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Adversarial Examples

Small perturbation to the input that changes the 
output of a neural network



From Invisible to Real

[Sharif Bhagavatula Bauer Reiter 2016]

[Thys Van Ranst Goedeme 2019][Wu Lim Davis Goldstein 2020]

[Athalye Engstrom Ilyas Kwok 2018]



Core Research: Saturated?

“RobustBench: a standardized adversarial robustness benchmark” Croce et al. 2021



ML Models are Evolving

VGG, ResNet, etc. Transformers



Large Language Models

GPT-4

CoPilot



Large Vision Models

Segment Anything

Stable Diffusion



New Paradigm: Prompting

”A typical day in San Francisco”

DALL-E 2

Walk the Golden Gate Bridge, 
explore neighborhoods, visit 
museums, enjoy local 
brunch, experience 
Fisherman's Wharf, savor 
seafood, catch a show, and 
end the day with city views at 
a rooftop bar.

ChatGPT



ML Use Case shift

𝑥 →  → 𝑓 𝑥 ≈ 𝑦

𝑓

Structured inputs, unstructured outputs

𝑥 ∈ English →  → 𝑓 𝑥 =	?

𝑓

Unstructured inputs, structured outputs



Prompt Engineering

Ruskov 2023 “Grimm in Wonderland: Prompt Engineering with Midjourney to Illustrate Fairytales”



Strange prompts can lead 
to surprising outputs

apoploe apoploe, cartoon

Daras & Dimakis 2022 “Discovering the Hidden Vocabulary of DALLE 2”

apodidae is a family of birds



Prompts Are Not Robust
Review: The butter chicken is so creamy.
Answer: Positive
Review: Service is subpar.
Answer: Negative
Review: Love their happy hours
Answer: Positive
Review: My Biryani can be a tad spicier.
Answer: Negative

Review: Service is subpar.
Answer: Negative
Review: The butter chicken is so creamy.
Answer: Positive
Review: Love their happy hours
Answer: Positive
Review: My Biryani can be a tad spicier.
Answer: Positive



Prompts Expose Secrets

Ruskov 2023 “Grimm in Wonderland: Prompt Engineering with Midjourney to Illustrate Fairytales”



“Bad” Prompts have Real 
Consequences



Prompting questions

• Threat model: what is an adversarial 
prompt? 

• Optimization: how to construct 
adversarial prompt? 

• Defense: How to stop adversarial 
prompts? 



𝑝′ ∈ 𝐵(𝑝) →  → 𝑓 𝑝′ =	?

𝑓

“A picture of 
a mountain” 

→

Dall-E

→

Adversarial Prompt

𝑝!"# = max
$%∈'($)

	ℓ(𝑓 𝑝′ )



Threat Modeling
How to model an adversarial prompt? 



Adversarial over Time
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“Adversarial Examples” Search Popularity 
(United States)

Adversarial Examples Search Popularity (United States)



Spam Filtering (2004)
“Congratulations ur awarded 500 of CD 
vouchers or 125gift guaranteed & Free entry 2 100 
wkly draw txt MUSIC to 87066 TnCs 
www.Ldew.com1win150ppmx3age16” à Spam ✔

“Congratulations good ur awarded good 500 of 
CD vouchers or 125 good gift guaranteed love & 
Free entry 2 good 100 wkly draw txt MUSIC to 
87066 TnCs www.Ldew.com1win150ppmx3age16 
good good good good good deal” à Not Spam ❌

“Adversarial Classification” Dalvi et al. 2004
“Good Word Attacks on Statistical Spam Filters” Lowd & Meek 2005
“Adversarial Machine Learning for Spam Filters” Kuchipudi et al. 2020



Threat model: Unrestricted

“louisiana 
argonhilton deta”

Goal: Lizard

Length k sequences: B 𝑝 = {	𝑝! ∈ English}
Goal (generate a dog): ℓ 𝑥 = −Prob(“𝑑𝑜𝑔”|𝑥)

𝑝!"# = max
$%∈'($)

	ℓ(𝑓 𝑝′ )

𝑝% ∈ 𝐵(𝑝)



Threat model: prepending

“turbo 
lhaff✔” +

𝑝% ∈ 𝐵(𝑝) 𝑝

“a picture of a 
mountain”

Goal: Dog

Length k sequences: B 𝑝 = {	𝑝! ∈ English ∶ 𝑝 ≤ 𝑘}
Goal (generate a dog): ℓ 𝑥 = −Prob(“𝑑𝑜𝑔”|𝑥)

𝑝!"# = max
$%∈'($)

	ℓ(𝑓 𝑝′ )



Obvious prepending 
prompts

“dog dog 
dog dog” +

𝑝

“a picture of a 
mountain”

Goal: Dog
𝑝!"# = max

$%∈'($)
	ℓ(𝑓 𝑝′ )

“Obvious” prompts are “perceptible”

𝑝% ∈ 𝐵(𝑝)



Threat model: restricted 
prepending

“turbo 
lhaff✔” +

𝑝

“a picture of a 
mountain”

Goal: Dog

B 𝑝 = {	𝑝! ∈ English ∶ 𝑝 ≤ 𝑘 ∧ 𝑝!	contains	no	dog	words}

𝑝% ∈ 𝐵(𝑝)

Don’t allow tokens that generate dogs 
on their own



How to automatically find 
adversarial prompts? 
With only query access to model 



Classic Adversarial Attack
max
||+||!,-

ℓ(𝑓 𝑥 + 𝛿 , 𝑦)

Gradient-based optimization



Challenge: Closed-models 
only allow query access

ChatGPT NovelAI

𝑝!"# = max
$%∈'($)

	ℓ(𝑓 𝑝′ )

Can only sample 𝑓(𝑝) for prompts 𝑝



Black box adversarial 
attacks
Adversarial literature: Square attack*
(local random search)

Black box optimization: TuRBO*
(Bayesian optimization)

*Not designed for 
discrete text attacks



Challenge: 40k discrete 
token space

Each token is one of 40,000 possible 
values

A sequence of 𝑘 tokens has 40,000. 
possible prompts

Discrete + high dimensional = hard 



Discrete to Continuous

Step 1: Optimize in continuous 
embedding space



Project Continuous 
Embedding to Tokens

Step 2: Project embeddings 𝑒 to the 
nearest allowable tokens 𝑡. ∈ 𝐵(𝑝) 

Token Space Projection: Proj' $ 𝑒!"#



Adversarial Prompting 
Pipeline

1. Find adversarial embedding with 
black-box optimization

e!"# = arg	max
/

	ℓ 𝑓 Proj' $ 𝑒

2. Project to nearest adversarial 
prompt

𝑝!"# = Proj' $ 𝑒!"#



Adversarial Prompts: 
A First Attempt



Caveat for Experiments

Open source experiments
• Reproducible + systematic
• Static models
• Reduced costs

Some results transfer to closed-source 
models, but not all



Image Class Attack
Threat model: prepend text to generate 
images of ballplayers

“fiji players 
homoncaine” +

𝑝

“a picture of a 
mountain”

𝑝! ∈ 𝐵(𝑝)



Image Class Attack
Threat model: prepend text to generate 
images of dogs

“turbo lhaff✔” +

𝑝

“a picture of a 
mountain”

𝑝! ∈ 𝐵(𝑝)



Image Class Attack
Threat model: prepend text to generate 
images of dogs

“turbo lhaff✔” +

𝑝

“a picture of a 
mountain”

𝑝! ∈ 𝐵(𝑝)



Adversarial Transfer: 
Stable DiffusionàDALL-E 2

“pegasus Yorkshire 
wwii taken” +

𝑝

“a picture of the 
ocean”

𝑝! ∈ 𝐵(𝑝)

Generate airplane attack on Stable 
Diffusion à Transfer to DALLE-2



Sentiment Attack

Threat model: prepend text to change 
the sentiment of generated text

“rolled</s> latest 11 ” +

𝑝

“I am sad”

𝑝! ∈ 𝐵(𝑝)

Generated text: “to say, but I am happy to say that I am 
not the only one”



Perplexity Attack

Threat model: prepend text to increase 
the perplexity of generated text

“intent oder 
ranch delegate 

source every”
+

𝑝

“Explain list 
comprehension in 

Python.”

𝑝! ∈ 𝐵(𝑝)

Generated text: “Willkommen auf meinem GPT-3-Konto! Ich bin ein 
k¨unstlicher Intelligenz-Sprachmodell und kann dir bei deinen Frag 

en helfen”



Perplexity Attack

“default since 
levant rico ny 

levant”
+

𝑝

“run opposite left after jump around 
right thrice\n\n Given the commands 

above, produce the corresponding 
correct sequence of actions. The 

actions should be comma-
separated..”

𝑝! ∈ 𝐵(𝑝)

Generated text: “Human, default, default, default, default, default, 
default, default, default, default, default, default, default, default, 
default, default, default, default, default, default, default, default, 

default, default, default,”



Query complexity

$0.002
1000	tokens

⋅
75	tokens
prompt

⋅ 5000	prompt𝑠 = $0.75	

Hypothetical Chat GPT* price 

*GPT4 more expensive, around $15-20



Research Directions in 
Adversarial 
Prompting



Tip of the iceberg

• Threat models 𝐵(𝑝)
• Adversarial goals ℓ ⋅
• Attack methods max(⋅)

𝑝!"# = max
$%∈'($)

	ℓ(𝑓 𝑝′ )



What can an adversary do?

• Unrestricted prompts 

• Prepended prompts

• Restricted prepended prompts

Could also consider: word insertion, 
post-pending, paraphrasing…



What does an adversary 
want to do?
• Defined by a classifier à reduce to 
classic adversarial examples

• Goals for generative adversaries go 
beyond classification

Could also consider: inserting 
backdoors, revealing previous 

instructions…



How to defend against 
malicious prompts? 
Classic answer: robust training 

But: data is closed source or too large to 
re-train

Black box adversarial defenses? 
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