ReCode: Robustness Evaluation of
Code Generation Models

Shigi Wang*, Zheng Li*, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang,
Varun Kumar, Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali

Krishna Ramanathan, Dan Roth, Bing Xiang

AWS Al Lab, AWS Al Research & Education,
Cornell university, University of Chicago @

Amazon CodeWhisperer

aWS) Build applications faster and more securely with your Al coding companion
Use CodeWhisperer for free

Code Generation Model

Code generation has emerged as an important Al application

« Offer real-life help to software engineers and enhance their productivity
* Popular public models: CodeGen, InCoder, GPT-J

* Popular tools: CodeWhisperer, Copilot, ChatGPT

[
Coclewhlsperer

dWS
N

Code Generation Demo (CodeWhisperer)

4 I

@ main.js

1

2

3

4

5 g ™
12

6 13 export const getFiles = async (bucketName, S3Client) => {

7

:

o
[N
»

const params = {

10 15 Bucket: bucketName,
16 3
11 k;
17
12 18 const files = [];
13 19 |let isTruncated = true;
20 |let continuationToken;
14 21
15 22 |while (isTruncated) {
16 23 const response = await s3Client.listObjectsV2(params);

24 isTruncated = racnanca TcTruncatad:

Y
~N

N

v

18 26 © CodeWhisperer reference log

19 ZZ [3/24/2023, 3:17:34 PM] Accepted recommendation with code

20 N [rcsponse. Contents.forEach((file) => filos‘push(file.Kcy));]provided
with reference under MIT from repository function-templates. Added to

21 /demos/reference-tracker.js (line at 14).

\22 %
. _» " . » . .
Efficient Code Snippet Generation ...Don’t worry about copyright issues!

dWs$s

\-/‘7

Robustness?

Why robustness for code?
* Robustness of the code generation model is commonly overlooked

* Simple perturbations will cause mistakes by code generation models

* Significantly affect user experience

dWs$s

\/‘7

Robustness?

Why robustness for code?
* Robustness of the code generation model is commonly overlooked
* Simple perturbations will cause mistakes by code generation models

 Significantly affect user experience

def test_distinct(data):

Original Write a python function to determine whether all the
docstring numbers are different from each other are not.

>>> test_distinct([1,5,7,9])

True

>>> test _distinct([2,4,5,5,7,9])

False

>>> test distinct([1,2,3])

True

Original __ ., len(set(data)) == len(data)

aW S completion
N

Robustness?

Why robustness for code?
* Robustness of the code generation model is commonly overlooked
* Simple perturbations will cause mistakes by code generation models

 Significantly affect user experience

def test_distinct(data): def test_distinct(data):

Original Write a python function to determine whether all the Write a Python function to see if all }Perturbed
docstring numbers are different from each other are not. numbers differ from each other. docstring

>>> test_distinct([1,5,7,9]) > test_distinet([1,5.7.21)

True True

>>> test _distinct([2,4,5,5,7,9]) >>> test_distinct([2,4,5,5,7,9])

False False

>>> test_distinct([1,2,3]) >>> test_distinct([1,2,3])

True True

New
completion

Original

—— return len(set(data)) == len(data) return len(set(data)) != len(data) ——

aW S completion
N

Paraphrasing docstring will cause mistakes by InCoder-6B

Robustness?

Why robustness for code?
* Robustness of the code generation model is commonly overlooked
* Simple perturbations will cause mistakes by code generation models

 Significantly affect user experience

def removelLowercase(str1): Perturbed
| e e ——

= =
Original def remove_lowercase(str1): i function

Function i
name

name Write a function to remove lowercase

Write a function to remove lowercase substrings from a given string.

substrings from a given string. >>> removelowercase("PYTHon")
('"PYTH")
>>> removelLowercase("FInD")

>>> remove_lowercase("PYTHon")
('PYTH")

>>> remove_lowercase("FInD") ('FID')
('FID")

>>> removelLowercase("STRinG")
>>> remove_lowercase("STRinG") ('STRG')

('STRG")

nmun

Original Btfe = 5. aWEr)]__ New
co;:gZEoﬁ——-return "".,join([1i for i in str1 if i.isupper()]) return str2 completion

aWS Changing function name style cause mistakes by CodeGen-16B-mono

\\‘.--':7

ReCode

ReCode: the first comprehensive Robustness Evaluation
framework for Code.

4 categories, 30 customized perturbations
- Docstrings

- Function names

- Code syntax

- Code format

Semantic Preserving!

dWS
N/

ReCode: Transformations

ReCode: the first comprehensive Robustness Evaluation

framework for Code.

4 categories, 30 customized perturbations

- Docstrings
- Function names
- Code syntax

- Code format

Semantic Preserving!

dWS
N/

Perturbations MBPP Docstrings

Nominal Write a function to find all words which are at least 4 characters long in a string by using regex.

BackTranslation Write a function to find all words in a string at least 4 characters long using regex.
ButterFingers Wrihe a function to find all words which are ar leasv 4 characters long in a string by using regex.
ChangeCharCase WriTe a fUnctiOn to find All woRds whicH are at leAst 4 ChaRacterS LonG in a string by uSIng reGex.
EnglishInflectional Variation Writes a functions to found all word which was at least 4 character long in a string by use regex.

SwapCharacters rWite a function to find all words which are at elast 4 chraacters long in a string by suing regex.
SynonymlInsertion Write a function to find discover all words which are at least 4 characters long in a string by using regex.
SynonymSubstitution Write a function to find all words which equal at least 4 character long in a chain by using regex.
TenseTransformationPast Write a function to find all words which was at least 4 characters long in a string by using regex.
TenseTransformationFuture Write a function to find all words which will be at least 4 characters long in a string by using regex.
Whitespace Write a function to find all words w hichare at least 4 characters long in a string by using regex.

Table 1: Illustrations for docstring perturbations on a MBPP sample.

ReCode: Transformations

ReCode: the first comprehensive Robustness Evaluation

framework for Code.

4 categories, 30 customized perturbations
- Docstrings

- Function names

- Code syntax

- Code format

Semantic Preserving!

dWS
N/

Perturbations on Function Names | MBPP

Nominal |

find_char_long

findCharLong
finf_char_long
find_cahr_long
finD_chaR_long
found_chars_long
discover_char_long

CamelCase
ButterFingers
SwapCharacters
ChangeCharCase
Inflectional Variation
SynonymSubstition

ReCode: Transformations

ReCode: the first comprehensive Robustness Evaluation
framework for Code.

4 categories, 30 customized perturbations

Docstrings

def remove_Occ(s, ch):
Function names # [same doc string]
while 1 < len(s):

def remove_Occ(s, ch):

Code syntax

Write a python function to remove

if s[i] == ch:
s = s[0:1] + s[1 + 1 :]
break

i=1i+1

Code format

first and last occurrence of a
given character from the string.
>>> remove_Occ("hello","1")

Semantic Preserving!
>>> remove_Occ("abcda","a") For-while switch
Ilbcdll
>>> remove_Occ("PHP","P")
IIHII

def remove_Occ(lines, ch):
[same doc string]

for i in range(len(s)): for i in range(len(lines)):

if s[i] == ch:
s = s[0:i] + s[1 + 1 :]

aws

= > MBPP baseline partial code CodeBERT variable rename

if lines[i] == ch:
lines = lines[0:i] + lines[i + 1 :]
break

ReCode: Transformations

ReCode: the first comprehensive Robustness Evaluation
framework for Code.

4 categories, 30 customized perturbations
- Docstrings
- Function names

- Code syntax

def remove_Occ(s, ch): def remove_Occ(s, ch): def remove_Occ(s, ch):

- Code format # Write a python function to remove

Write a python function to remove Wirite a pythod Function to remmye

first and last occurrence of a first and last occurrence of a

first and last occurrence of a : :
given character from the string.

>>> remove_Occ("hello","1")

. : given character from the string.
given character from the string.
t >>> remove_Occ("hello","1")

>>> remove_Occ("hello","1") "heo"

Semantic Preserving!

" "
heo >>> remove_Occ("abcda","a")

"bed"
>>> remove_Occ("PHP","P")

I|he0ll
>>> remove_0Occ("abcda","a") >>> remove_Occ("abcda","a")

"bcd" # "bcd"
>>> remove_Occ("PHP","P") ¢t >>> remove_Occ("PHP","P")
- 4 "H"
o for i in range(len(s)):
if (s[i] == ch):
s = &5l ¢ 1] € S[F + 379
break

for i in range(len(s)):
if (s[i] == ch):
= 30 % 51% + §z21

for i in range(len(s)):
if s[i] == ch:
s = s[0:i] + s[1 + 1 :]

break
aWS MBPP baseline partial code Docstring to comments Newline insertion
\‘.....-n;:7

ReCode: Implementation

Code perturbations customize from Tree-sitter

dWs$s

\/7

Introduction

Tree-sitter is a parser generator tool and an incremental parsing library. It can build a
concrete syntax tree for a source file and efficiently update the syntax tree as the source file
is edited. Tree-sitter aims to be:

¢ General enough to parse any programming language

¢ Fast enough to parse on every keystroke in a text editor

¢ Robust enough to provide useful results even in the presence of syntax errors
Introduction e Dependency-free so that the runtime library (which is written in pure C &) can be
embedded in any application

GitHub repository &

Language Binding

https://tree-sitter.github.io/tree-sitter/playground

ReCode: Implementation

Code perturbations customize from Tree-sitter

Introduction

Tree-sitter is a parser generator tool and an incremental parsing library. It can build a
concrete syntax tree for a source file and efficiently update the syntax tree as the source file
is edited. Tree-sitter aims to be:

= ¢ General enough to parse any programming language
Text pertu rbations customized from NL-Augmenter D « Fast enough to parse on every keystroke in a text editor
GitHub repository ¢ Robust enough to provide useful results even in the presence of syntax errors
Introduction e Dependency-free so that the runtime library (which is written in pure C &) can be
embedded in any application

Language Bindings

NL-Augmenter - = 2,

The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural
language. Transformations augment text datasets in diverse ways, including: randomizing names and numbers,
changing style/syntax, parz asing, KB-based paraphrasing ... and whatever creative augmentation you
contribute. We invite submissions of transformations to this framework by way of GitHub pull request.

dWS
N/

https://tree-sitter.github.io/tree-sitter/playground
https://github.com/GEM-benchmark/NL-Augmenter

ReCode: Implementation

Question:

- How to do perturbations for docstrings?

def test_distinct(data):

Original
docstring

Original
completion

dWS
N/

Write a python function to determine whether all the
numbers are different from each other are not.

>>> test_distinct([1,5,7,9])

True

>>> test _distinct([2,4,5,5,7,9])

False

>>> test distinct([1,2,3])

True

—— return len(set(data)) == len(data)

def test_distinct(data):

Write a Python function to see if all Perturbed
numbers differ from each other.

docstring
>>> test_distinct([1,5,7,9])

True

>>> test_distinct([2,4,5,5,7,9])

False

>>> test _distinct([1,2,3])

True

New
completion

return len(set(data)) != len(data) ——

ReCode: Implementation

Question:

- How to do perturbations for function rename?

= =
Original def remove_lowercase(str1)

Function
name

Original
completion

dWS
N/

—— return

nnn

Write a function to remove lowercase
substrings from a given string.

>>> remove_lowercase("PYTHon")
('PYTH")

>>> remove_lowercase("FInD")

('FID'")

>>> remove_lowercase("STRinG")
('STRG")

nn

.join([i for i in str1 if i.isupper()])

def removelLowercase(str1): Perturbed
wn function
Write a function to remove lowercase Mame

substrings from a given string.

>>> removelLowercase("PYTHon")

('PYTH")

>>> removelLowercase("FInD")

('FID")

>>> removelLowercase("STRinG")

("'STRG")

str2 = str1.lower()

return str2

| New
completion

def remove_Occ(s, ch):

ReCode: Implementation

Write a python function to remove
first and last occurrence of a

QUGStiOﬂI given character from the string.
>>> remove_0Occ("hello","1")
- How to do perturbations for code syntax? "heo"

>>> remove_Occ("abcda","a")
Ilbcdll

>>> remove_Occ("PHP","P")
e

for i in range(len(s)):
if s[i] == ch:
s = s[0:1i] + s[i + 1 :]
break

(a) Baseline Partial Code

remove_0Occ(s, ch):
[same doc string]
while i < len(s):
if s[i] == ch:
s = s[0:1] + s[i1 + 1 :]
break
i=1i+1

(b) For-While Switch
def remove_Occ(lines, ch):
[same doc string]
for i in range(len(llﬂgg)):
if lines[i] == ch:
lines = lines[0:i] + lines[i + 1 :]

dWS
N/

ReCode: Implementation

Question:

- How to do perturbations for code format?

def remove_Occ(s, ch):

def remove_Occ(s, ch): def remove_Occ(s, ch):

Write a python function to remove

Write a python function to remove

Write a python function to remove
first and last occurrence of a

first and last occurrence of a
first and last occurrence of a

given character from the string. given character from the string.

given character from the string. 5% Tanoe Becc hells™, "1%)

>>> remove_Occ("hello","1") >>> remove_Occ("hello","1")

]) "heo"
"heo" t "heo

>>> remove_Occ("abcda","a")
"bed"
>>> remove_Occ("PHP","P")

>>> remove_0Occ("abcda","a") >>> remove_Occ("abcda","a")

"bcd" # "bcd"

>>> remove_Occ("PHP","P") t >>> remove_Occ("PHP","P")
"H" # "H"
o for i in range(len(s)):
if s[i] == ch: L (S[i] == ch?: -
s = s[0:i] + s[i + 1 :] s = s[0 : i] + s[i + 1:]
break break

for i in range(len(s)):
if (s[i] == ch):
s =s[0 : i] + s[i + 1:]

for i in range(len(s)):

aWS MBPP baseline partial code Docstring to comments Newline insertion
\‘.....-n;:7

ReCode: Eval Metric for Code Models
valuating Large Language Models Trained on Code

“Functional Correct” — for each sampled code e o N
generation, if executing generated code passes the unit . S aE
tests, we count it true. 2> dner LIEHIS, 3, 5, 2 25 5.8, 8 1280

6, 4, : s e 4 1100 33

First proposed in Codex paper, a code finetuned model return [i + 1 for i in 1]
based on GPT-3.

solution(lst):
""Given a non-empty list of S t sum of & of the odd elements
even positions.

Greedy:
- Pass@1

return (1st[i] for i in (0,len(1st)) if i % 2 == 0 and 1st[i] % 2 == 1)

encode_cyclic(s:

returns encoded st

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in ((len(s) +2) /7 3)1]

groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)

decode_cyclic(s: OB

s as input string encoded with encode_cyclic function

groups = [s[(3 * i):min((3 * i + 3), (s))] for i in ((len(s) + 2) // 3)1]

groups = [(group[-1] + group[:-11) if len(group) == 3 else group for group in groups]
return "". (groups)

dWs$s

N/ HumanEval Datasets

ReCode: Eval Metric for Code Models
valuating Large Language Models Trained on Code

“Functional Correct” — for each sampled code e o N
generation, if executing generated code passes the unit . S aE
tests, we count it true. e D e Clat T

6, 4, : s fe G 0, 1,

First proposed in Codex paper, a code finetuned model return [i + 1 for i in 1]
based on GPT-3.

solution(lst):
""Given a non-empty list of S t sum of & of the odd elements
even positions.

Sampling n =1:
- Pass@1

return (1st[i] for i in (0,len(1st)) if i % 2 == 0 and 1st[i] % 2 == 1)

encode_cyclic(s:

returns encoded st

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in ((len(s) +2) /7 3)1]

groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)

decode_cyclic(s: OB

s as input string encoded with encode_cyclic function

groups = [s[(3 * i):min((3 * i + 3), (s))] for i in ((len(s) + 2) // 3)1]

groups = [(group[-1] + group[:-11) if len(group) == 3 else group for group in groups]
return "". (groups)

dWs$s

N/ HumanEval Datasets

ReCode: Eval Metric for Code Models
valuating Large Language Models Trained on Code

“Functional Correct” — for each sampled code e o N
generation, if executing generated code passes the unit . S aE
tests, we count it true. e D e Clat T

6, 4, : s fe G 0, 1,

First proposed in Codex paper, a code finetuned model return [i + 1 for i in 1]
based on GPT-3.

solution(lst):
""Given a non-empty list of S t sum of & of the odd elements
even positions.

Sampling n = 100:
- Pass@100

return (1st[i] for i in (0,len(1st)) if i % 2 == 0 and 1st[i] % 2 == 1)

encode_cyclic(s:

returns encoded st

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in ((len(s) +2) /7 3)1]

groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)

decode_cyclic(s: OB

s as input string encoded with encode_cyclic function

groups = [s[(3 * i):min((3 * i + 3), (s))] for i in ((len(s) + 2) // 3)1]

groups = [(group[-1] + group[:-11) if len(group) == 3 else group for group in groups]
return "". (groups)

dWs$s

N/ HumanEval Datasets

ReCode: Eval Metric for Code Models

“Functional Correct” — for each sampled code
generation, if executing generated code passes the unit
tests, we count it true.

First proposed in Codex paper, a code finetuned model
based on GPT-3.

Sampling n = 100:
- Pass@100
- Pass@1

dWs$s

\/‘7

ReCode: Eval Metric for Code Models

“Functional Correct” — for each sampled code
generation, if executing generated code passes the unit
tests, we count it true.

First proposed in Codex paper, a code finetuned model
based on GPT-3.

Sampling n = 100:
- Pass@100

- Pass@1

- Pass@10

- Pass@k

dWS
N/

ReCode: Eval Metric for Code Models

“Functional Correct” — for each sampled code
generation, if executing generated code passes the unit
tests, we count it true.

First proposed in Codex paper, a code finetuned model
based on GPT-3.

Sampling n = 100:

- Pass@1

- Pass@10

- Pass@100 pass @ k. — E

- Pass@k Problems

c is the count of correct predictions out of
n sampled generations for each problem

dWS
N/

ReCode: Eval Metric for Code Models

“Functional Correct” — for each sampled code pass@k [%]

Model S s
generation, if executing generated code passes the unit k=1 k=10 k=100
tests, we count it true. GPT-NEO 350M 0.85 2.55 5.95

GPT-NEO 2.7B 641 1127 2137
First proposed in Codex paper, a code finetuned model GPT-J 6B 1162 1574 2774
based on GPT-3. CODEX 300M 13.17 2037 3627

CODEX 2.5B 2136 3542 59.50

CODEX 12B 28.81 4681 7231

code-cushman-001* 33.5 54.3 774

_ code-davinci-001* 390 606 84.1
Sampling n = 100: code-davinci-002* 470 749 92.1

CODEGEN-NL 350M 212 410 738
- Pass@1 CODEGEN-NL 2.7B 670 14.15 22.84

CODEGEN-NL 6.1B 1043 1836 29.85
- Pass@10 CODEGEN-NL 16.1B 1424 2346 38.33

CODEGEN-MULTI 350M 667 1061 16.84
- Pass@100 CODEGEN-MULTI 2.7B 1451 2467 3856

CODEGEN-MULTI 6.1B 18.16 28.71 44.85
- Pass@k CODEGEN-MULTI 16.1B 1832 3207 50.80

CODEGEN-MONO 350M 12.76 23.11 35.19
CODEGEN-MONO 2.7B 23.70 36.64 57.01
CODEGEN-MONO 6.1B 26.13 42.29 65.82
CODEGEN-MONO 16.1B 29.28 49.86 75.00

Table 1: Evaluation results on the HumanEval benchmark. Each pass@k (where k € {1,10,100})
for each model is computed with three sampling temperatures (¢ € {0.2,0.6,0.8}) and the highest
one among the three are displayed, which follows the evaluation procedure in Chen et al. (2021).
Results for the model marked with * are from Chen et al. (2022).

aW% Numbers from CodeGen Paper
S— GPT3 model is around 175B; GPT4 model is around 1.8T

ReCode: New Metrics

“Robustly Correct” — for each sampled
code generation, if all s perturbations on
prompts make it , then
this generation passes.

3 new robustness metrics

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better
RD and RR is the higher the worse.

dWS
N/

ReCode: New Metrics

“Robustly Correct” — for each sampled
code generation, if all s perturbations on
prompts make it , then
this generation passes.

3 new robustness metrics

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better
RD and RR is the higher the worse.

dWS
N/

n output samples following rcg(x) : How many generations
same prompt are robustly correct

“If we randomly choose k samples out of n generations, how
likely we will find at least one “robustly correct” generation”

ReCode: New Metrics

“Robustly Correct” — for each sampled
code generation, if all s perturbations on
prompts make it , then
this generation passes.

3 new robustness metrics

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better
RD and RR is the higher the worse.

dWS
N/

n output samples following rcg(x) : How many generations
same prompt are robustly correct

“If we randomly choose k samples out of n generations, how
likely we will find at least one “robustly correct” generation”

Pass@k — Robust Pass,Qk
Pass@k

RD;Qk :=

“Compared with original Pass@k, how much performance is dropped?”

ReCode: New Metrics

“Robustly Correct” — for each sampled
code generation, if all s perturbations on
prompts make it , then
this generation passes.

3 new robustness metrics

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better
RD and RR is the higher the worse.

n output samples following rcg(x) : How many generations
same prompt are robustly correct

“If we randomly choose k samples out of n generations, how
likely we will find at least one “robustly correct” generation”

Pass@k — Robust Pass,Qk

RD; =
Ok Pass@k

“Compared with original Pass@k, how much performance is dropped?”

How many output samples we change How many output samples we change from
aWS from incorrect—> correct under any of correct—> incorrect under any of s
N s perturbation (best-case analysis) perturbation (worst-case analysis)

ReCode: Evaluation on Public Models

Public models (decoder only)

- CodeGen from Salesforce

- Natural language training first (THEPILE) and
then code data from github (Bigquery from

google)
- CodeGen-mono: only train on bigpython

- CodeGen-multi: train on multiple languages in
bigguery including C, C++, Go, Java, JavaScript,
and Python

- InCoder from Meta
- Bidirectional context

- GPT-J from EleutherAl

- Mainly pretrained with THEPILE and then
finetune with python code

dWS
N/

ReCode: Evaluation on Public Models

Public models (decoder only)

- CodeGen from Salesforce

- Natural language training first (THEPILE) and
then code data from github (Bigquery from

google)
- CodeGen-mono: only train on bigpython

- CodeGen-multi: train on multiple languages in
bigguery including C, C++, Go, Java, JavaScript,
and Python

- InCoder from Meta
- Bidirectional context

- GPT-J from EleutherAl
- Mainly pretrained with THEPILE and then
finetune with python code
- Other architectures (not evaluated)
- CodeT5 (encoder-decoder)
- CoderBERT/CodeGraphBERT (encoder only)

dWS
N/

ReCode: Evaluation on Public Models

PUbIIC mOdEIS (deCOder Only) Model Size Python Other Other Code Infill? HE HE HE MBPP
ode (B) Code(GB) Code(GB) (GB) License " @1 @10 @100 @I
- CodeGen from Salesforce - zewed
L. . CodeParrot (Tunstall et al., 2022) 1.5 50 None None — 4.0 8.7 17.9
- Natural language training first (THEPILE) and PolyCoder (Xu et al., 2022) 27 16 238 None 56 98 177
. . GPT-J (Wang & Komatsuzaki, 2021; 6 6 90 730 — 11.6 157 27.7
then code data from github (Bigquery from Chen et al., 20212)
google) INCODER-6.7B 6.7 52 107 57 Permissive v 152 278 470
GPT-NeoX (Black et al., 2022) 20 6 90 730 — 154 256 412
) . . CodeGen-Multi (Nijkamp et al,, 2022) 6.1 62 375 1200 — 182 287 449
- CodeGen-mono: only train on bigpython CodeGen-Mono (Nijkamp etal., 2022) 6.1 279 375 1200 — 26.1 423 658
CodeG Iti-) itinle | i CodeGen-Mono (Nijkamp et al., 2022) 16.1 279 375 1200 — 293 499 750
- O e en?mu tl..traln on mu tlp e anguage§ in T Umeleased -
bi gquery includin g C, C++, G o, Java, JavaScri pt, LaMDA (Austin et al., 2021; Thoppilan 137 None None 2777 — 14.0 473
et al., 2022; Chowdhery et al., 2022)
and Python AlphaCode (Li et al., 2022) 1.1 54 660 None — 17.1 453
Codex-2.5B (Chen et al., 2021a) 2.5 180 None > 570 — 214 59.5
Codex-12B (Chen et al., 2021a) 12 180 None > 570 — 28.8 72.3
- InCoder from Meta PaLM-Coder (Chowdhery etal.,, 2022) 540 ~20 ~200 ~4000 Permissive 36.0 88.4

- Bidirectional context

Table 11: A comparison of our INCODER-6.7B model to published code generation systems using

- 28 languages, mainly on python pass rates @ K candidates sampled on the HumanEval and MBPP benchmarks. All models are
GPT. EleutherA| decoder-only transformer models. A “Permissive” code license indicates models trained on only
) - Trom tleuther open-source repositories with non-copyleft licenses. The GPT-J, GPT-NeoX, and CodeGen models

- Mainly pretrained with THEPILE and then are pre-trained on The Pile (Gao et al., 2020), which contains a portion of GitHub code without any

finetune with python code license filtering, including 6 GB of Python. Although the LaMDA model does not train on code
repositories, its training corpus includes ~18 B tokens of code from web documents. The total file
- Other architectures (not evaluated) size of the LaMDA corpus was not reported, but it contains 2.8 T tokens total. We estimate the

corpus size for PalLM using the reported size of the code data and the token counts per section of the
- CodeT5 (encoder-decoder) P g therep p

- CoderBERT/CodeGraphBERT (encoder only)

dWS
N/

Numbers from InCoder Paper

ReCode: Evaluation on Public Models

Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

CodeGen CodeGen | CodeGen CodeGen | CodeGen CodeGen | InCoder InCoder | GPT-J

MBPP ‘ Metric 2Bmono 2B multi | 6B mono 6B multi | 16B mono 16B multi 1B 6B 6B
Nominalt 0.317 0.191 0.361 0.221 0.407 0.241 0.128 0.199 | 0.133

Docstrin RP; @11 0.137 0.050 0.147 0.042 0.163 0.045 0.011 0.031 | 0.013
g RD5; @1(%)] 56.96 73.66 59.38 80.93 59.85 81.28 91.20 84.54 | 90.00
RR;@1(%)!| 36.86 34.39 41.89 36.76 46.72 44.66 25.57 35.32 | 30.08

Nominalt 0.317 0.191 0.361 0.221 0.407 0.241 0.128 0.199 | 0.133

Function RP; @11 0.221 0.101 0.252 0.110 0.279 0.139 0.047 0.087 | 0.043
RDs @ 1(%){ 30.42 47.31 30.40 50.23 31.31 42.55 63.20 56.19 | 67.69

RR; @1(%)| 19.51 20.43 24.13 22.79 24.95 23.51 16.22 20.02 | 17.56

Nominalt 0.450 0.285 0.535 0.331 0.571 0.379 0.219 0.292 | 0.176

RP; @11 0.027 0.008 0.027 0.008 0.038 0.017 0.008 0.006 | 0.004

RD5; @1(%)] 94.06 97.12 95.01 97.52 93.34 95.39 96.24 97.89 | 97.66
RR;@1(%)] 59.03 45.07 64.17 47.74 67.04 54.21 35.42 45.79 | 30.60

Nominalt 0.450 0.285 0.535 0.331 0.571 0.379 0.219 0.292 | 0.176

RP; @11 0.333 0.146 0.289 0.166 0.403 0.214 0.091 0.130 | 0.080

RD5; @1(%)] 26.03 48.92 46.07 49.69 29.32 43.63 58.22 55.28 | 54.39
aWS RR; @1(%)| 19.82 25.15 31.11 27.00 25.26 26.59 19.61 28.54 | 18.28

\/‘7

ReCode: Evaluation on Public Models

Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

With same size 6B, CodeGen achieves

better performance on Nominal + RP; @1,

a very strict robustness metric

“Diverse pretraining corpus helps with

both generalization and worst-case
robustness.”

dWS
N/

MBPP ‘

Docstring

Function

Metric

Nominalt
RPs; @11
RD; @1(%)]
RR5@1(%)|

Nominalt
RPs @11
RDs@1(%)..
RR5@1(%).

Nominalt
RP; @11
RD5; @1(%)|
RR5;@1(%)|

Nominalt
RP; @171
RDs @1(%)]
RR5@1(%)]

CodeGen CodeGen | CodeGen CodeGen
2B multi § 6B mono 6B multi

2B mono

0.317
0.137
56.96
36.86

0.317
0.221
30.42
19.51

0.450
0.027
94.06
59.03

0.450
0.333
26.03
19.82

CodeGen
16B mono

0.191
0.050
73.66
34.39

0.191
0.101
47.31
20.43

0.285
0.008
97.12
45.07

0.285
0.146
48.92
25.15

CodeGen
16B multi

InCoder
1B

InCoder | GPT-J
6B 6B

ReCode: Evaluation on Public Models

Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

CodeGen-mono 2B to 16B improved RP
from 0.174 to 0.217 on average across all
perturbations

“Larger model size brings improvement in

worst-case robustness, but may risk
overfitting.”

dWS
N/

MBPP ‘

Docstring

Function

Metric CodeGen odeGen | CodeGen JCodeGen | CodeGen
2B mono [2B multi § 6B mono [6B multi § 16B mono

Nominalt
RPs; @11
RD; @1(%)]
RR5@1(%)|

Nominalt
RPs @11
RDs@1(%)..
RR5@1(%).

Nominalt
RP; @11
RD5; @1(%)|
RR5;@1(%)|

Nominalt
RP; @171
RDs @1(%)]
RR5@1(%)]

CodeGen
16B multi

0.241
0.045
81.28
44.66

0.241
0.139
42.55
23.51

0.379
0.017
95.39
54.21

0.379
0.214
43.63
26.59

InCoder InCoder

1B

0.128
0.011
91.20
25.57

0.128
0.047
63.20
16.22

0.219
0.008
96.24
35.42

0.219
0.091
58.22
19.61

6B

0.199
0.031
84.54
35.32

0.199
0.087
56.19
20.02

0.292
0.006
97.89
45.79

0.292
0.130
55.28
28.54

GPT-]
6B

0.133
0.013
90.00
30.08

0.133
0.043
67.69
17.56

0.176
0.004
97.66
30.60

0.176
0.080
54.39
18.28

ReCode: Evaluation on Public Models

Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

CodeGen CodeGen | CodeGen CodeGen | CodeGen CodeGen | InCoder InCoder | GPT-J

MBPP ‘ Metric 2Bmono 2B multi | 6B mono 6B multi | 16B mono 16B multi 1B 6B 6B

Nominalt | 0317 0191| 0361 0221 0.407 0241 | 0128 0.199 | 0.133

Docstring RPs@11 | [[0137 0050 0147 0.042 0.163 0045| 0011 0031 | 0013

» : RDs@1(%)] | 5696 73.66 | 5938 80.93 59.85 8128 | 9120 84.54 | 90.00
Cod.e. generation models are m(’)’st RRs@1(%)| | 3686 3439| 4189 3676 46.72 4466 | 2557 3532 | 30.08
sensitive to syntax perturbation. Nominalt | 0317 0.191] 0361 0.221 0.407 0241 | 0128 0.199 | 0.133
Function RP;@11 | [0221 0101 0252 0.110 0.279 0.139| 0047 0.087 | 0.043

u RDs@1(%)] | 3042 4731] 3040 50.23 31.31 4255| 6320 56.19 | 67.69

RR5@1(%)] 1951 2043 | 2413 2279 24.95 2351 | 1622 2002 | 17.56

Nominalt | 0450 0285| 0535 0.331 0.571 0379 | 0219 0292 | 0.176

RPs@11 | [0027 0008 | _ 0.027 __ 0.008 0.038 0017 | 0008 0.006 | 0.004

RDs@1(%)] | 9406 97.12| 9501 97.52 93.34 9539 | 9624 97.89 | 97.66

RR;@1(%)| | 5903 4507 | 6417 4774 67.04 5421 | 3542 4579 | 30.60

Nominalt | 0450 0285| 0535 0.331 0.571 0379 | 0219 0292 | 0.176

RP;@11 | [0333 01461 0280 0.166 0.403 0214 | 0091 0.130 | 0.080

RDs@1(%)) | 26,03 4892 | 4607 49.69 29.32 4363 | 5822 5528 | 5439

aWS RR5@1(%)] 1982 25.15| 3111 27.00 2526 2659 | 19.61 2854 | 18.28

\/‘7

ReCode: Evaluation on Public Models

Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

MBPP has more variances in code style (e.g.,
indent with 1 space), closer to natural code
distribution hence more challenging for
model robustness.

dWS
N/

Docstring | RDs@1(%) |

RP; @11
RRs@1(%) | ‘

RP; @11

Function | RD5@1(%)

Format RDs@1(%)

RD;@1(%)

0.078
60.67
19.72

0.113
41.61
12.06

0.100
72.58
33.88

0.211
43.30
22,70

\

Category | Metric | HumanEval | MBPP

0.071
75.31
36.92

0.142
46.59
21.01

0.025
93.40
47.86

0.206
45.73
24.60

ReCode

Empirical Observations

- Architecture-wise: CodeGen, InCoder, GPT-J performs across
- Model size wise: 350M, 2B, 6B, 16B

- Mono-lingual vs multi-lingual

- Dataset wise: HumanEval vs MBPP

Check out our paper and release code and datasets
- Paper: https://arxiv.org/abs/2212.10264

- Code and datasets: https://github.com/amazon-science/recode

dWS
N/

ReCode

Empirical Observations

Architecture-wise: CodeGen, InCoder, GPT-J performs across
Model size wise: 350M, 2B, 6B, 16B
Mono-lingual vs multi-lingual

Dataset wise: HumanEval vs MBPP

Check out our paper and release code and datasets

- Code and datasets: https://github.com/amazon-science/recode

Paper: https://arxiv.org/abs/2212.10264

Check out CodeWhisperer for free!!!

https://aws.amazon.com/codewhisperer/

dWs$s

\/‘7

)
Amazon CodeWhisperer

Build applications faster and more securely with your Al coding companion

Use CodeWhisperer for free

