Large Language Models for **Network Security**

12/07/2023

Network Security Tasks

- Intrusion Detection
- Log Anomaly Detection
- Network Traffic Classification
- Detect BGP Hijacking Attacks
- Etc

- Network packets: the language between machines?
- Logs: the language between software?

Why LLMs?

- Network packets: the language between machines?
- Logs: the language between software?
- Very few labeled samples for attacks and anomaly
- Advantages of building on a "foundation model"?
 - Learn common "knowledge"?
 - Domain adaptation?

ET-BERT: A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification

Lin et al., WWW'22

- Tor, TLS, VPN, etc.
 - Protect privacy and anonymity for users
 - Cybercriminals evade surveillance

Traffic Encryption

Encrypted Traffic Classification

- Detect traffic from malware
 - Mobile phone, desktop, websites, ...
- Apply security policy in Enterprise settings
 - Bring your own device
- Censorship \bullet

Four Paradigms

Figure 1: Four main kinds of Encrypted Traffic ClassificationMethods: (a) Plaintext feature based fingerprint matching.(b) Statistical feature based machine learning. (c) Raw trafficfeature based ML. (d) Raw traffic based pre-training.

This Paper: Two New Pre-training Tasks

- A new notion of BURST
- Masked Language Model => Masked BURST Model
- Same-origin BURST Prediction

BURST

$BURST = \begin{cases} B^{src} = \{p_m^{src}, m \in \mathbb{N}^+\} \\ B^{dst} = \{p_n^{dst}, n \in \mathbb{N}^+\} \end{cases}$

• Flow: packets p identified by (IPsrc:PORTsrc, IPdst:PORTdst, Protocol)

Overview

Pre-Training: Masked BURST Model

- Masked BURST Model
 - For each token, mask with 15% probability
 - If chosen, replace it with [MASK] with 80% probability
 - Choose a random token to replace it with 10% probability
 - Leave it unchanged at 10% probability
- Predict the masked tokens, minimize negative log likelihood
- Standard Masked Language Model, just the token computation is different

Pre-Training: Same-origin BURST Prediction

Different websites load packets differently,

e.g., the order of objects to load, different categories of the content to load, etc.

Pre-Training: Same-origin BURST Prediction

- 50% of times, Sub-BURST A and Sub-BURST B come from the same origin
- 50% of times, different origins

Pre-training

Pre-Training

- Sum of the two pre-training losses
- 30GB of unlabeled traffic data:
 - (1) ~15GB traffic from the public datasets [9, 30] (VPN Traffic, Network Intrusion Detection Dataset)
 - (2) ~15GB traffic from our passively collected traffic under their own network
- Rich common network protocols: a new encryption protocol based on UDP transport QUIC, Transport Layer Security, File Transfer Protocol, Hyper Text Transfer Protocol, Secure Shell, etc.

Fine Tuning

- Packet level, and Flow level inputs
 - Differences are not very clear to me

Task	Dataset	#Flow	#Packet	#Label
GEAC	Cross-Platform(iOS) [35]	20,858	707,717	196
	Cross-Platform(Android) [35]	27,846	656,044	215
EMC	USTC-TFC [39]	9,853	97,115	20
ETCV	ISCX-VPN-Service [9]	3,694	60,000	12
	ISCX-VPN-App [9]	2,329	77,163	17
EACT	ISCX-Tor [10]	3,021	80,000	16
EAC-1.3	CSTNET-TLS 1.3 (Ours)	46,372	581,709	120

Highlight Results

encrypted traffic classification tasks, remarkably pushing the F1 of ISCX-VPN-Service to 98.9% (5.2%[†]), Cross-Platform (Android) to 92.5% (5.4%[†]), CSTNET-TLS 1.3 to 97.4% (10.0%[†]). Notably, we pro-

- In other datasets, the improvements are small
- tuning

• In most cases, not a big difference between packet-fine-tuning vs flow-fine-

Interpretation

- Different cipher implementations have varying degrees of randomness
- Some datasets use encryption algorithms with weaker randomness, so ET-BERT does better in these cases

Discussions

Can Language Models Help in System Security? Investigating Log Anomaly Detection using BERT

Almodovar et al., ACL'22

What are Log Anomalies?

- Public datasets:
 - HDFS logs: generated in a private cloud environment using benchmark workloads.
 - BGL is an open dataset of logs collected from a BlueGene/L supercomputer system at Lawrence Livermore National Labs (LLNL) in Livermore, California.
 - Thunderbird is an open dataset of logs collected from a Thunderbird supercomputer system at Sandia National Labs (SNL) in Albuquerque.
 - See examples
- Potential applications:
 - SSH logs, attacker brute force your login system

Input Differences from Previous Works

- token
- LogFiT treats logs are literally texts spoken by these systems

• Previous works treat each log sentence as an categorical input / one input

Main Idea

Do transfer learning on system log data

Start from BERT that learned information from language language

Anomaly Detection Paradigms

Figure 2: The DeepLo detection approaches.

Figure 2: The DeepLog and LogBERT log anomaly

- Masked Language Model
- Minimize distance to some centroid \bullet

Fine Tuning

 $Loss_{cdist} = \frac{1}{b} \sum_{i=1}^{b} (CV_j - centroid)^2.$

	HDFS					BGL			Thunderbird			
Method	Р	R	F1	S	Р	R	F1	S	Р	R	F1	S
DeepLog	100.0	60.90	75.70	100.0	90.2	70.68	79.25	98.32	65.05	99.4	78.64	89.30
LogBERT	24.02	82.80	37.24	47.62	88.92	88.35	88.63	97.59	91.75	95.7	93.69	98.28
LogFiT (ours)	99.78	90.60	94.97	99.96	98.83	84.70	91.22	99.00	89.90	98.80	94.14	97.78

Table 2: Comparison of anomaly detection effectiveness of different methods in terms of Precision (P), Recall (R), F1 score (F) and Specificity (S) on three log datasets (HDFS, BGL, Thunderbird).

• Lower S => Higher FPR

Results

Discussions

- Unclear how the threshold is chosen
 - e.g., maintain a low FPR? High Specificity?
- ?

Why LLMs?

- Network packets: the language between machines?
- Logs: the language between software?
- Very few labeled samples for attacks and anomaly
- Advantages of building on a "foundation model"?
 - Learn common "knowledge"?
 - Domain adaptation?

• Other Network Security Tasks?

Discussions

Final Project Report

- Problem Statement
- Related Work
- Method
- Results
- Takeaway and Lessons Learned