" 8.99)

Table 3: Given a fixed monthly labeling budget, we compute the average FNR, FPR, and F1 for different baseline active learning
techniques and our method. On the APIGraph dataset, we decrease the labeling cost by 8⇥ to achieve an average F1 score of
over 89%: our method needs 50 samples / month, and binary MLP needs 400 samples / month. On the AndroZoo dataset, our
method reduces the FNR by 1.6⇥ on average, while maintaining under 1% FPR.

4.3.2 Results

We evaluate how much our new technique improves the per-
formance of the classifier on future data compared to the
baseline methods. We experiment with a budget for analyst

labels of 50, 100, 200, and 400 samples per month.
Table 3 shows the performance of each classifier, averaged

across 2013-07 to 2018-12 on the APIGraph dataset, and
across 2020-07 to 2021-12 on the AndroZoo dataset, by false
negative rate (FNR), false positive rate (FPR), and F1 score.

(a) FNR of our technique vs SVM without active learning. (b) FNR of our technique vs SVM with uncertainty sampling.

(c) F1 score of our technique vs SVM without active learning. (d) F1 score of our technique vs SVM with uncertainty sampling.

Figure 5: Our technique can significantly reduce the FNR and improve the F1 score of the classifier compared to no active
learning. Given a fixed budget of 200 samples per month, our technique steadily maintains a lower false negative rate and a
higher F1 score than the best baseline active learning method: SVM uncertainty sampling. The best baseline has over 20% FNR
in 9 months during the six years time period, mainly in 2014 and 2015.

We observe:

• On the APIGraph dataset, if we care about achieving an
average F1 score of at least 89%, the best baseline needs 400
samples per month to reach that performance, whereas our
technique only needs 50 samples per month. We decrease
the labeling cost by 8⇥.

• On the APIGraph dataset, when the monthly labeling bud-
get is 50/100/200 samples, our scheme is better in all
metrics—FNR, FPR, and F1 scores—compared to the best
baseline.

• On the AndroZoo dataset, given a fixed labeling budget,
our method reduces the FNR by 1.6⇥ on average, while
maintaining under 1% FPR.

• In most cases, the best baseline is linear SVM with uncer-
tainty sampling. It is a simpler classifier than other base-
lines, which might generalize better when there is concept
drift.

In Figure 5, we visualize the performance of our technique
(with 200 samples / month), a baseline with no active learning,
and the best baseline with active learning (200 samples /
month). Figure 5a and Figure 5c show that our technique

significantly improves the false negative rate (FNR) and F1
score of the classifier compared to no active learning. Even the
best baseline active learning scheme, SVM with uncertainty
sampling, experiences many spikes of high FNR (Figure 5b)
and sudden drops of F1 score (Figure 5d). In comparison,
our technique maintains a more steady performance over six
years of data.

4.4 Comparison against Improved Schemes

4.4.1 Improved Active Learning Schemes

We compare to several active learning schemes that have not
been previously proposed or evaluated in the literature, but
that are adapted from previously published schemes or with
several of our improvement applied. This allows us to gain
insight into the contribution of each of our ideas, and we show
evidence that our full scheme does better than any of these
alternatives. In particular, we evaluate two schemes that are
based on a previously published method for drift detection
(TRANSCENDENT), adapted to support active learning; and
we evaluate several schemes that extend previously published
work with some of our new ideas, including warm-start uncer-
tainty sampling (where the classifier is updated each month
rather than retrained from scratch) and warm-start CADE

Budget Model
Arch

Sample
Selector

Warm
or

Cold

APIGraph Dataset AndroZoo Dataset
Average Performance (%) Average Performance (%)
FNR FPR F1 FNR FPR F1

50

MLP
Uncertainty Warm 21.85 0.57 84.89 48.95 0.37 62.81
CADE OOD Cold 17.13 0.90 86.36 43.09 0.66 67.18
CADE OOD Warm 13.51 1.46 86.32 43.04 0.54 67.45

SVM TRANSCENDENT (cred) Cold 17.48 0.58 87.55 49.06 0.41 62.29
TRANSCENDENT (cred*conf) Cold 18.67 0.55 86.92 47.21 0.41 64.72

Enc + SVM TRANSCENDENT (cred) Cold 19.75 0.59 86.02 42.52 0.52 68.56
Ours: Pseudo Loss Warm 15.15 0.52 89.23 27.65 0.53 79.92

Enc + MLP (# 2.33) (# 0.06) (" 1.68) (# 14.87) (" 0.01) (" 11.36)

100

MLP
Uncertainty Warm 17.40 0.50 87.95 47.48 0.39 64.04
CADE OOD Cold 14.71 0.79 88.40 49.60 0.62 61.20
CADE OOD Warm 12.35 1.41 87.22 39.33 0.48 70.92

SVM TRANSCENDENT (cred) Cold 17.02 0.72 87.33 43.26 0.42 67.57
TRANSCENDENT (cred*conf) Cold 17.71 0.50 87.75 44.04 0.40 66.93

Enc + SVM TRANSCENDENT (cred) Cold 17.03 0.54 87.96 34.85 0.52 74.97
Ours: Pseudo Loss Warm 13.69 0.44 90.42 27.35 0.41 80.07

Enc + MLP (# 1.02) (# 0.35) (" 2.02) (# 7.50) (# 0.11) (" 5.10)

200

MLP
Uncertainty Warm 15.87 0.59 88.53 40.52 0.49 70.04
CADE OOD Cold 13.25 0.77 89.26 41.99 0.68 67.70
CADE OOD Warm 11.78 0.80 89.99 40.16 0.46 71.15

SVM TRANSCENDENT (cred) Cold 16.15 0.61 88.22 40.85 0.38 69.89
TRANSCENDENT (cred*conf) Cold 18.04 0.48 87.66 38.25 0.42 71.08

Enc + SVM TRANSCENDENT (cred) Cold 13.45 0.52 90.17 28.54 0.50 80.26
Ours: Pseudo Loss Warm 9.42 0.48 92.72 27.67 0.39 80.51

Enc + MLP (# 4.03) (# 0.04) (" 2.55) (# 0.87) (# 0.11) (" 0.25)

400

MLP
Uncertainty Warm 14.74 0.59 89.21 33.32 0.48 75.52
CADE OOD Cold 11.09 1.09 89.06 29.78 0.63 77.89
CADE OOD Warm 11.01 0.76 90.55 43.10 0.37 67.99

SVM TRANSCENDENT (cred) Cold 15.46 0.60 88.71 36.99 0.40 72.44
TRANSCENDENT (cred*conf) Cold 17.45 0.50 87.90 37.11 0.38 72.52

Enc + SVM TRANSCENDENT (cred) Cold 11.30 0.52 91.46 27.86 0.45 80.84
Ours: Pseudo Loss Warm 7.84 0.50 93.50 21.49 0.31 85.81

Enc + MLP (# 3.46) (# 0.02) (" 2.04) (# 6.37) (# 0.14) (" 4.97)

Table 4: Given a fixed monthly labeling budget, we compute the average FNR, FPR, and F1 for improved active learning
techniques and our method. On the APIGraph dataset, our method performs better than improved schemes in all metrics. On the
AndroZoo dataset, we reduce the FNR by 1.3⇥ on average while maintaining under 1% FPR.

with neural networks.
We adapt TRANSCENDENT [8] to active learning. TRAN-

SCENDENT [8] was originally designed to support classifica-
tion with rejection, so that the classifier can decline to make
any prediction for samples that appear to have drifted. In par-
ticular, they construct two scores to recognize drifted samples:
credibility and confidence. Given a new test sample, they first
compute the non-conformity score of the sample, representing
how dissimilar it is from the training set. Given the predicted
label of the test sample, they find the set of calibration data
points with the same ground truth label. Then, they compute
credibility as the percentage of samples in the calibration set
that have higher non-conformity scores than the test sample.
They compute confidence as one minus the credibility of the
opposite label. A lower credibility score or a lower confidence
score means the test sample is more likely to have drifted.

We design two active learning sample selectors based on

TRANSCENDENT. The first one uses only the credibility score:
samples with the lowest credibility scores are prioritized. The
second one uses both credibility and confidence: we multiply
the credibility and confidence, and samples with the lowest
score are prioritized. To compute non-conformity scores, we
use Cross-Conformal Evaluator (CCE) with 10-fold cross
validation, with details in Appendix D.

To the best of our knowledge, these two sample selectors
have not been documented in published research papers. The
most related papers BODMAS [53] and CADE [54] experi-
mented with using the non-conformity score to select samples
for active learning. They sort samples by credibility first, and
then use confidence to break ties.3 This is different from our
sample selectors.

We evaluate these TRANSCENDENT-derived sample selec-

3This was confirmed via communication with the authors.

tors with a binary SVM classifier, trained from the input fea-
tures. We also apply the TRANSCENDENT credibility score
sample selector to the embedding space learned by hierar-
chical contrastive learning (Equation 4), and train a binary
SVM classifier on these embeddings. We also evaluate im-
proved variants of NN uncertainty sampling and CADE OOD
sampling, improved with the engineering insights from Sec-
tion 4.5, to help us separate out the benefit from engineering
improvements vs our hierarchical contrastive classifier and
pseudo loss.

We improve CADE to make it more suitable for deep ac-
tive learning. CADE uses a contrastive autoencoder to learn
embeddings and build a similarity measure, but CADE’s clas-
sifier takes the original features as input, not the embedding
produced by the encoder. Our insight is that it is better for
the classifier to use the embedding as input rather than the
original features, so we improve CADE in this way. We also
replace CADE’s SVM classifier with a neural network, which
performed better in our experiments. We examine both a cold-
start and warm-start version of CADE, as CADE did not
experiment with repeated retraining and thus did not examine
this tradeoff, but we found that it made a difference for our
scheme (see Section 4.5.2). Finally, we modified the architec-
ture of the encoder to further improve performance.

We follow the procedure described in Section 4.2 to find the
best hyperparameters to train models from improved active
learning schemes, with details in Appendix E. The details of
our model is in Appendix B.

4.4.2 Results

Table 4 shows the results of comparing our scheme with these
improved schemes. Here are some highlight results:

• On the AndroZoo dataset, compared to the best improved
scheme, our method reduces the FNR by 1.3⇥ on average,
and maintains under 1% FPR. In other words, even when
improving previously published methods as much as we
were able, with all the improvements we could find, our
scheme still performs significantly better than prior meth-
ods.

• On the APIGraph dataset, our scheme is better in all metrics,
including FNR, FPR, and F1 scores, compared to the best
improved scheme.

• If we exclude our method, TRANSCENDENT (cred) applied
to the embedding space of hierarchical contrastive learning
(Enc + SVM) is the best improved scheme. In one out of
eight cases, TRANSCENDENT (cred) on the hierarchical
embedding space has similar performance as ours, i.e., 200
samples / month for the AndroZoo dataset.

• Our improved CADE schemes are better than the original
CADE. For MLP, warm start works better than cold start.

4.5 Engineering Lessons

4.5.1 Hyperparameters for Active Learning

Lesson 1: concept drift requires a separate hyperparameter
tuning procedure for the active learning process.

To learn a fixed classifier, we typically choose hyperparam-
eters of a model such that the performance in the validation
set is the best, where the validation set and training set are
drawn from the same data distribution. This represents the
performance when the classifier is evaluated on the same
distribution it is trained on. However, to be robust against
concept drift, we need the classifier to perform well on future
data that is from a different distribution. Therefore, we need
to use temporally-consistent validation to choose hyperparam-
eters that will perform the best for active learning. We include
examples of this phenomenom in Appendix F.

4.5.2 Cold Start vs Warm Start

Lesson 2: warm start is better than cold start when using deep
active learning for malware detection.

In active learning, there are two options to train a new
model after labeling new samples: cold start or warm start.
Cold start re-initializes the model weights and retrains the
model from scratch. Warm start continues training from the
previous model weights in each active learning iteration.

Previous works have not studied the benefits of warm start
vs cold start. The active learning experiments from previous
security papers use cold start [53,54,58]. Deep active learning
papers for image applications have used both cold start [14,
24, 26] and warm start [55, 57], but they did not find much
difference between the two strategies.

We find that warm start is better than cold start when us-
ing deep active learning for Android malware detection. The
main reason is sample imbalance: there are very few newly
labeled samples, compared to a large amount of initial train-
ing samples. Several past works [53, 58] have trained the first
classifier using one year of labeled samples, containing 30K
apps, then labelled a few of the new incoming samples every
month. If we label 5% of new samples every month, that the
new samples will be less than 1% of the training set. During
active learning, we add new samples to the training set and
continue training from the previous model weights. Therefore,
batches from the new training set typically contain a mix of
old and new samples. Since new samples might represent the
trend of concept drift, it is beneficial for the classifier to learn
more from the newer samples than the older ones, but does
not forget about the oldest samples. Warm start can address
the sample imbalance issue. When we continue training a
new model from previously learned weights, newly labeled
samples have the largest loss values and thus largest gradients,
previously labeled samples have relatively smaller loss val-
ues, and samples from the initial training set have the smallest
loss values. Since newly labeled samples have the largest

Setting Classifier Active Learning Sample Selector Average (%)
FNR FPR F1

Baseline Binary SVM Uncertainty Sampling 14.07 0.86 88.47

New Hierarchical
Contrastive Learning New Hierarchical Contrastive Classifier

Uncertainty Sampling 11.87 0.45 91.47

TRANSCENDENT (cred) 12.27 0.53 90.99
TRANSCENDENT (cred*conf) 12.78 0.47 90.85

New Pseudo Loss Sampling Contrastive Classifier New Pseudo Loss Sampling 11.01 0.53 91.56
Ours New Hierarchical Contrastive Classifier New Pseudo Loss Sampling 9.42 0.48 92.72

Table 5: Combining our two main ideas, new hierarchical contrastive classifier and new pseudo loss sampling, is better than either
one on its own. When using both techniques together, we achieve 92.72% F1 score, higher than using either technique on its own.

gradients, this enables the model to learn more from recently
labeled samples and adapt to the trend of concept drift.

We use warm start to train our hierarchical contrastive
classifier during active learning. We use the time-consistent
validation split to find the best hyperparameters for warm
start.We also use the warm start idea to improve deep active
learning methods and compare against improved baselines in
Section 4.4. This include uncertainty sampling for neural net-
works and using CADE OOD sample selector to continuously
train a neural network model.

4.6 Ablation Study
We conduct an ablation study to understand the improvements
from the two components in our scheme: the new hierarchical
contrastive classifier (Section 3.1.2) and the new pseudo loss
sample selector (Section 3.2). Accordingly, we compare: 1)
a baseline with neither component (binary SVM with uncer-
tainty sampling), 2) just a hierarchical contrastive classifier
without our new sample selector, 3) just our new sample selec-
tor, without a hierarchical contrastive classifer (instead we use
a contrastive classifier, but no hierarchy), 4) our full method,
with both components. We evaluate on the APIGraph dataset,
with 200 samples / month budget. We use warm start to train
all schemes.

Our results (Table 5) show that each component offers
improvements, and best results are achieved by combining
both components. Using both techniques achieves 92.72% F1
score, but using only one of the two can achieve 91.47% or
91.56% F1 score. This demonstrates that both components
are needed for optimal performance.

We also experiment with a combination of our new hier-
archical contrastive classifier and TRANSCENDENT sample
selectors (instead of our new pseudo loss sample selector).
These schemes achieve 90.99% and 90.85% F1 score, which
is better than the baseline and better than TRANSCENDENT
on the input feature space, but not as good as our full method.

5 Case Study

In this section, we use a case study to illustrate why our
scheme can maintain better performance than the best prior

Figure 6: The lines are F1 scores, and the bars are the num-
ber of Mecor ransomware samples labeled every month. In
2014-06, Mecor is the family with worst false negative rate.
Both SVM and our model have a FNR of 100% in this family,
which causes the F1 score drop to 0.79 and 0.83, respectively.
Our active learning scheme is able to select Mecor samples
and label them as this happens, immediately recovering from
the concept drift back to 0.94 F1 score. However, SVM un-
certainty sampling fails to select and Mecor samples and con-
tinues to have poor model performance in the rest of 2014.

method for active learning.

Even the best baseline method, SVM with uncertainty sam-
pling, cannot avoid many spikes of high false negative rates
(FNR) as shown in Figure 5b. Figure 6 shows that, in June
2014, for both SVM and our scheme, the F1 score has dropped
to 0.79 and 0.83 respectively, and the FNR is over 28%. After
looking into the samples, we find that 47% of the false neg-
ative samples are in a ransomware family Mecor, and 100%
of the Mecor samples were misclassified by both SVM and
our model. However, our scheme is able to quickly recover
from the drift, by selecting Mecor samples in June, July, and
October 2014 for labeling. Since we add these samples to the
training set and continuously train our classifier, the F1 score
of our model immediately goes back to 0.94 in July 2014. In
comparison, the SVM uncertainty sampling scheme fails to
select any Mecor ransomware samples despite the high FNR
for the family, and the F1 score remains low for the rest of
2014.

6 Discussion

All machine learning based detection schemes are subject to
evasion attacks, for instance using adversarial examples or
even simpler methods of evasion (e.g., obfuscation or pack-
ing). It is an open challenge for the field how to solve this
problem. As a machine-learning-based scheme, we inherit
these same challenges. It is beyond the scope of this paper
to address this challenge. One potential direction is to ex-
tract dynamic features from the apps, or use a combination of
static and dynamic features to be more robust against evasion
attacks.

Continuous learning introduces new risks of poisoning
attacks, where an attacker may be able to carefully craft mali-
cious samples and introduce them into the training process.
Clean-label poisoning attacks may be especially dangerous,
because they do not require any misbehavior or malice on the
part of analysts [45]. The attacker can submit carefully crafted
Android apps, hope that they have high pseudo loss values so
our sample selector will choose them for human labels, and
then let analysts generate clean labels. Even if the poisoning
apps have the correct label, they may slowly influence the
decision boundary of the classifier, and allow other malware
apps evade the detection. All active learning schemes in the
literature—including ours—share this potential risk, and it
is an open problem how to defend active learning against
poisoning attacks.

We show that with 50 samples per month labeling budget,
our technique can achieve 89% F1 score. In our dataset, 50
samples is 1% of all apps in a month. To the best of our
knowledge, our classifier performance with 1% labeling bud-
get is the best result compared to the literature of using active
learning for Android malware detection. Android malware
classification can achieve 99% F1 score when there is no con-
cept drift. But with concept drift, the performance gap is still
quite large, even with our best techniques. It would be great
to reach 95% F1 score with 1% labeling budget, or to narrow
this gap. We suggest it as a valuable open problem for future
research to identify new methods that close this gap. One
potential direction might be to study a richer set of features.
When there is no concept drift, DREBIN features have been
very effective, and using richer features does not appear to
offer significant improvements. Perhaps richer features would
be more useful for the concept drift problem.

Like most prior work in this space, we use the same set of
features in every time window. Studying how to periodically
choose new features to combat drift is an interesting direction
for future work, but beyond the scope of this work. One recent,
concurrent work [11] found that adding new features was
not effective at addressing concept drift, so new ideas seem
needed.

7 Conclusion

Our work points a way towards a framework for continuous
learning in security, based on hierarchical contrastive classi-
fiers and active learning with pseudo loss uncertainty scores.
We have validated this approach on Android malware clas-
sification and shown that it provides improvements over all
prior methods. We speculate that it might be useful for other
security tasks as well.

Acknowledgements

We thank Limin Yang for discussions of CADE and BOD-
MAS. This work was supported by Google through the AS-
PIRE program, by an Amazon research award, by the Na-
tional Science Foundation through award CNS-2154873, by
C3.AI’s Digital Transformation Institute, and by the Center
for AI Safety Compute Cluster. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the sponsors.

References

[1] AndroZoo. https://androzoo.uni.lu/.
[2] VirusShare. https://virusshare.com/.
[3] VirusTotal. https://www.virustotal.com/.
[4] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Are

your training datasets yet relevant? an investigation into the
importance of timeline in machine learning-based malware
detection. In Engineering Secure Software and Systems: 7th
International Symposium, ESSoS 2015, Milan, Italy, March 4-6,
2015. Proceedings 7, pages 51–67. Springer, 2015.

[5] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. AndroZoo:
Collecting millions of android apps for the research community.
In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR ’16, pages 468–471, New York,
NY, USA, 2016. ACM.

[6] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck. Dos and don’ts
of machine learning in computer security. In 31st USENIX
Security Symposium (USENIX Security 22), pages 3971–3988,
2022.

[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens. Drebin: Effective and explainable detection of
android malware in your pocket. In NDSS, volume 14, pages
23–26, 2014.

[8] F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro. Tran-
scending transcend: Revisiting malware classification in the
presence of concept drift. In 2022 IEEE Symposium on Secu-
rity and Privacy (SP), pages 805–823. IEEE, 2022.

[9] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and
A. Joulin. Unsupervised learning of visual features by con-
trasting cluster assignments. Advances in Neural Information
Processing Systems, 33:9912–9924, 2020.

[10] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple
framework for contrastive learning of visual representations.
In International Conference on Machine Learning, pages 1597–
1607. PMLR, 2020.

[11] Z. Chen, Z. Zhang, Z. Kan, L. Yang, J. Cortellazzi, F. Pendle-
bury, F. Pierazzi, L. Cavallaro, and G. Wang. Is it overkill?
analyzing feature-space concept drift in malware detectors. In
2023 IEEE Deep Learning Security and Privacy Workshop
(DLSP). IEEE, 2023.

[12] A. Deo, S. K. Dash, G. Suarez-Tangil, V. Vovk, and L. Cav-
allaro. Prescience: Probabilistic guidance on the retraining
conundrum for malware detection. In Proceedings of the 2016
ACM workshop on artificial intelligence and security, pages
71–82, 2016.

[13] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual
representation learning by context prediction. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1422–1430, 2015.

[14] Z. A. S. Emam, H.-M. Chu, P.-Y. Chiang, W. Czaja, R. Leap-
man, M. Goldblum, and T. Goldstein. Active learning at the
imagenet scale. arXiv preprint arXiv:2111.12880, 2021.

[15] Y. Gal and Z. Ghahramani. Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning. In
International Conference on Machine Learning, pages 1050–
1059. PMLR, 2016.

[16] C. Geng, S.-j. Huang, and S. Chen. Recent advances in open set
recognition: A survey. IEEE transactions on pattern analysis
and machine intelligence, 43(10):3614–3631, 2020.

[17] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration
of modern neural networks. In International conference on
machine learning, pages 1321–1330. PMLR, 2017.

[18] Y. Guo, M. Xu, J. Li, B. Ni, X. Zhu, Z. Sun, and Y. Xu. HCSC:
hierarchical contrastive selective coding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9706–9715, 2022.

[19] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

[20] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum
contrast for unsupervised visual representation learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9729–9738, 2020.

[21] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini,
I. Nouretdinov, and L. Cavallaro. Transcend: Detecting con-
cept drift in malware classification models. In 26th USENIX
Security Symposium (USENIX Security 17), pages 625–642.
USENIX Association, 2017.

[22] Z. Kan, F. Pendlebury, F. Pierazzi, and L. Cavallaro. Inves-
tigating labelless drift adaptation for malware detection. In
Proceedings of the 14th ACM Workshop on Artificial Intelli-
gence and Security, pages 123–134, 2021.

[23] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan. Supervised contrastive
learning. Advances in Neural Information Processing Systems,
33:18661–18673, 2020.

[24] S. T. Kong, S. Jeon, D. Na, J. Lee, H.-S. Lee, and K.-H. Jung. A
neural pre-conditioning active learning algorithm to reduce la-
bel complexity. In Advances in Neural Information Processing
Systems, 2022.

[25] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and
scalable predictive uncertainty estimation using deep ensem-
bles. Advances in Neural Information Processing Systems, 30,
2017.

[26] A. Lang, C. Mayer, and R. Timofte. Best practices in pool-
based active learning for image classification. 2021.

[27] K. Lee, K. Lee, K. Min, Y. Zhang, J. Shin, and H. Lee. Hi-
erarchical novelty detection for visual object recognition. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1034–1042, 2018.

[28] D. Li, T. Qiu, S. Chen, Q. Li, and S. Xu. Can we leverage
predictive uncertainty to detect dataset shift and adversarial
examples in android malware detection? In Annual Computer
Security Applications Conference, pages 596–608, 2021.

[29] J. Li, P. Zhou, C. Xiong, and S. C. Hoi. Prototypical contrastive
learning of unsupervised representations. In International
Conference on Learning Representations, 2021.

[30] P. Liu, L. Wang, R. Ranjan, G. He, and L. Zhao. A survey on
active deep learning: From model driven to data driven. ACM
Computing Surveys (CSUR), 54(10s):1–34, 2022.

[31] W. Liu, X. Wang, J. Owens, and Y. Li. Energy-based out-
of-distribution detection. Advances in Neural Information
Processing Systems, 33:21464–21475, 2020.

[32] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bach-
wani, R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu,
et al. Reviewer integration and performance measurement for
malware detection. In Detection of Intrusions and Malware,
and Vulnerability Assessment: 13th International Conference,
DIMVA 2016, pages 122–141. Springer, 2016.

[33] J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. Torr, and
P. Dokania. Calibrating deep neural networks using focal
loss. Advances in Neural Information Processing Systems,
33:15288–15299, 2020.

[34] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu.
Context-aware, adaptive, and scalable android malware detec-
tion through online learning. IEEE Transactions on Emerging
Topics in Computational Intelligence, 1(3):157–175, 2017.

[35] A. Narayanan, L. Yang, L. Chen, and L. Jinliang. Adaptive and
scalable android malware detection through online learning.
In 2016 International Joint Conference on Neural Networks
(IJCNN), pages 2484–2491. IEEE, 2016.

[36] L. Onwuzurike, E. Mariconti, P. Andriotis, E. De Cristofaro,
G. Ross, and G. Stringhini. MaMaDroid: Detecting android
malware by building markov chains of behavioral models.
ACM Transactions on Privacy and Security, 22(22), 2019.

[37] D. Park, Y. Shin, J. Bang, Y. Lee, H. Song, and J.-G. Lee.
Meta-query-net: Resolving purity-informativeness dilemma in
open-set active learning. In Advances in Neural Information
Processing Systems, 2022.

[38] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, L. Cavallaro,
et al. TESSERACT: Eliminating experimental bias in malware
classification across space and time. In Proceedings of the
28th USENIX Security Symposium, pages 729–746. USENIX
Association, 2019.

[39] M. S. Rahman, S. Coull, and M. Wright. On the limitations of
continual learning for malware classification. In Conference
on Lifelong Learning Agents, pages 564–582. PMLR, 2022.

[40] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta,
X. Chen, and X. Wang. A survey of deep active learning. ACM
computing surveys (CSUR), 54(9):1–40, 2021.

[41] C. Schröder and A. Niekler. A survey of active learning for
text classification using deep neural networks. arXiv preprint
arXiv:2008.07267, 2020.

[42] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified
embedding for face recognition and clustering. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 815–823, 2015.

[43] S. Sebastián and J. Caballero. AVclass2: Massive malware
tag extraction from av labels. In Annual Computer Security
Applications Conference, pages 42–53, 2020.

[44] B. Settles. Active learning literature survey. Technical Re-
port 1648, University of Wisconsin-Madison Department of
Computer Sciences, 2009.

[45] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Du-
mitras, and T. Goldstein. Poison frogs! targeted clean-label
poisoning attacks on neural networks. Advances in neural
information processing systems, 31, 2018.

[46] G. Shafer and V. Vovk. A tutorial on conformal prediction.
Journal of Machine Learning Research, 9(3), 2008.

[47] Y. Sun, Y. Ming, X. Zhu, and Y. Li. Out-of-distribution detec-
tion with deep nearest neighbors. In International Conference
on Machine Learning, pages 20827–20840. PMLR, 2022.

[48] X. Wang, Z. Liu, and S. X. Yu. Unsupervised feature learning
by cross-level instance-group discrimination. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12586–12595, 2021.

[49] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou. Deep ground
truth analysis of current android malware. In Detection of
Intrusions and Malware, and Vulnerability Assessment: 14th
International Conference, DIMVA 2017, Bonn, Germany, July
6-7, 2017, Proceedings 14, pages 252–276. Springer, 2017.

[50] J. Winkens, R. Bunel, A. G. Roy, R. Stanforth, V. Natara-
jan, J. R. Ledsam, P. MacWilliams, P. Kohli, A. Karthike-
salingam, S. Kohl, et al. Contrastive training for improved
out-of-distribution detection. arXiv preprint arXiv:2007.05566,
2020.

[51] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu. Droidevolver: Self-
evolving android malware detection system. In 2019 IEEE
European Symposium on Security and Privacy (EuroS&P),
pages 47–62. IEEE, 2019.

[52] J. Yang, P. Wang, D. Zou, Z. Zhou, K. Ding, W. PENG,
H. Wang, G. Chen, B. Li, Y. Sun, et al. OpenOOD: Bench-
marking generalized out-of-distribution detection. In Thirty-
sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track.

[53] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang.
BODMAS: An open dataset for learning based temporal analy-
sis of PE malware. In 2021 IEEE Security and Privacy Work-
shops (SPW), pages 78–84. IEEE, 2021.

[54] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing,
and G. Wang. CADE: Detecting and explaining concept drift
samples for security applications. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2327–2344, 2021.

[55] D. Yoo and I. S. Kweon. Learning loss for active learning. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 93–102, 2019.

[56] X. Zhan, Q. Wang, K.-h. Huang, H. Xiong, D. Dou, and A. B.
Chan. A comparative survey of deep active learning. arXiv
preprint arXiv:2203.13450, 2022.

[57] B. Zhang, L. Li, S. Yang, S. Wang, Z.-J. Zha, and Q. Huang.
State-relabeling adversarial active learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8756–8765, 2020.

[58] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang,
M. Zhang, and M. Yang. Enhancing state-of-the-art classifiers
with API semantics to detect evolved Android malware. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 757–770, 2020.

[59] Y. Zhong, H. Tang, J. Chen, J. Peng, and Y.-X. Wang. Is
self-supervised learning more robust than supervised learning?
arXiv preprint arXiv:2206.05259, 2022.

A Details about Initial Training Samples

We start with the following set of initial training samples
to train all models before doing active learning. We extract
DREBIN features from both datasets. On the APIGraph
dataset, we train on 2012 data, containing 3,061 malicious
apps and 27,472 benign apps. We select features with larger
than 0.001 variance. We end up with 1,159 selected features.
On the AndroZoo dataset, we train on the 2019 data, con-
sisting of 4,542 malicious apps and 40,947 benign apps. We
increase the variance threshold such that we select under 20K
features with the largest variance. We end up with 16,978
features with the largest variance.

B Details about Our Model

Our encoder subnetwork has fully connected layers with
ReLU activation. The encoder layers gradually reduce the
input features to a 128-dimension embedding space, i.e., ‘512-
384-256-128’. The classifier subnetwork uses two hidden
layers, each with 100 neurons and ReLU activation, and two
output neurons normalized with Softmax. The two outputs
represents the normalized prediction scores for benign and
malicious classes, respectively. We train our encoder-classifier
model end-to-end using the loss function in Equation (1). We
use batch size 1,024, since a larger batch size produces more

pairs for contrastive learning, which typically performs better
than smaller batch sizes.

The candidate hyperparameters to train our model are the
following. We consider two optimizers: SGD and Adam; 4
initial learning rate choices: 0.001, 0.003, 0.005, 0.007; 3
learning rate schedulers: cosine annealing learning rate decay
without restart, step-based learning rate decay by a factor
of 0.95 or 0.5 every 10 epochs; 4 choices for first classifier
epochs: 100, 150, 200, 250; warm start optimizers: SGD and
Adam; warm start learning rate: 1%, 5% of the initial learning
rate, same learning rate decay as the first model; warm start
epochs: 50, 100.

We use the following hyperparameters for the APIGraph
dataset: use SGD optimizer to train the first model, initial
learning rate 0.003, step-based learning rate decay by a factor
of 0.95 every 10 epochs, 250 training epochs; during warm
start, use Adam optimizer, 1.5⇤10�4 warm learning rate (5%
of the initial learning rate), 100 warm training epochs after
adding the new samples from every month.

We use the following hyperparameters for the AndroZoo
dataset: use SGD optimizer to train the first model, initial
learning rate 0.001, step-based learning rate decay by a factor
of 0.5 every 10 epochs, 200 training epochs; during warm
start, use Adam optimizer, 1⇤10�5 warm learning rate (1%
of the initial learning rate), 50 warm training epochs after
adding the new samples from every month.

Using one NVIDIA A5000 GPU, training or updating a
model takes 10 minutes for the APIGraph dataset. Training
and/or testing time is generally fast enough that it is unlikely to
be a barrier to deployment; accuracy is the primary challenge.

C Details about Baselines

For MLP with uncertainty sampling, we use the same archi-
tecture as our classification subnetwork: two hidden layers,
each with 100 neurons and ReLU activation, and two output
neurons normalized with Softmax. We use batch size 32, and
Adam optimizers. We search for learining rate from 0.0001
to 0.0009 with a step size 0.0002; training epochs 25, 50, 75,
100. The best hyperparameters are: 0.007 learning rate and
50 epochs for the APIGraph dataset, 0.001 learning rate and
25 epochs for the AndroZoo dataset.

For SVM with uncertainty sampling, we search for C from
the set: 0.001, 0.01, 0.1, 1, 10, 100, 1000. The best C is 0.1 for
the APIGraph dataset and 0.01 for the AndroZoo dataset. For
SVM with CADE OOD sample selection, we use the exact
same setup described in the paper, including their model ar-
chitecture and batch size, and we will adapt and improve their
method in Section 4.4.1. We train the linear SVM classifier
with L2 regularization, squared hinge loss, with prediction
probabilities calibrated by logistic regression.

For the multiclass MLP, multiclass MLP embedding (+
SVM), we search through learning rate from 0.001 to 0.009
with a step size 0.002, training epochs 25 and 50. The final

setting of multiclass MLP for the APIGraph dataset is: 0.001
learning rate and 50 epochs; for the AndroZoo dataset is:
0.003 learning rate and 50 epochs. Since the benign class
is the majority, using random batch sampler gives us a de-
generate solution of multiclass MLP classifiers that always
predict the benign class. Therefore, we randomly select 10
samples from each class within a batch, such that the number
of samples are balanced across different classes. We also tried
upsampling all classes to have the same number of samples
as the benign class, which has the same effect as randomly
selecting 10 samples / class.

For SVM used in the multiclass experiments, we search
through the same set of C values mentioned above. The best
C is 0.1 for the APIGraph dataset; and 0.01 for the AndroZoo
dataset.

For GBDT with uncertainty sampling, we search for maxi-
mal tree depth: 4, 6, 8, 10, 20, 30, 40, 50; boosting rounds: 10,
20, 30, 40, 50, 60, 80, 100. The best choices for APIGraph
dataset are max depth 10 and 60 rounds of boosting; and
the best ones for AndroZoo dataset are max depth 10 and 80
rounds of boosting.

D Details about TRANSCENDENT CCE

We use Cross-Conformal Evaluator (CCE) with 10-fold cross
validation for TRANSCENDENT, since CCE has the best per-
formance for sample rejection in TRANSCENDENT [8]. For
each fold of train / validation split, we train a SVM classifier,
and compute non-conformity scores for data in the valida-
tion set. Then, we can compute the credibility and confidence
score of the test sample for that fold. TRANSCENDENT’s im-
plementation of CCE compares the score in each fold to a
threshold and takes the majority vote of these comparisons
to decide whether to reject the sample [8]. We extend this to
a numeric score rather than a binary decision. We note that
TRANSCENDENT’s approach is equivalent to computing the
median of the scores in each fold, and comparing this median
to a threshold. Therefore, in our active learning scheme, we
compute the median credibility and median confidence across
the 10 folds for each test sample.

E Details about Improved Baselines

We retrain SVM for two sample selectors: TRANSCENDENT
(cred), and TRANSCENDENT (cred * conf). To retrain SVM,
we search for C from the set: 0.001, 0.01, 0.1, 1, 10, 100, 1000.
For the APIGraph dataset, the best C for cred is 0.1 , the best
C for cred*conf is 0.01. For the AndroZoo dataset, the best C
is 0.01.

We adapt MLP uncertainty sampling with warm start. We
search for learning rate from 0.0001 to 0.0009 with a step size
0.0002; training epochs 25, 50, 75, 100; warm learning rate:
1%, 5% of the initial learning rate; warm training epochs: 25,

Classifier Hyperparameters Average Validation F1 Score (%)
2012 (initial classifier) 2013-01 to 2013-06 (active learning, uncertainty sampling)

GBDT trees: 100, max depth: 10 99.67% 88.62%
trees: 60, max depth: 10 99.52% 89.54%

SVM C=1 96.27% 87.90%
C=0.1 95.78% 89.97%

Table 6: On the APIGraph dataset, the best hyperparameters to train the first classifier may not be the best ones to maintain good
performance when there are drifted samples. Using different hyperparameters to train GBDT and SVM, the average validation
F1 scores for the initial classifier are very similar. However, the average monthly validation F1 score during six months of active
learning in 2013 can be very different. In this example, hyperparameters that generalize better (smaller depth for GBDT, smaller
C for SVM) help active learning perform better.

50. The best hyperparameters for the APIGraph dataset are:
0.0009 learning rate, 25 initial training epochs, warm learning
rate 4.5 ⇤ 10�5 (5% of the initial one), and warm training
epochs is 25. The best hyperparameters for the AndroZoo
dataset are: 0.0001 learning rate, 25 initial training epochs,
warm learning rate 5⇤10�6 (5% of the initial one), and warm
training epochs is 25.

We adapt CADE OOD sample selector for MLP in both
cold start and warm start. To have a fair comparison, we use
the same encoder dimensions as ours, and mirror that as the
decoder in CADE. We use the same MLP structure as our clas-
sifier subnetwork. We use batch size 1,536. We fix the MLP
learning rate (0.001) and training epochs (50), but perform
grid search over the same set of parameters for the CADE
autoencoder as described in Section B. Note that the original
active learning experiment in CADE did not tune hyperpa-
rameters (Section 6 in [54]). But we tune hyperparameters
including optimizer, initial learning rate, learning rate schedul-
ing, epochs to train the contrastive autoencoder model, warm
start learning rate and epochs.

The best cold start parameters for CADE, APIGraph
dataset: Adam optimizer, initial learning rate 0.001, step-
based decay with a factor 0.95 every 10 epochs, and 150
training epochs. For the AndroZoo dataset: Adam optimizer,
initial learning rate 0.001, step-based decay with a factor 0.5
every 10 epochs, and 100 training epochs.

The best warm start parameters for CADE for the API-
Graph dataset: Adam optimizer for both initial classifier and
active learning; autoencoder: initial learning rate 0.001, co-
sine annealing learning rate decay without restart, 250 initial
training epochs; active learning: for both the autoencoder and
MLP, 5% of initial learning rate for warm start, and 50 warm
training epochs. For the AndroZoo dataset: Adam optimizer
for both initial classifier and active learning; autoencoder: ini-

tial learning rate 0.001, cosine annealing learning rate decay
without restart, 100 initial training epochs; active learning:
for both the autoencoder and MLP, 1% of initial learning rate
for warm start, and 50 warm training epochs.

F Hyperparameter Examples

Table 6 shows examples where the best hyperparameters to
train the first classifier are not the best ones for active learning.

To evaluate the performance of the initial classifier, we ran-
domly separate apps from 2012 data of the APIGraph dataset
into five train/validation splits and average the validation F1
score of the classifier over the splits. The third column of Ta-
ble 6 shows that different hyperparameters do not make much
difference in the validation F1 score for the initial classifier.

To evaluate the performance of the classifier trained with
active learning, we train an initial model on all 2012 data.
Then, we use the first six months in 2013 for active learn-
ing. We perform uncertainty sampling by adding 50 new
samples to the training set every month, retrain the classifier,
and evaluate the F1 score with data from the future month.
We average the monthly F1 scores to evaluate the perfor-
mance during active learning. As shown in the last column
of Table 6, different hyperparameters can make a significant
difference to performance from 2013-01 to 2013-06. The best
hyperparameters for active learning are not the best to train
the initial model, but they are better for generalization. For
GBDT, a smaller number of trees makes the model simpler
and less prone to overfitting, which makes the model more ro-
bust against concept drift. For SVM, a smaller C value allows
more classification mistakes when maximizing the margin,
which encourages the generalization of the classifier under
concept drift.

