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Threat Model
Adversary’s Capabilities: 

● black-box input-output access to a language model
● can get logits or probabilities
● no access to model weights or hidden states

Attack Target:

● extract memorized training data from GPT2
● why GPT2

○ all training data are public -> ethical
○ the training dataset never been released by OpenAI-> not cheating



Memorization



Extract Training Data (Naive Try)
● Generate a lot of data

○ prompt the model with start-of-sentence token

○ sample with 256 tokens with top-k strategy, k=40

○ 200,000 samples from GPT-2 XL (1.5B parameters)

● Predict membership
○ use perplexity as the metric



Extract Training Data (Naive Try)
● When investigate samples with the lowest perplexity

○ the entire text of the MIT public license and the user guidelines of Vaughn Live

○ popular individuals’ Twitter handles or email addresses

○ most extracted content appears many times in the training data



Extract Training Data (Naive Try)
● When investigate samples with the lowest perplexity

○ the entire text of the MIT public license and the user guidelines of Vaughn Live

○ popular individuals’ Twitter handles or email addresses

○ most extracted content appears many times in the training data

● Weakness
○ the naive sampling scheme tends to produce a low diversity of outputs

○ the naive membership inference strategy suffers from a large number of false positives, like 

assigning high likelihood to repeated strings



Extract Training Data (Improved)
● Generate a lot of data

○ sample with a decaying temperature: from 10 to 1 for the first 20 tokens

○ prompt the model with the prefixes scraped from the Internet

● Predict membership
○ filter out examples that are also “unsurprising” to smaller GPT-2 models

○ use the ratio of the perplexity and the zlib entropy as the metric

○ use the ratio of the perplexity on the extracted content before and after lowercasing

○ use the minimum perplexity when averaged over a sliding window of 50 tokens



Evaluation
● 3 ways to generate 200,000 generated samples:

○ Top-n: samples naively from the empty sequence

○ Temperature: sample with a decaying temperature

○ Internet: conditions the LM on Internet text

● 6 membership inference metrics:
○ Perplexity: the perplexity of GPT-2 XL (1.5B parameters)

○ Small: the ratio of log-perplexities of GPT-2 XL and GPT-2 Small (124M parameters)

○ Medium: the ratio as above, but use GPT-2 Medium (355M parameters)

○ zlib: the ratio of the perplexity and the zlib entropy

○ Lowercase: the ratio of the perplexity on the original sample and on the lowercased sample

○ Window: the minimum perplexity of the largest GPT-2 model across any sliding window of 50 

tokens
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In each of 3x6 configurations, choose 
top 100 samples to form 1800 final set 

of potentially memorized content



Results
604 unique memorized training examples among 1800 candidates!
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How to Mitigate Privacy Leakage?

Deduplications?



How to Mitigate Privacy Leakage?

Deduplications?

Differential Privacy!
but

worse performance, slow



Follow up Work
Extracting Training Data from Diffusion Models, 

https://arxiv.org/abs/2301.13188

Privacy Side Channels in Machine Learning Systems, 
https://arxiv.org/abs/2309.05610

https://arxiv.org/abs/2301.13188
https://arxiv.org/abs/2309.05610

