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Classical ML: Train Model on Dataset

Satellite remote sensing task

“In-distribution” 
training data

North America
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Modern ML: Adapt Model on Dataset

Satellite remote sensing task

“In-distribution” 
training data

North America
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Inputs Features

Pretrained features

We start from pretrained models such as BERT (Devlin et al 2018), SimCLR (Chen et al 2020), CLIP 
(Radford et al 2021), and adapt them to our task---much better than training from scratch 
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How should we adapt pretrained models (e.g. CLIP, SimCLR)?
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Linear Probing vs. Fine-tuning
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Linear Probing vs. Fine-tuning



9

Linear Probing vs. Fine-tuning
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Linear Probing vs. Fine-tuning

Which method does better?
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Pop Quiz: Background, Living-17

Cat Ape Bear

ID

OOD
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Pop Quiz: Background, Living-17

• Breeds Living-17: task is to classify image into animal such as bear (ID 

contains black bears, sloth bears; OOD has brown bears, polar bears)

• Pretrained model: MoCo-V2 ResNet-50, seen unlabeled ImageNet 

images (including various types of bears)

• 17 classes of animals, around 50K training examples
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Pop Quiz: Living-17

Living-17 ID OOD

Scratch 92.4% 58.2%

Linear Probing 96.5% ?

Fine-Tuning 97.1%

(a) LP < Scratch (b) Scratch < LP 
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Pop Quiz: Living-17

Living-17 ID OOD

Scratch 92.4% 58.2%

Linear Probing 96.5% 82.2%

Fine-Tuning 97.1% ?

(a) FT < Scratch (c) LP < FT(b) Scratch < FT < LP
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Pop Quiz: Living-17

Living-17 ID OOD

Scratch 92.4% 58.2%

Linear Probing 96.5% 82.2%

Fine-Tuning 97.1% 77.7%

(a) FT < Scratch (c) LP < FT(b) Scratch < FT < LP
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Pop Quiz: Background, CIFAR-10.1

Dog Plane Truck

ID

OOD

• ID = CIFAR-10, OOD = CIFAR-10.1: Dataset collected using a similar 

protocol to CIFAR-10, “a minute distributional shift”
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Pop Quiz: CIFAR-10.1

CIFAR-10.1 ID OOD

Linear Probing 91.8% 82.7%

Fine-Tuning 97.3% ?

(a) LP < FT (b) FT < LP 
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Pop Quiz: CIFAR-10.1

CIFAR-10.1 ID OOD

Linear Probing 91.8% 82.7%

Fine-Tuning 97.3% 92.3%

(a) LP < FT (b) FT < LP 
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Datasets

ImageNet ImNetV2 ImNet-R ImNet-Sketch ImNet-A

→

FMoW-America

→

FMoW-Africa FMoW-Europe

BREEDS-Entity-30

→

BREEDS-Living-17

→ →

CIFAR-10 STL CIFAR-10.1

→

DomainNet Sketch Real Painting Clipart
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Linear Probing vs. Fine-tuning

Common wisdom is fine-tuning works better than linear probing

Average accuracies (7 ID datasets)

(Kornblith et al 2019, Chen et al 2020, Zhai et al 2020, Chen et al 2021)
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Linear Probing vs. Fine-tuning

Average accuracies (10 datasets)

Fine-tuning worse on 
8/10 OOD datasets
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Linear Probing vs. Fine-tuning

Fine-tuning can often do worse out-of-distribution
especially when the pretrained features are high quality and distribution shifts are large 
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1. Fine-tuning can do worse than linear-probing OOD 

2. Why fine-tuning can underperform OOD

3. Simple change to fine-tuning: improved accuracy on 10 datasets

Outline
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1. Fine-tuning can do worse than linear-probing OOD 
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3. Simple change to fine-tuning: improved accuracy on 10 datasets

Outline
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Initial head

ID

OOD

Pretrained 
Features Fine-tuning: features for ID examples change 

in sync with the linear head

Features for OOD 
examples change less

Feature Distortion Theory
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Fine-tuning: features for ID examples change 
in sync with the linear head
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Features

ID

OOD

Features for OOD 
examples change less

Feature Distortion Theory



28

Pretrained 
Features

ID

OOD

Fine-tuning: features for ID examples change 
in sync with the linear head

Features for OOD 
examples change less

Feature Distortion Theory



29

Pretrained 
Features

ID

OOD

Fine-tuning: features for ID examples change 
in sync with the linear head

Features for OOD 
examples change less

Feature Distortion Theory



Feature 

distortion

30

Pretrained 
Features

ID

OOD
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Pretrained 
Features

ID

OOD

Head performs 
poorly on OOD 
examples

Fine-tuning: features for ID examples change 
in sync with the linear head

Features for OOD 
examples change less

Feature Distortion Theory

Feature 

distortion
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Fine-tuningPretrained 
Features

Linear probing: freezes 
pretrained features

Feature Distortion Theory

Head performs 
poorly on OOD 
examples
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Pretrained 
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Pretrained 
Features

Linear probing: freezes 
pretrained features

Feature Distortion Theory

Fine-tuning

Head is decent on 
OOD examples

Head performs 
poorly on OOD 
examples
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Feature Distortion Theory
• Two-layer linear networks
• High	dimensional	input:	2 ∈ 45
• Lower dimensional features: 6∗2 ∈ 48,	: < <
• Ground	truth	outputs:	? = A∗B6∗2 ∈ 4 (both	ID	
and	OOD)

• From prior work on pretraining, suppose we 
have 6I close to 6∗, so min

J
||6∗ − M6I||N ≤ P

where min is over rotation matrices M
• Let 6I, 6∗ have orthonormal rows 
• 2Q, … , 2S ∈ 45 are	training	examples	with,	
V = span({2Q, … , 2S})

Head A

Feature 
extractor 6
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Feature Distortion Theory

Head !

Feature 
extractor "
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Feature Distortion Theory

• ! = #∗
%&∗' (both	ID	and	OOD)	where	' ∈ 9

:, &∗' ∈ 9
<

• Have &= close to &∗ (from pretraining) 
• #>?, #@A, &@A from gradient flow on training data

Head #

Feature 
extractor &

• OOD evaluation:
• BCCD has invertible covariance matrix Σ
• FCCD = GH∼JKKL[ ! − #

O&' P]

• Overparameterized: 1 ≤ dim V ≤ W − X

• Intuition: OOD includes directions not seen in 
training data. Both fine-tuning and training from 
scratch fit train loss, but have different test losses
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Feature Distortion Theory

• ! = #∗
%&∗' (both	ID	and	OOD)	where	' ∈ 9

:, &∗' ∈ 9
<

• Have &= close to &∗ (from pretraining) 
• #>?, #@A, &@A from gradient flow on training data

• BCCD, OOD loss, includes unseen directions
Head #

Feature 
extractor &

Theorem 3.3 (FT error, simplified & informal)

BCCD #@A(E), &@A(E) ≥ G
H

<
I for small J

• IK = | #=
M#∗

K − #∗
M#∗

K| is the initial head alignment error
• O = cos RSTU VW, 9= where 9= = rowspace(&=) which we 

assume is non-zero
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Feature Distortion Theory

• ! = #∗
%&∗' (both	ID	and	OOD)	where	' ∈ 9

:, &∗' ∈ 9
<

• Have &= close to &∗ (from pretraining) 
• #>?, #@A, &@A from gradient flow on training data

• BCCD, OOD loss, includes unseen directions
Head #

Feature 
extractor &

Theorem 3.5 (LP vs. FT OOD, informal)

as &= → &∗ (up to rotations)∀G,
BCCD #>?

H, &=

BCCD #@A(G) &@A(G)

I
0,

• Assume cos MNOP Q, 9∗ , cos MNOP QR, 9∗ ≠ 0 where 9∗ = rowspace(&∗)
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Feature Distortion Theory

• Suppose training data sampled from !"#, supported and with density 

on $-dimensional subspace % with & − ( > $ > ( and * ≥ $

• OOD: fine-tuning worse than linear probing

• If pretrained features good, OOD shift large

• Throughout the process of fine-tuning

• ID: fine-tuning better than linear probing

Head

Feature 
extractor
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Feature Distortion Theory

• Prior work studies linear probing (fitting linear head 
on features)

• Fine-tuning is non-convex, trajectory is complicated 

and has no known closed form even for two-layer 
linear networks

• Tool: leverage invariants that hold throughout 

process of fine-tuning

Head !

Feature 
extractor "
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Feature Distortion (Toy Example)
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Feature Distortion (Toy Example)
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Feature Distortion (Toy Example)
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Feature Distortion (Toy Example)
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Feature Distortion (Toy Example)



48

Feature Distortion (Toy Example)
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• Need to learn good features for both ID and OOD

• Auxiliary information

• In-N-Out: Pre-Training and Self-Training using Auxiliary Information for Out-of-

Distribution Robustness. SMX*, AK*, RJ*, FK, TM, PL. ICLR 2021.

• Contrastive learning

• Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised 

Domain Adaptation. KS*, RJ*, AK*, SMX*, JZH, TM, PL. ICML 2022 (Long Talk).

How to learn pretrained features
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1. Fine-tuning can do worse than linear-probing OOD 

2. Why fine-tuning can underperform OOD

3. Simple change to fine-tuning: improved accuracy on 10 datasets

Outline
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Improving fine-tuning
• Fine-tuning works better on ID test; linear probing works better on OOD test

• Reason: start with random head, changes a lot → features get distorted

Can we refine features without distorting them too much?

Step 1: Linear probe
Step 2: Fine-tune

LP-FT

Prove this intuition in a simple setting

(Levine et al 2016, Kanavati & Tsuneki, 2021)
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• Datasets: standard datasets including CIFAR, ImageNet, DomainNet, 

BREEDS, satellite remote sensing

• Models: conv nets (ResNet-50) and Vision Transformers (ViT-B/16)

• Protocols:

• Rigorous protocol for tuning hyperparameters on ID validation data

• Ensure that LP-FT and fine-tuning use the same computation

Improving fine-tuning: experiments
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Improving fine-tuning

+10% over 
fine-tuning!
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In-Distribution Accuracies
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Out-of-Distribution Accuracies
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• Model Soups paper (Wortsman, …, Carmon*, Kornblith*, Schmidt*, 2022)

• Fine-tune ViT-G/14 (pretrained on JFT-3B) many times with LP-FT using 

different hyperparameters, average their weights in a greedy strategy (add 

a new model to the “soup” if ID validation accuracy improves)

• SoTA on ImageNet, ImageNet-(V2, Sketch, R, A), WILDS-iWildCam, WILDS-

FMoW, and more 

State-of-the-Art Accuracies
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• ID features change more than OOD features

Does feature distortion happen?

Initial head

Final head

Fine-tuning
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• Features change orders of magnitude less with LP-FT

Does feature distortion happen?

LP-FT
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• Early stopping does not solve the problem with fine-tuning

Does feature distortion happen?

Linear probing

Full fine-tuning

OOD Acc.

Epochs of fine-tuning
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• Theory says fine-tuning does worse than linear probing if features 

good, distribution shift large

• CIFAR-10.1, ImageNetV2: small shift, FT does better

• Use MoCo-V1 instead of MoCo-V2: worse features, FT does better

Important conditions for LP vs. FT
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• Pretrained models give large improvements in accuracy, but how we 

fine-tune them is key

• LP-FT is just a starting point, better methods?

• What to do when linear probing not so good?

Discussion
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• Tighter analysis (including lower / upper bounds) for fine-tuning

• What happens for deep non-linear networks & classification?

• LP-FT analysis very toy, interaction with regularization?

Discussion – Future Work
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• Lightweight fine-tuning

• Can often improve OOD accuracy, we give one explanation

• Increasingly important as pretrained feature quality improves

• Adapter tuning, prefix tuning, composed fine-tuning

• Linear probing then fine-tuning

• Sometimes used as a heuristic for ID, e.g. ULMFit

• Just a starting point

Discussion - Related Work
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1. Fine-tuning can do worse than linear-probing OOD 

2. Why fine-tuning can underperform OOD

3. Simple change to fine-tuning: improved accuracy on 10 datasets

1. Linear probe to learn good head initialization

2. Fine-tune to refine features

Summary
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• Result lower bounds error of fine-tuning, whenever test data contains 

directions outside training span

• This happens if:

• Standard IID setting, when we have very few training examples

• Distribution shift, no matter the number of training examples

Appendix: Few-Shot vs. OOD
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• Compared LP-FT with many other methods on Living-17, including 
regularizing towards pretrained weights, higher learning rate for top layer, 

side-tuning---LP-FT did better

• Regularization: suspect its an optimization explanation, with a random 
head the weights change initially, and end up at different part of loss 

landscape?

• 2-layer linear networks: regularization makes some local minima bad

Appendix: Regularization vs LP-FT


