
CMSC818I: Advanced Topics in
Computer Systems; Large Language

Models, Security, and Privacy
Robustness Evaluation of Large Language Models

& Security of Code Generation Models

9/19/2023

Agenda
• “Certifying LLM Safety against Adversarial Prompting” required reading

• “The Base-Rate Fallacy and the Difficulty of Intrusion Detection”
required reading

• “Baseline Defenses for Adversarial Attacks Against Aligned Language
Models” optional reading

• “Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s Code
Contributions”

erase-and-check

• Given a prompt P, certify whether P is an adversarial prompt constructed
by adding some tokens to a shorter prompt P’ up to size d

Three Ways to Add Tokens

erase-and-check: Adversarial Suffix

Adversarial Suffix

• Assumption: a good safety filter

• Given a prompt P, length n

• P = P’ + 𝛼, |𝛼| <= d

• Erase one token at a time from P, up to d tokens

• O(d)

Adversarial Insertion
• Given a prompt P, length n

• P = P1 + 𝛼 + P2, |𝛼| <= d

• 1) Choose which location to start: n choices

• 2) Erase one token at a time from P, up to d tokens

• O(nd)

• Can generalize to k different insertions O((nd)^k)

Adversarial Infusion
• Given a prompt P, length n

• 1) Choose the first location to erase: n choices

• 2) Choose the second location to erase: n-1 choices

• 3) Choose the third location to erase: n-2 choices

• …

• d) Choose the d-th location to erase: n-d+1 choices

• O(n * (n-1) * (n-2) * … * (n-d+1)) = O(n^d)

• The number of adv tokens <= d

Safety Guarantee
• If the number of adversarial tokens <= d

• One of the erased prompts must be the original unsafe prompt

• The safety filter checks the original unsafe prompt

• If the safety filter classifies all subsequences as safe, P is certified to be safe

• What if the safety filter is not accurate?

• If safety filter is always right, it is certified, very strong assumption

• Is it a guarantee?

Results

• Safety filter: Llama 2 system prompt

• “Against adversarial suffixes of length 20, it certifiably detects 93% of the
harmful prompts and labels 94% of the safe prompts as safe”

TNR and Runtime: Suffix Mode

TNR and Runtime: Insert Mode

TNR and Runtime: Insert Mode

TNR and Runtime: Infusion Mode

• P(Adv | Detect) =

Posterior
P(Adv) P(Detect | Adv)

P(Adv) P(Detect | Adv) + P(Safe) P(Detect | Safe)

• P(Adv | Detect) =

Posterior
P(Adv) P(Detect | Adv)

P(Adv) P(Detect | Adv) + P(Safe) P(Detect | Safe)

• Prior P(Adv) = 0.1%, P(Safe) = 99.9%, P(Adv) could be much smaller

• P(Detect | Adv) = TPR = 93%

• P(Detect | Safe) = FPR = 1 - TNR = 1 - 94% = 6%, blocking 6% of safe prompts

• P(Adv | Detect) =

Posterior
P(Adv) P(Detect | Adv)

P(Adv) P(Detect | Adv) + P(Safe) P(Detect | Safe)

• Prior P(Adv) = 0.1%, P(Safe) = 99.9%, P(Adv) could be much smaller

• P(Detect | Adv) = TPR = 93%

• P(Detect | Safe) = FPR = 1 - TNR = 1 - 94% = 6%, blocking 6% of safe prompts

• Posterior P(Adv | Detect) = 1.5%, 1.5 adv prompt out of 100 alarms

• P(Adv | Detect) =

Posterior
P(Adv) P(Detect | Adv)

P(Adv) P(Detect | Adv) + P(Safe) P(Detect | Safe)

• Prior P(Adv) = 0.1%, P(Safe) = 99.9%, P(Adv) could be much smaller

• P(Detect | Adv) = TPR = 93%

• P(Detect | Safe) = FPR = 1 - TNR = 1 - 94% = 6%, blocking 6% of safe prompts

• Posterior P(Adv | Detect) = 1.5%, 1.5 adv prompt out of 100 alarms

• If P(Adv) = 0.01%, P(Adv | Detect) = 0.15%, 1.5 adv prompt out of 1000 alarms

Discussions

• Neat idea for a baseline

• Base-Rate Fallacy

• Exercise: 99% TPR, 1% FPR, P(Adv) = 0.01%

• Safety guarantee

• Idea for improvements

