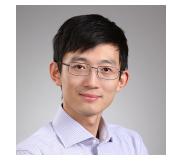
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution

Ananya Kumar

Aditi Raghunathan

Robbie Jones

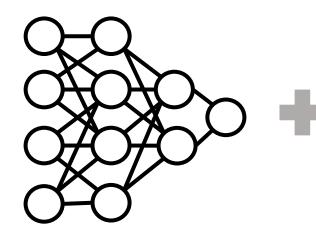


Tengyu Ma

Percy Liang

Classical ML: Train Model on Dataset

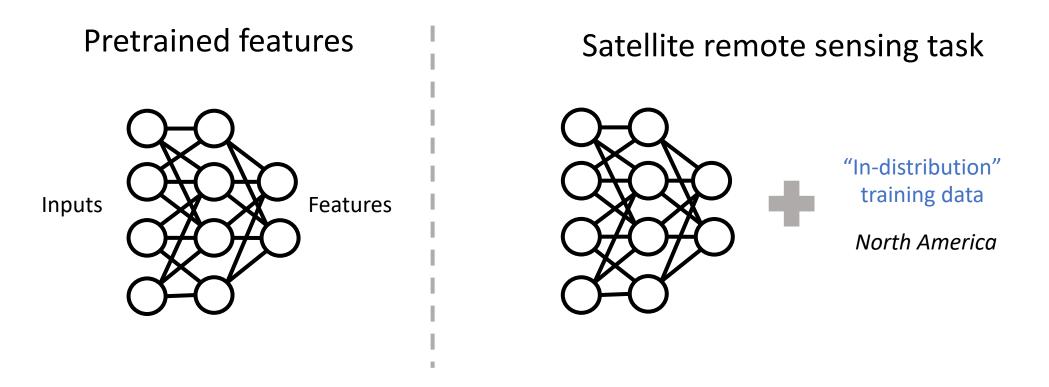
Satellite remote sensing task



"In-distribution" training data

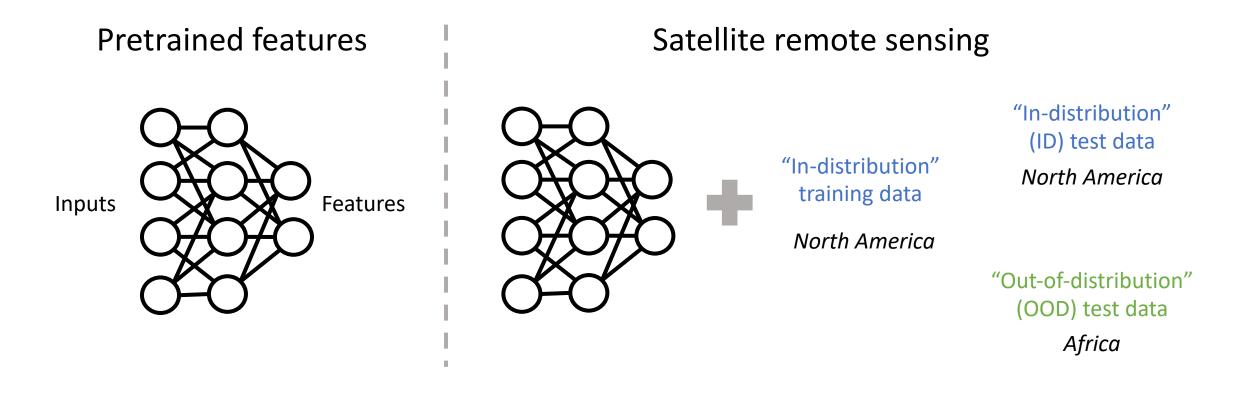
North America

Modern ML: Adapt Model on Dataset

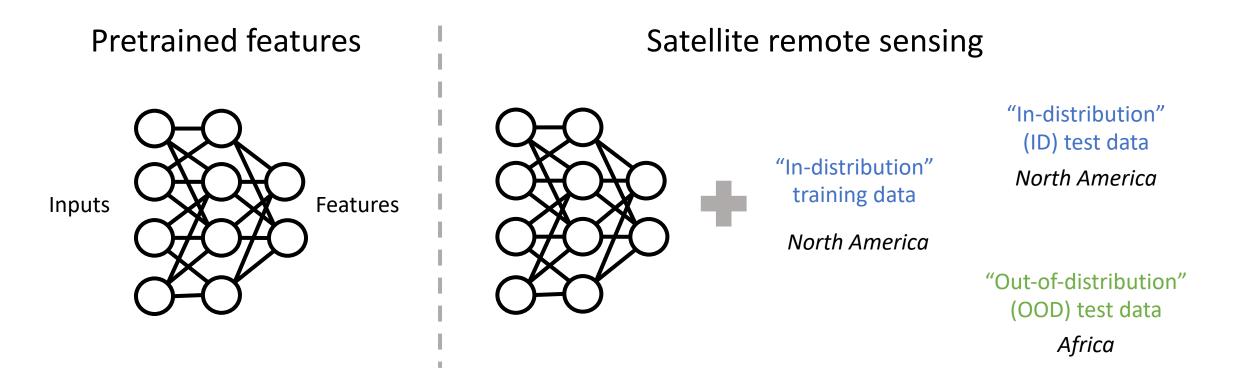


We start from pretrained models such as BERT (Devlin et al 2018), SimCLR (Chen et al 2020), CLIP (Radford et al 2021), and *adapt* them to our task---much better than training from scratch

Setting: Pretrain-Adapt-Test

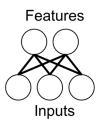


Setting: Pretrain-Adapt-Test

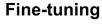


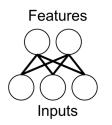
How should we adapt pretrained models (e.g. CLIP, SimCLR)?

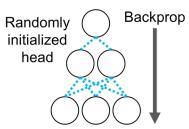
Pretraining

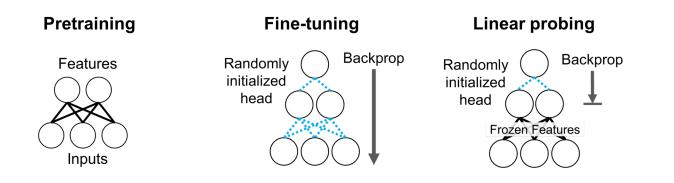


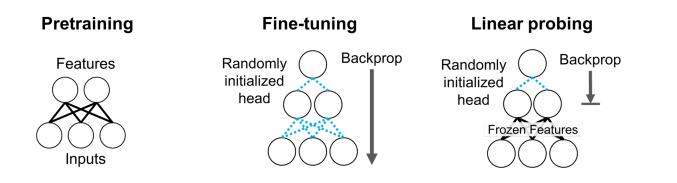
Pretraining











Which method does better?

Pop Quiz: Background, Living-17



Pop Quiz: Background, Living-17

- Breeds Living-17: task is to classify image into animal such as bear (ID contains black bears, sloth bears; OOD has brown bears, polar bears)
- Pretrained model: MoCo-V2 ResNet-50, seen *unlabeled* ImageNet images (including various types of bears)
- 17 classes of animals, around 50K training examples

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear Probing	96.5%	?
Fine-Tuning	97.1%	

(a) LP < Scratch (b) Scratch < LP

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear Probing	96.5%	82.2%
Fine-Tuning	97.1%	

(a) LP < Scratch (b) Scratch < LP

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear Probing	96.5%	82.2%
Fine-Tuning	97.1%	?

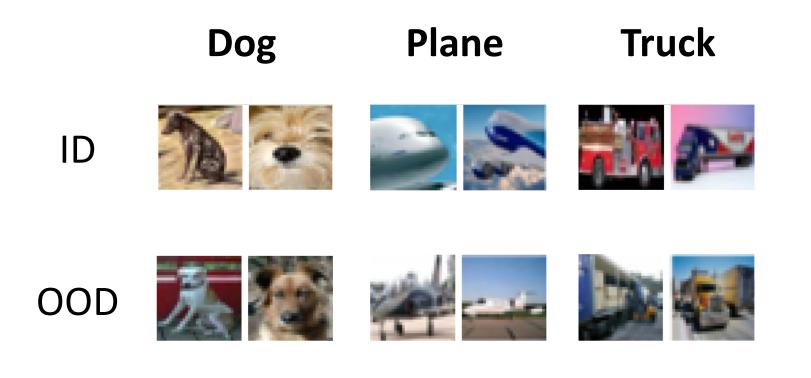
(a) FT < Scratch (b) Scratch < FT < LP (c) LP < FT

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear Probing	96.5%	82.2%
Fine-Tuning	97.1%	77.7%

(a) FT < Scratch (b) Scratch < FT < LP (c) LP < FT

Pop Quiz: Background, CIFAR-10.1

• ID = CIFAR-10, OOD = CIFAR-10.1: Dataset collected using a similar protocol to CIFAR-10, "a minute distributional shift"



Pop Quiz: CIFAR-10.1

CIFAR-10.1	ID	OOD
Linear Probing	91.8%	82.7%
Fine-Tuning	97.3%	?

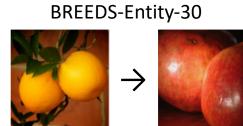
(a) LP < FT (b) FT < LP

Pop Quiz: CIFAR-10.1

CIFAR-10.1	ID	OOD
Linear Probing	91.8%	82.7%
Fine-Tuning	97.3%	92.3%

(a) LP < FT (b) FT < LP

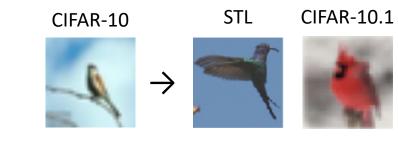
Datasets



 \rightarrow







FMoW-America

 \rightarrow

ImageNet

ImNetV2 ImNet-R

ImNet-Sketch

DomainNet Sketch

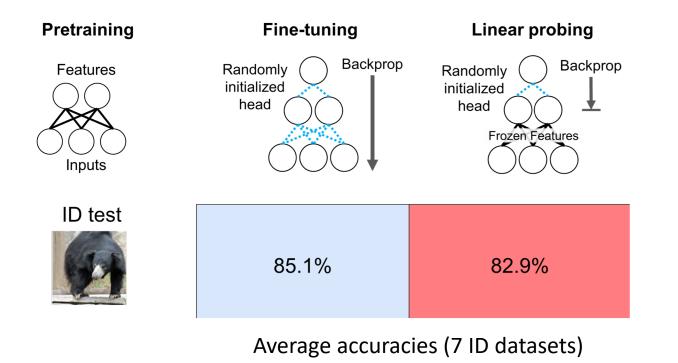
ImNet-A

 \rightarrow

Real

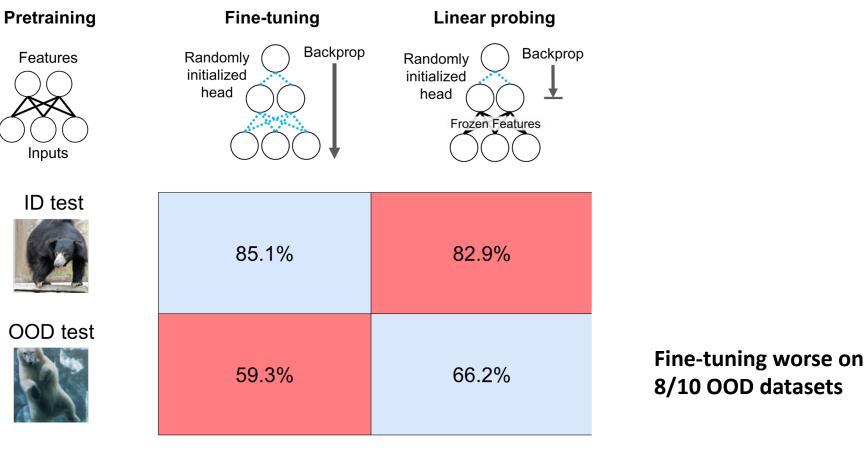
Painting (

Clipart

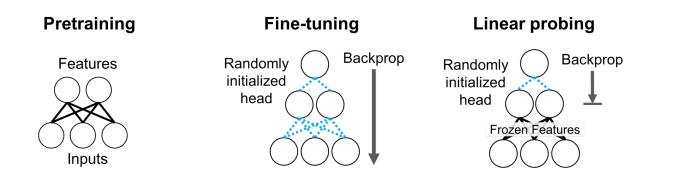


Common wisdom is fine-tuning works better than linear probing

(Kornblith et al 2019, Chen et al 2020, Zhai et al 2020, Chen et al 2021)



Average accuracies (10 datasets)



Fine-tuning can often do worse out-of-distribution

especially when the pretrained features are high quality and distribution shifts are large

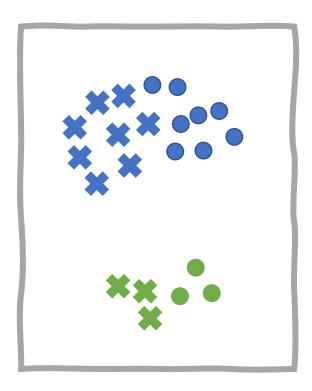
Outline

- 1. Fine-tuning can do worse than linear-probing OOD
- 2. Why fine-tuning can underperform OOD
- 3. Simple change to fine-tuning: improved accuracy on 10 datasets

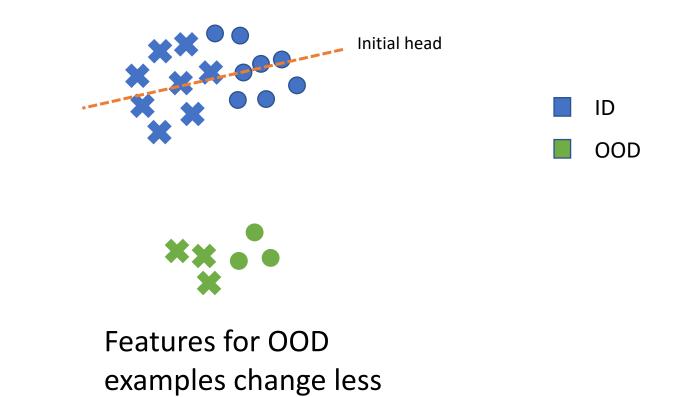
Outline

- 1. Fine-tuning can do worse than linear-probing OOD
- 2. Why fine-tuning can underperform OOD
- 3. Simple change to fine-tuning: improved accuracy on 10 datasets

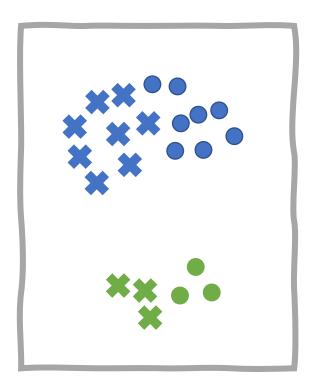
Pretrained Features



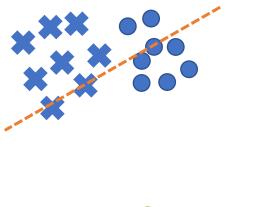
Fine-tuning: features for ID examples change in sync with the linear head



Pretrained Features

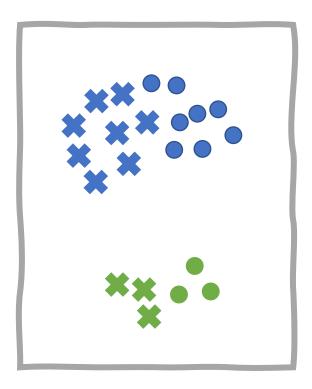


Fine-tuning: features for ID examples change in sync with the linear head

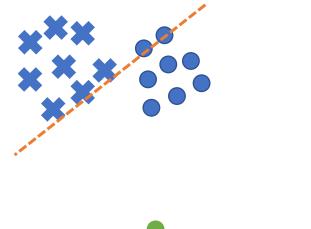


Features for OOD examples change less

Pretrained Features

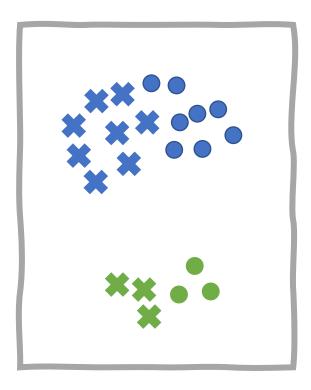


Fine-tuning: features for ID examples change in sync with the linear head

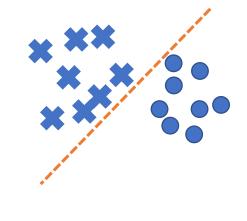


Features for OOD examples change less

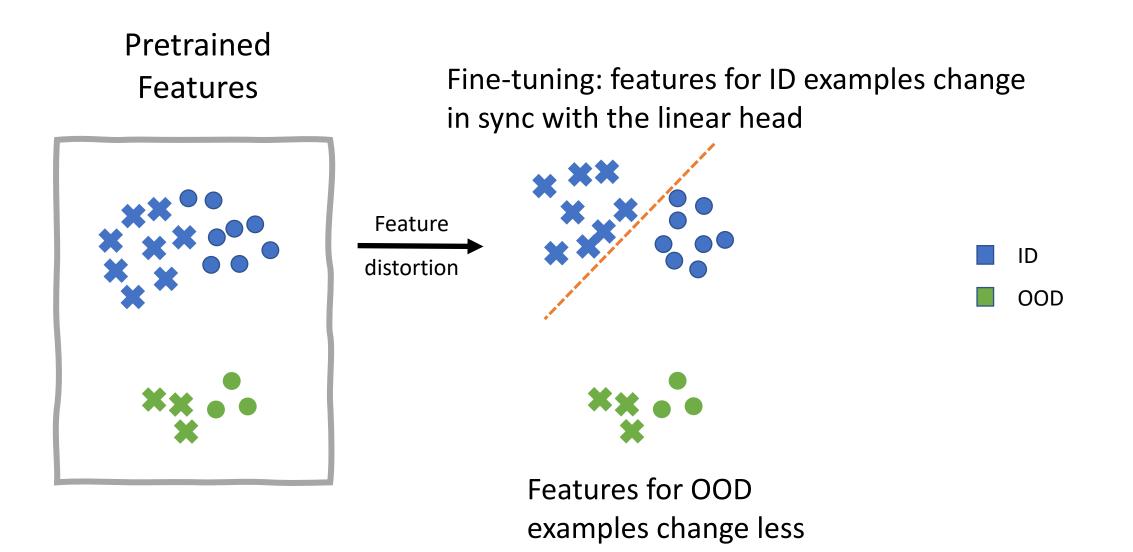
Pretrained Features

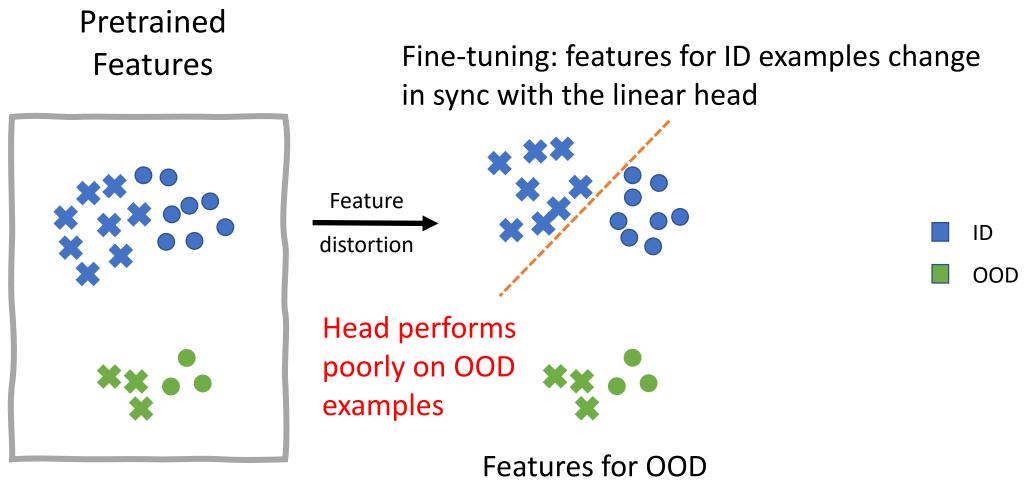


Fine-tuning: features for ID examples change in sync with the linear head

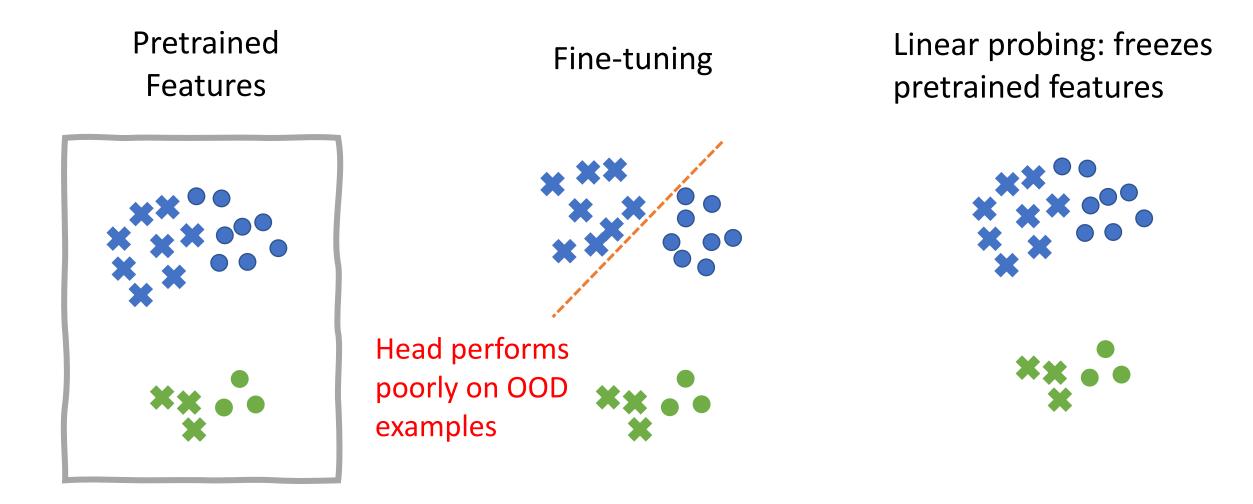


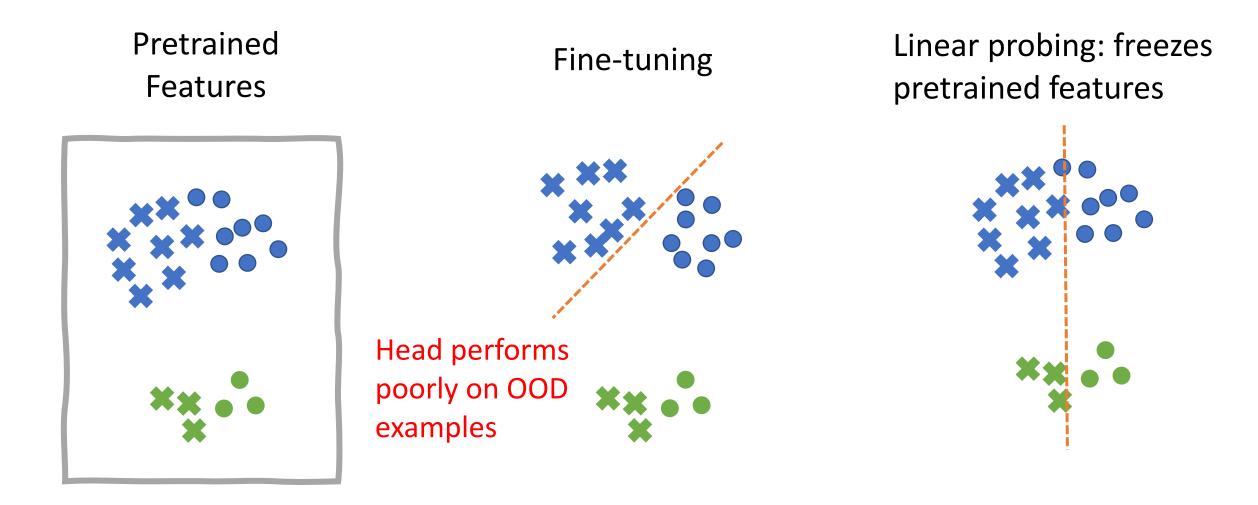
Features for OOD examples change less

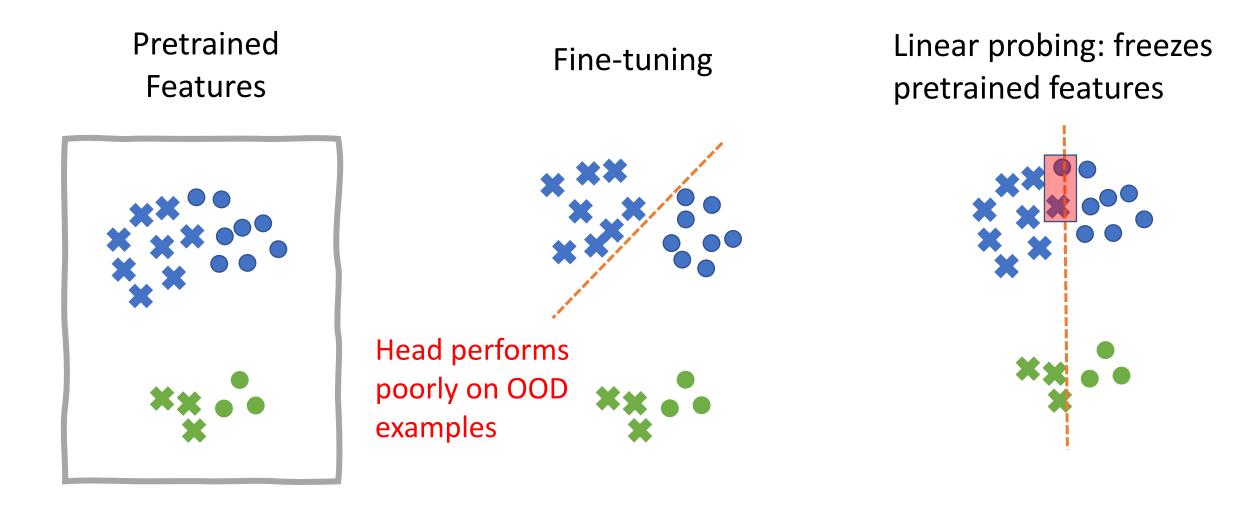


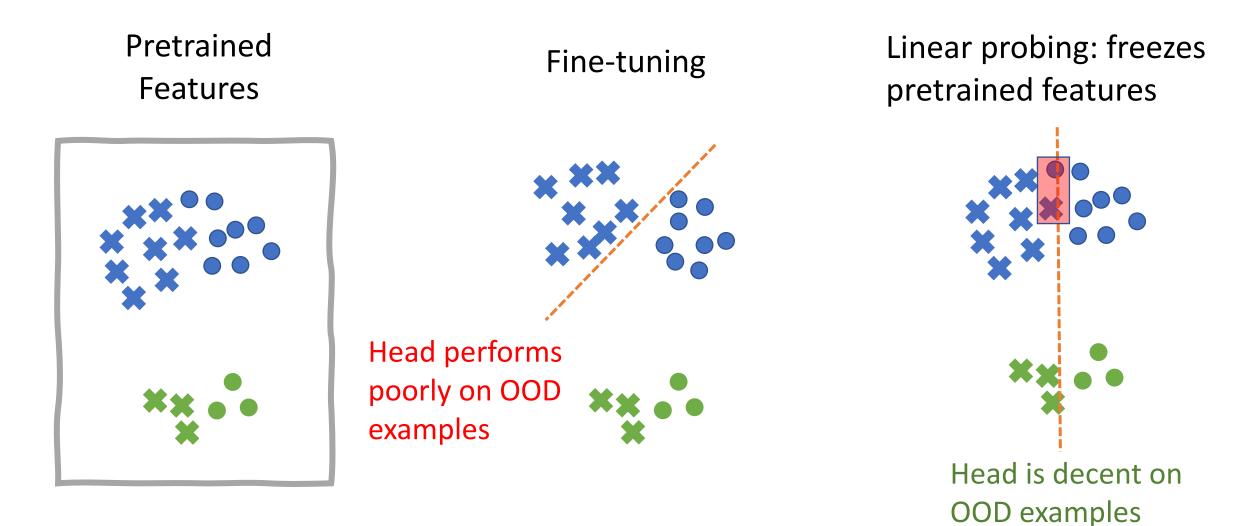


examples change less





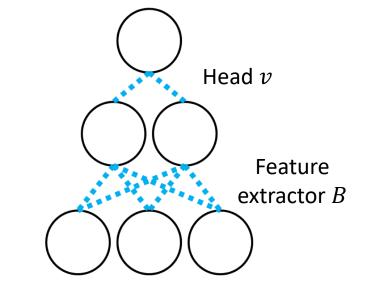




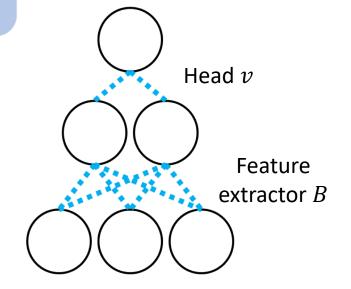
35

- Two-layer linear networks
 - High dimensional input: $x \in \mathbb{R}^d$
 - Lower dimensional features: $B_*x \in \mathbb{R}^k$, k < d
 - Ground truth outputs: $y = v_*^T B_* x \in R$ (both ID and OOD)
- From prior work on pretraining, suppose we have B_0 close to B_* , so $\min_U ||B_* UB_0||_2 \le \epsilon$ where min is over rotation matrices U
- Let B_0 , B_* have orthonormal rows

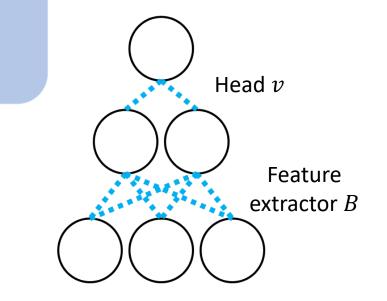
•
$$x_1, \dots, x_n \in \mathbb{R}^d$$
 are training examples with,
 $S = \text{span}(\{x_1, \dots, x_n\})$



- $y = v_*^T B_* x$ (both ID and OOD) where $x \in \mathbb{R}^d$, $B_* x \in \mathbb{R}^k$
- Have B_0 close to B_* (from pretraining)
- Squared loss: $\hat{L}(v, B) = \frac{1}{n} \sum_{i} (y_i v^T B x_i)^2$
- Fine-tuning: update v, B via gradient flow (non-convex)
 - $\partial_t v_{\rm ft}(t) = -\nabla_v \hat{L}(v, B)$ and $\partial_t B_{\rm ft}(t) = -\nabla_B \hat{L}(v, B)$
- Linear probing: update v via gradient flow (convex)
 - $\partial_t v_{\text{lp}}(t) = -\nabla_v \hat{L}(v, B)$ and $\partial_t B_{\text{lp}}(t) = 0$
- Initialize both with $B_{\rm ft}(0) = B_{\rm lp}(0) = B_0$ and $v_{\rm ft}(0) = v_{\rm lp}(0) = v_0$ where $v_0 = 0$ or $v_0 \sim N(0, \sigma^2 I_k)$



- $y = v_*^T B_* x$ (both ID and OOD) where $x \in \mathbb{R}^d$, $B_* x \in \mathbb{R}^k$
- Have B_0 close to B_* (from pretraining)
- v_{lp} , v_{ft} , B_{ft} from gradient flow on training data
- OOD evaluation:
 - P_{ood} has invertible covariance matrix Σ
 - $L_{\text{ood}} = E_{x \sim P_{\text{ood}}}[(y v^{\mathsf{T}}Bx)^2]$
- Overparameterized: $1 \le \dim(S) \le d k$
- Intuition: OOD includes directions not seen in training data. Both fine-tuning and training from scratch fit train loss, but have different test losses

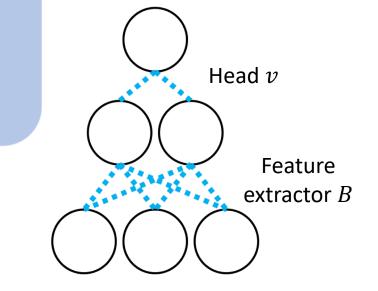


- $y = v_*^T B_* x$ (both ID and OOD) where $x \in \mathbb{R}^d$, $B_* x \in \mathbb{R}^k$
- Have B_0 close to B_* (from pretraining)
- v_{lp} , v_{ft} , B_{ft} from gradient flow on training data
- Lood, OOD loss, includes unseen directions

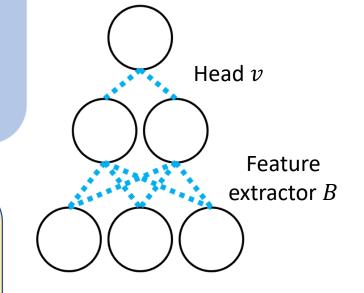
Theorem 3.3 (FT error, simplified & informal)

$$L_{\text{ood}}(v_{\text{ft}}(t), B_{\text{ft}}(t)) \ge O\left(\frac{\alpha}{k}\varphi\right)$$
 for small ϵ

- $\varphi^2 = |(v_0^\top v_*)^2 (v_*^\top v_*)^2|$ is the initial head alignment error
- $\alpha = \cos \theta_{\max} (S^{\perp}, R_0)$ where $R_0 = \operatorname{rowspace}(B_0)$ which we assume is non-zero



- $y = v_*^T B_* x$ (both ID and OOD) where $x \in \mathbb{R}^d$, $B_* x \in \mathbb{R}^k$
- Have B_0 close to B_* (from pretraining)
- v_{lp} , v_{ft} , B_{ft} from gradient flow on training data
- Lood, OOD loss, includes unseen directions

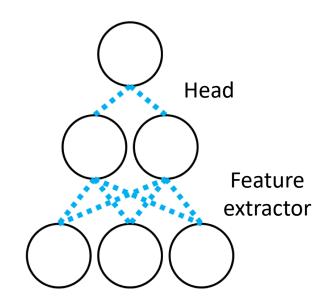


Theorem 3.5 (LP vs. FT OOD, informal)

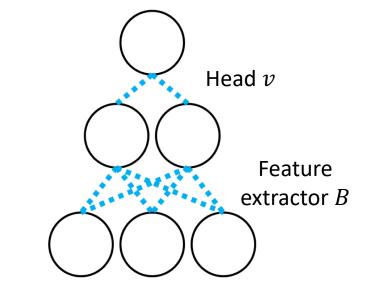
$$\forall t, \qquad \frac{L_{\text{ood}}(v_{\text{lp}}^{\infty}, B_0)}{L_{\text{ood}}(v_{\text{ft}}(t) B_{\text{ft}}(t))} \xrightarrow{p} 0, \qquad \text{ as } B_0 \to B_* \text{ (up to rotations)}$$

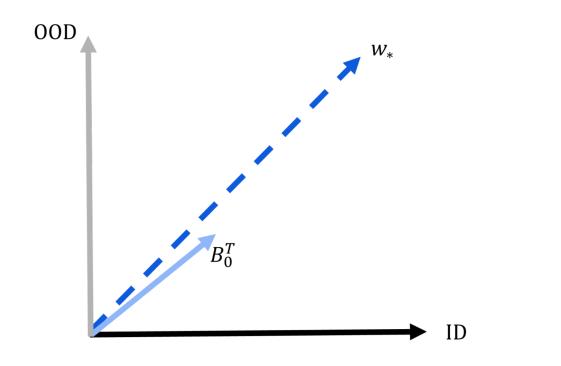
• Assume $\cos \theta_{\max}(S, R_*), \cos \theta_{\max}(S^{\perp}, R_*) \neq 0$ where $R_* = \operatorname{rowspace}(B_*)$

- Suppose training data sampled from P_{id} , supported and with density on m-dimensional subspace S with d k > m > k and $n \ge m$
- OOD: fine-tuning worse than linear probing
 - If pretrained features good, OOD shift large
 - Throughout the process of fine-tuning
- ID: fine-tuning better than linear probing

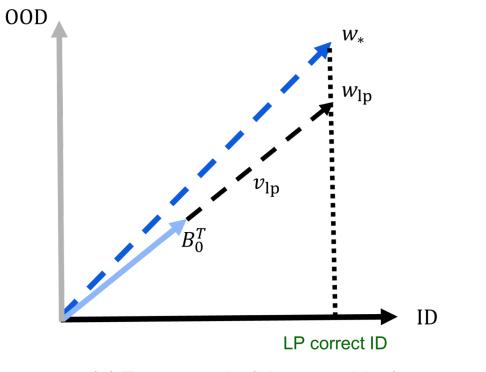


- Prior work studies linear probing (fitting linear head on features)
- Fine-tuning is non-convex, trajectory is complicated and has no known closed form even for two-layer linear networks
- Tool: leverage invariants that hold throughout process of fine-tuning

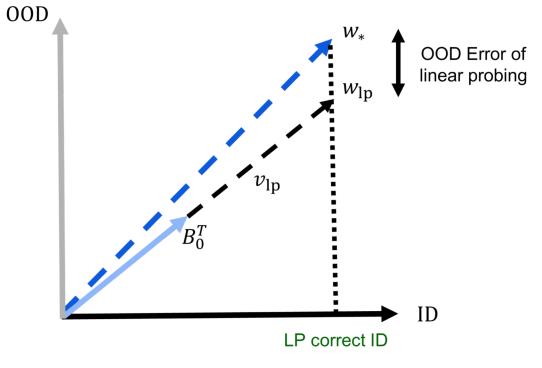




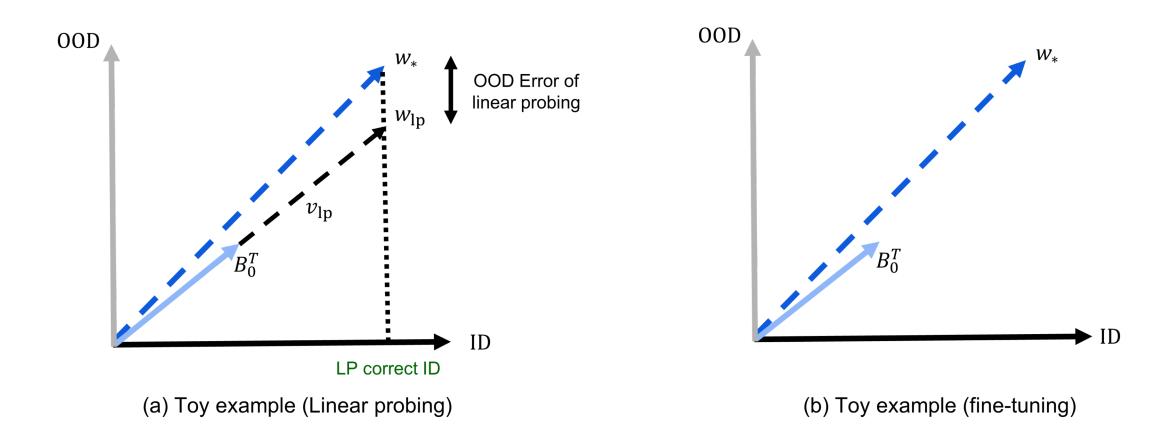
(a) Toy example (Linear probing)

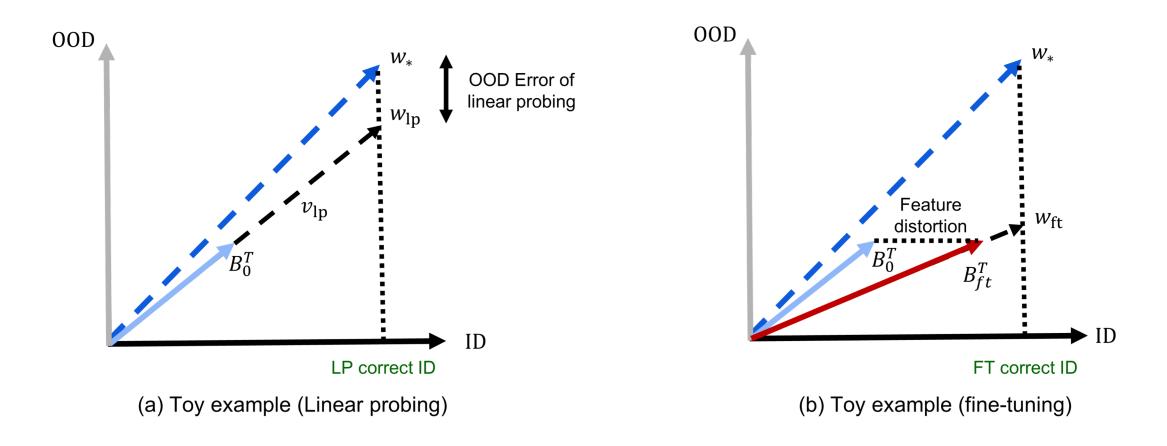


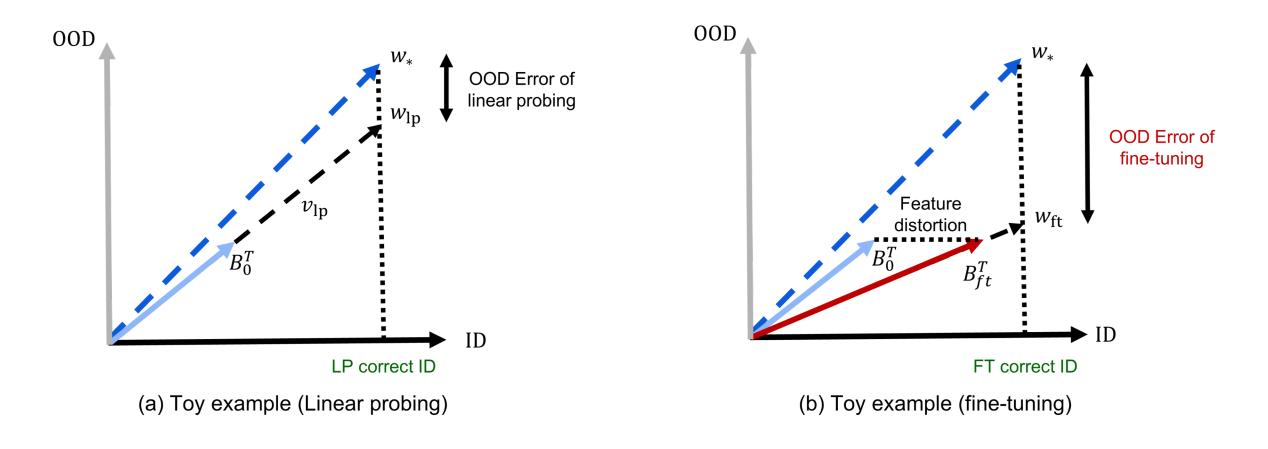
(a) Toy example (Linear probing)



(a) Toy example (Linear probing)







How to learn pretrained features

- Need to learn good features for *both* ID and OOD
- Auxiliary information
 - In-N-Out: Pre-Training and Self-Training using Auxiliary Information for Out-of-Distribution Robustness. SMX*, **AK***, RJ*, FK, TM, PL. ICLR 2021.
- Contrastive learning
 - Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised
 Domain Adaptation. KS*, RJ*, AK*, SMX*, JZH, TM, PL. ICML 2022 (Long Talk).

Outline

- 1. Fine-tuning can do worse than linear-probing OOD
- 2. Why fine-tuning can underperform OOD
- 3. Simple change to fine-tuning: improved accuracy on 10 datasets

Improving fine-tuning

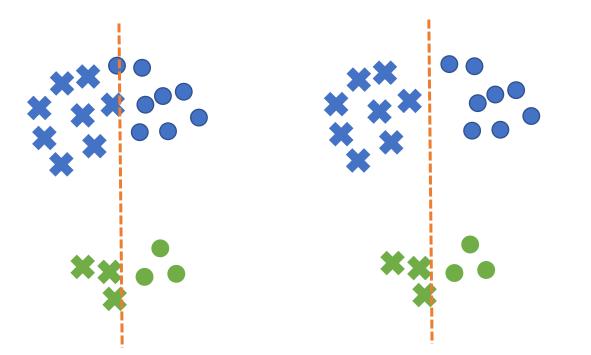
- Fine-tuning works better on ID test; linear probing works better on OOD test
- Reason: start with random head, changes a lot \rightarrow features get distorted

Can we refine features without distorting them too much?

Step 1: Linear probe Step 2: Fine-tune

(Levine et al 2016, Kanavati & Tsuneki, 2021)

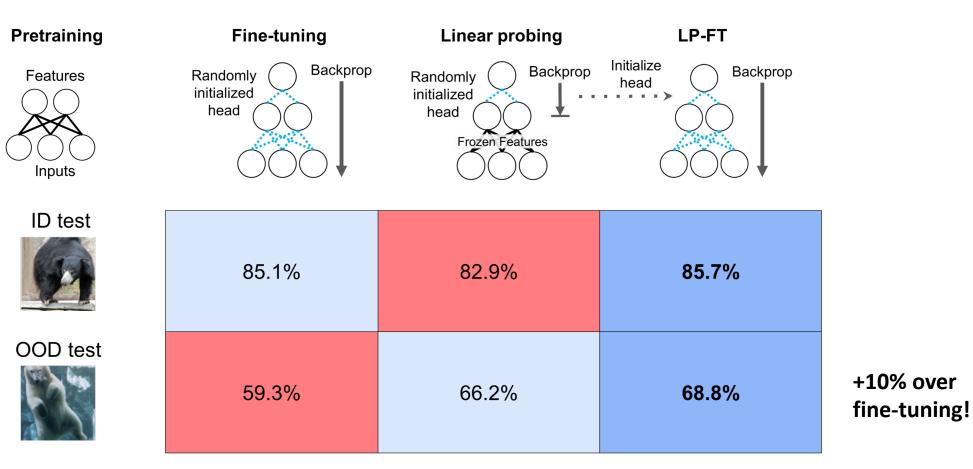
Prove this intuition in a simple setting



Improving fine-tuning: experiments

- Datasets: standard datasets including CIFAR, ImageNet, DomainNet, BREEDS, satellite remote sensing
- Models: conv nets (ResNet-50) and Vision Transformers (ViT-B/16)
- Protocols:
 - Rigorous protocol for tuning hyperparameters on ID validation data
 - Ensure that LP-FT and fine-tuning use the same computation

Improving fine-tuning



Average accuracies (10 datasets)

In-Distribution Accuracies

	CIFAR-10	Ent-30	Liv-17	DomainNet	FMoW	ImageNet	Average
FT	97.3 (0.2)	93.6 (0.2)	97.1 (0.2)	84.5 (0.6)	56.5 (0.3)	81.7 (-)	85.1
LP	91.8 (0.0)	90.6 (0.2)	96.5 (0.2)	89.4 (0.1)	49.1 (0.0)	79.7 (-)	82.9
LP-FT	97.5 (0.1)	93.7 (0.1)	97.8 (0.2)	91.6 (0.0)	51.8 (0.2)	81.7 (-)	85.7

Out-of-Distribution Accuracies

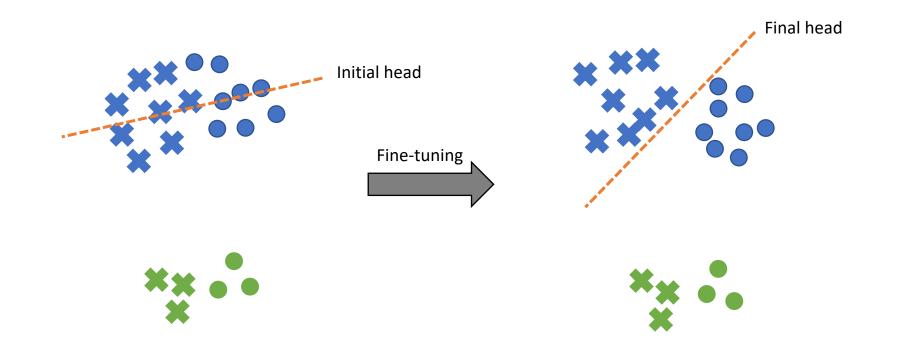
	STL	CIFAR-10.1	Ent-30	Liv-17	DomainN	et FMoW
FT	82.4 (0.4)	92.3 (0.4)	60.7 (0.2)) 77.8 (0.7)) 55.5 (2.2)) 32.0 (3.5)
LP	85.1 (0.2)	82.7 (0.2)	63.2 (1.3)) 82.2 (0.2)) 79.7 (0.6)) 36.6 (0.0)
LP-FT	90.7 (0.3)	93.5 (0.1)	62.3 (0.9)) 82.6 (0.3)	80.7 (0.9)) 36.8 (1.3)
		ImNetV2	ImNet-R	ImNet-Sk	ImNet-A A	verage
	FT	71.5 (-)	52.4 (-)	40.5 (-)	27.8 (-)	59.3
	LP	69.7 (-)	70.6 (-)	46.4 (-)	45.7 (-)	66.2
	LP-FT	71.6 (-)	72.9 (-)	48.4 (-)	49.1 (-)	68.9

State-of-the-Art Accuracies

- Model Soups paper (Wortsman, ..., Carmon*, Kornblith*, Schmidt*, 2022)
- Fine-tune ViT-G/14 (pretrained on JFT-3B) many times with LP-FT using different hyperparameters, average their weights in a greedy strategy (add a new model to the "soup" if ID validation accuracy improves)
- SoTA on ImageNet, ImageNet-(V2, Sketch, R, A), WILDS-iWildCam, WILDS-FMoW, and more

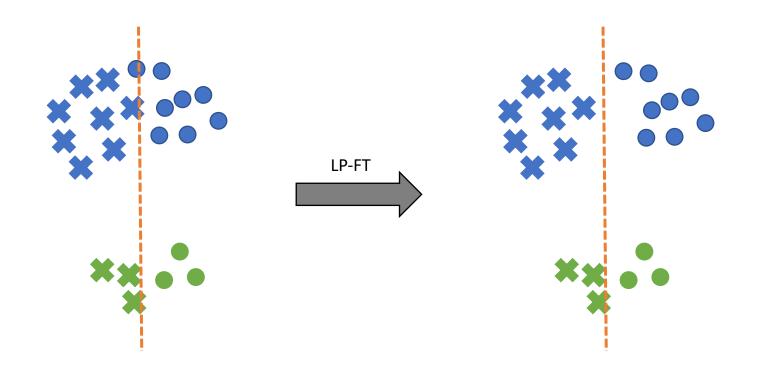
Does feature distortion happen?

• ID features change more than OOD features



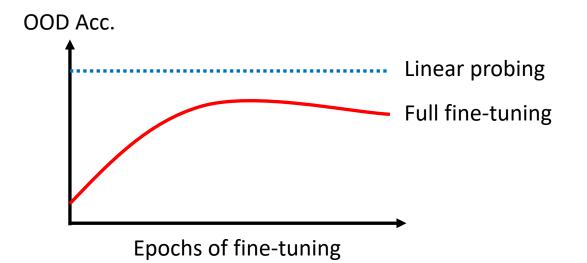
Does feature distortion happen?

• Features change orders of magnitude less with LP-FT



Does feature distortion happen?

• Early stopping does not solve the problem with fine-tuning



Important conditions for LP vs. FT

- Theory says fine-tuning does worse than linear probing **if** features good, distribution shift large
- CIFAR-10.1, ImageNetV2: small shift, FT does better
- Use MoCo-V1 instead of MoCo-V2: worse features, FT does better

Discussion

- Pretrained models give large improvements in accuracy, but how we fine-tune them is key
- LP-FT is just a starting point, better methods?
- What to do when linear probing not so good?

Discussion – Future Work

- Tighter analysis (including lower / upper bounds) for fine-tuning
- What happens for deep non-linear networks & classification?
- LP-FT analysis very toy, interaction with regularization?

Discussion - Related Work

- Lightweight fine-tuning
 - Can often improve OOD accuracy, we give one explanation
 - Increasingly important as pretrained feature quality improves
 - Adapter tuning, prefix tuning, composed fine-tuning
- Linear probing then fine-tuning
 - Sometimes used as a heuristic for ID, e.g. ULMFit
 - Just a starting point

Summary

- 1. Fine-tuning can do worse than linear-probing OOD
- 2. Why fine-tuning can underperform OOD
- 3. Simple change to fine-tuning: improved accuracy on 10 datasets
 - 1. Linear probe to learn good head initialization
 - 2. Fine-tune to refine features

Appendix: Few-Shot vs. OOD

- Result lower bounds error of fine-tuning, whenever test data contains directions outside training span
- This happens if:
 - Standard IID setting, when we have very few training examples
 - Distribution shift, no matter the number of training examples

Appendix: Regularization vs LP-FT

- Compared LP-FT with many other methods on Living-17, including regularizing towards pretrained weights, higher learning rate for top layer, side-tuning---LP-FT did better
- Regularization: suspect its an optimization explanation, with a random head the weights change initially, and end up at different part of loss landscape?
- 2-layer linear networks: regularization makes some local minima bad