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Code Generation Model

Code generation has emerged as an important AI application 

• Offer real-life help to software engineers and enhance their productivity

• Popular public models: CodeGen, InCoder, GPT-J

• Popular tools: CodeWhisperer, Copilot, ChatGPT



Code Generation Demo (CodeWhisperer)

Efficient Code Snippet Generation …Don’t worry about copyright issues!
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• Simple perturbations will cause mistakes by code generation models
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Paraphrasing docstring will cause mistakes by InCoder-6B 
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Changing function name style cause mistakes by CodeGen-16B-mono
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ReCode
ReCode: the first comprehensive Robustness Evaluation 
framework for Code.

4 categories, 30 customized perturbations

- Docstrings

- Function names

- Code syntax

- Code format

Semantic Preserving!
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ReCode: Transformations
ReCode: the first comprehensive Robustness Evaluation 
framework for Code.

4 categories, 30 customized perturbations

- Docstrings

- Function names

- Code syntax

- Code format

Semantic Preserving!

MBPP baseline partial code

For-while switch

CodeBERT variable rename



MBPP baseline partial code Docstring to comments Newline insertion

ReCode: Transformations
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Code perturbations customize from Tree-sitter

https://tree-sitter.github.io/tree-sitter/playground

ReCode: Implementation

https://tree-sitter.github.io/tree-sitter/playground


Code perturbations customize from Tree-sitter

https://tree-sitter.github.io/tree-sitter/playground

Text perturbations customized from NL-Augmenter

https://github.com/GEM-benchmark/NL-Augmenter

ReCode: Implementation

https://tree-sitter.github.io/tree-sitter/playground
https://github.com/GEM-benchmark/NL-Augmenter


Question:

- How to do perturbations for docstrings?
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Question:

- How to do perturbations for code format?

ReCode: Implementation

MBPP baseline partial code Docstring to comments Newline insertion



“Functional Correct” – for each sampled code 
generation, if executing generated code passes the unit 
tests, we count it true.

First proposed in Codex paper, a code finetuned model 
based on GPT-3.

Greedy:

- Pass@1

ReCode: Eval Metric for Code Models

HumanEval Datasets
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“Functional Correct” – for each sampled code 
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ReCode: Eval Metric for Code Models

c is the count of correct predictions out of 
n sampled generations for each problem



“Functional Correct” – for each sampled code 
generation, if executing generated code passes the unit 
tests, we count it true.

First proposed in Codex paper, a code finetuned model 
based on GPT-3.

Sampling n = 100:

- Pass@1

- Pass@10

- Pass@100

- Pass@k

ReCode: Eval Metric for Code Models

Numbers from CodeGen Paper
GPT3 model is around 175B; GPT4 model is around 1.8T



“Robustly Correct” – for each sampled 
code generation, if all 𝑠 perturbations on 
prompts cannot make it incorrect, then 
this generation passes.

3 new robustness metrics 

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better

RD and RR is the higher the worse. 
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“Robustly Correct” – for each sampled 
code generation, if all 𝑠 perturbations on 
prompts cannot make it incorrect, then 
this generation passes.

3 new robustness metrics 

- Robust Pass@k (RP@k)

- Robust Drop@k (RD@k)

- Robust Relative@k (RR@k)

RP is the higher the better

RD and RR is the higher the worse. 

𝑟𝑐!(𝑥)	: How many generations 
are robustly correct

𝑛 output samples following 
same prompt

“If we randomly choose 𝑘 samples out of 𝑛 generations, how 
likely we will find at least one “robustly correct” generation”

How many output samples we change 
from incorrect−>	correct under any of 
𝑠 perturbation (best-case analysis)

How many output samples we change from 
correct−>	incorrect under any of 𝑠 
perturbation (worst-case analysis)

“Compared with original Pass@k, how much performance is dropped?”

ReCode: New Metrics



Public models (decoder only)

- CodeGen from Salesforce
- Natural language training first (THEPILE) and 

then code data from github (Bigquery from 
google)

- CodeGen-mono: only train on bigpython
- CodeGen-multi: train on multiple languages in 

bigquery including C, C++, Go, Java, JavaScript, 
and Python

- InCoder from Meta
- Bidirectional context

- GPT-J from EleutherAI
- Mainly pretrained with THEPILE and then 

finetune with python code
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Public models (decoder only)

- CodeGen from Salesforce
- Natural language training first (THEPILE) and 

then code data from github (Bigquery from 
google)

- CodeGen-mono: only train on bigpython
- CodeGen-multi: train on multiple languages in 

bigquery including C, C++, Go, Java, JavaScript, 
and Python

- InCoder from Meta
- Bidirectional context
- 28 languages, mainly on python

- GPT-J from EleutherAI
- Mainly pretrained with THEPILE and then 

finetune with python code

- Other architectures (not evaluated)
- CodeT5 (encoder-decoder)
- CoderBERT/CodeGraphBERT (encoder only)

ReCode: Evaluation on Public Models

Numbers from InCoder Paper
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- Architecture-wise: CodeGen,
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- Model Size-wise

- Perturbation-wise
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Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

With same size 6B, CodeGen achieves 
better performance on Nominal + 𝑅𝑃!@1, 
a very strict robustness metric

“Diverse pretraining corpus helps with 
both generalization and worst-case 
robustness.”
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Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

CodeGen-mono 2B to 16B improved RP
from 0.174 to 0.217 on average across all 
perturbations

“Larger model size brings improvement in 
worst-case robustness, but may risk 
overfitting.”
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Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise

“Code generation models are most 
sensitive to syntax perturbation.”

ReCode: Evaluation on Public Models



MBPP has more variances in code style (e.g., 
indent with 1 space), closer to natural code 
distribution hence more challenging for 
model robustness.

Empirical Observations

- Architecture-wise: CodeGen,
InCoder, GPT-J performs across

- Model Size-wise

- Perturbation-wise
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- Mono-lingual vs multi-lingual

- Dataset wise: HumanEval vs MBPP

Check out our paper and release code and datasets

- Paper: https://arxiv.org/abs/2212.10264

- Code and datasets: https://github.com/amazon-science/recode

ReCode



Empirical Observations

- Architecture-wise: CodeGen, InCoder, GPT-J performs across

- Model size wise: 350M, 2B, 6B, 16B

- Mono-lingual vs multi-lingual

- Dataset wise: HumanEval vs MBPP

Check out our paper and release code and datasets

- Paper: https://arxiv.org/abs/2212.10264

- Code and datasets: https://github.com/amazon-science/recode

Check out CodeWhisperer for free!!!

https://aws.amazon.com/codewhisperer/

ReCode


