
ReCode: Robustness Evaluation of 
Code Generation Models
Shiqi Wang*, Zheng Li*, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, 
Varun Kumar, Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali 
Krishna Ramanathan, Dan Roth, Bing Xiang

AWS AI Lab, AWS AI Research & Education, 

Cornell university, University of Chicago 



Code Generation Model

Code generation has emerged as an important AI application 

• Offer real-life help to software engineers and enhance their productivity

• Popular public models: CodeGen, InCoder, GPT-J

• Popular tools: CodeWhisperer, Copilot, ChatGPT



Code Generation Demo (CodeWhisperer)

Efficient Code Snippet Generation …Don’t worry about copyright issues!



Why robustness for code?

• Robustness of the code generation model is commonly overlooked

• Simple perturbations will cause mistakes by code generation models

• Significantly affect user experience

Robustness?



Why robustness for code?

• Robustness of the code generation model is commonly overlooked

• Simple perturbations will cause mistakes by code generation models

• Significantly affect user experience

Robustness?



Paraphrasing docstring will cause mistakes by InCoder-6B 

Why robustness for code?

• Robustness of the code generation model is commonly overlooked

• Simple perturbations will cause mistakes by code generation models

• Significantly affect user experience

Robustness?



Changing function name style cause mistakes by CodeGen-16B-mono

Why robustness for code?

• Robustness of the code generation model is commonly overlooked

• Simple perturbations will cause mistakes by code generation models

• Significantly affect user experience

Robustness?



ReCode
ReCode: the first comprehensive Robustness Evaluation 
framework for Code.

4 categories, 30 customized perturbations

- Docstrings

- Function names

- Code syntax

- Code format

Semantic Preserving!



ReCode: Transformations
ReCode: the first comprehensive Robustness Evaluation 
framework for Code.

4 categories, 30 customized perturbations

- Docstrings

- Function names

- Code syntax

- Code format

Semantic Preserving!



ReCode: Transformations
ReCode: the first comprehensive Robustness Evaluation 
framework for Code.

4 categories, 30 customized perturbations

- Docstrings

- Function names

- Code syntax

- Code format

Semantic Preserving!



ReCode: Transformations
ReCode: the first comprehensive Robustness Evaluation 
framework for Code.

4 categories, 30 customized perturbations

- Docstrings

- Function names

- Code syntax

- Code format

Semantic Preserving!

MBPP baseline partial code

For-while switch

CodeBERT variable rename



MBPP baseline partial code Docstring to comments Newline insertion

ReCode: Transformations
ReCode: the first comprehensive Robustness Evaluation 
framework for Code.

4 categories, 30 customized perturbations

- Docstrings

- Function names

- Code syntax

- Code format

Semantic Preserving!



Code perturbations customize from Tree-sitter

https://tree-sitter.github.io/tree-sitter/playground

ReCode: Implementation

https://tree-sitter.github.io/tree-sitter/playground


Code perturbations customize from Tree-sitter

https://tree-sitter.github.io/tree-sitter/playground

Text perturbations customized from NL-Augmenter

https://github.com/GEM-benchmark/NL-Augmenter

ReCode: Implementation

https://tree-sitter.github.io/tree-sitter/playground
https://github.com/GEM-benchmark/NL-Augmenter


Question:

- How to do perturbations for docstrings?

ReCode: Implementation



Question:

- How to do perturbations for function rename?

ReCode: Implementation



Question:

- How to do perturbations for code syntax?

ReCode: Implementation



Question:

- How to do perturbations for code format?

ReCode: Implementation

MBPP baseline partial code Docstring to comments Newline insertion



“Functional Correct” – for each sampled code 
generation, if executing generated code passes the unit 
tests, we count it true.

First proposed in Codex paper, a code finetuned model 
based on GPT-3.

Greedy:

- Pass@1

ReCode: Eval Metric for Code Models

HumanEval Datasets



“Functional Correct” – for each sampled code 
generation, if executing generated code passes the unit 
tests, we count it true.

First proposed in Codex paper, a code finetuned model 
based on GPT-3.

Sampling n = 1:

- Pass@1

ReCode: Eval Metric for Code Models

HumanEval Datasets



“Functional Correct” – for each sampled code 
generation, if executing generated code passes the unit 
tests, we count it true.

First proposed in Codex paper, a code finetuned model 
based on GPT-3.

Sampling n = 100:

- Pass@100

ReCode: Eval Metric for Code Models

HumanEval Datasets



“Functional Correct” – for each sampled code 
generation, if executing generated code passes the unit 
tests, we count it true.

First proposed in Codex paper, a code finetuned model 
based on GPT-3.

Sampling n = 100:

- Pass@100

- Pass@1

ReCode: Eval Metric for Code Models



“Functional Correct” – for each sampled code 
generation, if executing generated code passes the unit 
tests, we count it true.

First proposed in Codex paper, a code finetuned model 
based on GPT-3.

Sampling n = 100:

- Pass@100

- Pass@1

- Pass@10

- Pass@k

ReCode: Eval Metric for Code Models



“Functional Correct” – for each sampled code 
generation, if executing generated code passes the unit 
tests, we count it true.

First proposed in Codex paper, a code finetuned model 
based on GPT-3.

Sampling n = 100:

- Pass@1

- Pass@10

- Pass@100

- Pass@k

ReCode: Eval Metric for Code Models

c is the count of correct predictions out of 
n sampled generations for each problem



“Functional Correct” – for each sampled code 
generation, if executing generated code passes the unit 
tests, we count it true.

First proposed in Codex paper, a code finetuned model 
based on GPT-3.

Sampling n = 100:

- Pass@1

- Pass@10

- Pass@100

- Pass@k

ReCode: Eval Metric for Code Models

Numbers from CodeGen Paper
GPT3 model is around 175B; GPT4 model is around 1.8T



“Robustly Correct” – for each sampled 
code generation, if all 𝑠 perturbations on 
prompts cannot make it incorrect, then 
this generation passes.

3 new robustness metrics 

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better

RD and RR is the higher the worse. 

ReCode: New Metrics



“Robustly Correct” – for each sampled 
code generation, if all 𝑠 perturbations on 
prompts cannot make it incorrect, then 
this generation passes.

3 new robustness metrics 

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better

RD and RR is the higher the worse. 

𝑟𝑐!(𝑥)	: How many generations 
are robustly correct

𝑛 output samples following 
same prompt

“If we randomly choose 𝑘 samples out of 𝑛 generations, how 
likely we will find at least one “robustly correct” generation”

ReCode: New Metrics



“Robustly Correct” – for each sampled 
code generation, if all 𝑠 perturbations on 
prompts cannot make it incorrect, then 
this generation passes.

3 new robustness metrics 

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better

RD and RR is the higher the worse. 

𝑟𝑐!(𝑥)	: How many generations 
are robustly correct

𝑛 output samples following 
same prompt

“If we randomly choose 𝑘 samples out of 𝑛 generations, how 
likely we will find at least one “robustly correct” generation”

“Compared with original Pass@k, how much performance is dropped?”

ReCode: New Metrics



“Robustly Correct” – for each sampled 
code generation, if all 𝑠 perturbations on 
prompts cannot make it incorrect, then 
this generation passes.

3 new robustness metrics 

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better

RD and RR is the higher the worse. 

𝑟𝑐!(𝑥)	: How many generations 
are robustly correct

𝑛 output samples following 
same prompt

“If we randomly choose 𝑘 samples out of 𝑛 generations, how 
likely we will find at least one “robustly correct” generation”

How many output samples we change 
from incorrect−>	correct under any of 
𝑠 perturbation (best-case analysis)

How many output samples we change from 
correct−>	incorrect under any of 𝑠 
perturbation (worst-case analysis)

“Compared with original Pass@k, how much performance is dropped?”

ReCode: New Metrics



Public models (decoder only)

- CodeGen from Salesforce
- Natural language training first (THEPILE) and 

then code data from github (Bigquery from 
google)

- CodeGen-mono: only train on bigpython
- CodeGen-multi: train on multiple languages in 

bigquery including C, C++, Go, Java, JavaScript, 
and Python

- InCoder from Meta
- Bidirectional context

- GPT-J from EleutherAI
- Mainly pretrained with THEPILE and then 

finetune with python code

ReCode: Evaluation on Public Models



Public models (decoder only)

- CodeGen from Salesforce
- Natural language training first (THEPILE) and 

then code data from github (Bigquery from 
google)

- CodeGen-mono: only train on bigpython
- CodeGen-multi: train on multiple languages in 

bigquery including C, C++, Go, Java, JavaScript, 
and Python

- InCoder from Meta
- Bidirectional context

- GPT-J from EleutherAI
- Mainly pretrained with THEPILE and then 

finetune with python code

- Other architectures (not evaluated)
- CodeT5 (encoder-decoder)
- CoderBERT/CodeGraphBERT (encoder only)

ReCode: Evaluation on Public Models



Public models (decoder only)

- CodeGen from Salesforce
- Natural language training first (THEPILE) and 

then code data from github (Bigquery from 
google)

- CodeGen-mono: only train on bigpython
- CodeGen-multi: train on multiple languages in 

bigquery including C, C++, Go, Java, JavaScript, 
and Python

- InCoder from Meta
- Bidirectional context
- 28 languages, mainly on python

- GPT-J from EleutherAI
- Mainly pretrained with THEPILE and then 

finetune with python code

- Other architectures (not evaluated)
- CodeT5 (encoder-decoder)
- CoderBERT/CodeGraphBERT (encoder only)

ReCode: Evaluation on Public Models

Numbers from InCoder Paper



Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

ReCode: Evaluation on Public Models



Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

With same size 6B, CodeGen achieves 
better performance on Nominal + 𝑅𝑃!@1, 
a very strict robustness metric

“Diverse pretraining corpus helps with 
both generalization and worst-case 
robustness.”

ReCode: Evaluation on Public Models



Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

CodeGen-mono 2B to 16B improved RP
from 0.174 to 0.217 on average across all 
perturbations

“Larger model size brings improvement in 
worst-case robustness, but may risk 
overfitting.”

ReCode: Evaluation on Public Models



Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

“Code generation models are most 
sensitive to syntax perturbation.”

ReCode: Evaluation on Public Models



MBPP has more variances in code style (e.g., 
indent with 1 space), closer to natural code 
distribution hence more challenging for 
model robustness.

Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

ReCode: Evaluation on Public Models



Empirical Observations

- Architecture-wise: CodeGen, InCoder, GPT-J performs across

- Model size wise: 350M, 2B, 6B, 16B

- Mono-lingual vs multi-lingual

- Dataset wise: HumanEval vs MBPP

Check out our paper and release code and datasets

- Paper: https://arxiv.org/abs/2212.10264

- Code and datasets: https://github.com/amazon-science/recode

ReCode



Empirical Observations

- Architecture-wise: CodeGen, InCoder, GPT-J performs across

- Model size wise: 350M, 2B, 6B, 16B

- Mono-lingual vs multi-lingual

- Dataset wise: HumanEval vs MBPP

Check out our paper and release code and datasets

- Paper: https://arxiv.org/abs/2212.10264

- Code and datasets: https://github.com/amazon-science/recode

Check out CodeWhisperer for free!!!

https://aws.amazon.com/codewhisperer/

ReCode


