A Watermark for Large Language Models

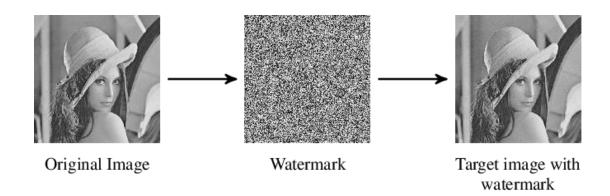
John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz,

Ian Miers, Tom Goldstein

What are watermarks?

• Traditional watermarks

• Digital watermarks



Why do we need watermarks?

- Mitigating malicious use.
 - Watermarks can help to identify content generated by LLMs, making it easier to detect and prevent malicious activities.
- Protecting academic and coding integrity.
 - Help instructors find out academic cheating.
- Promoting transparency.
 - Watermarks promote transparency by clearly indicating when content has been generated by LLMs.

How to watermark LLMs?

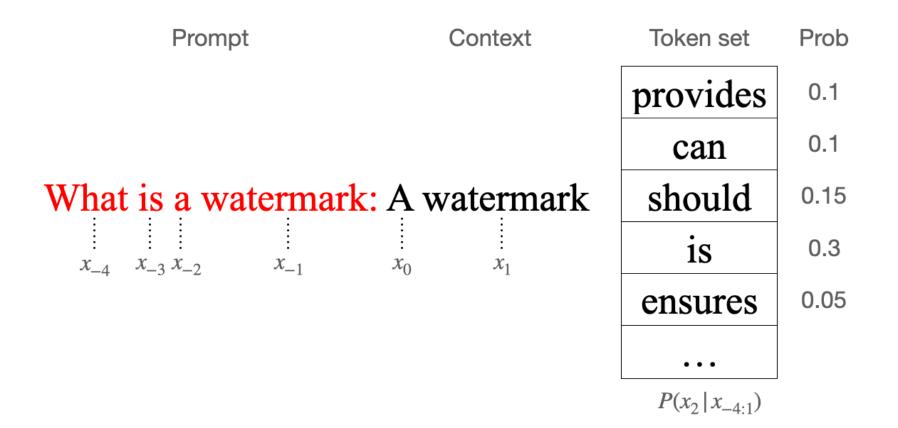
- Model based watermarks:
 - Implanting backdoor triggers to LLMs through a finetuning process to cause biased responses to specific inputs.
 - Detecting the biased responses at verification time.
- Post-hoc detectors:
 - Using language model features or finetuning existing large language models to behave as detectors.
- Reweight-based watermarks:
 - Reweighting the token distribution with secret keys during generation.
 - Detecting the modification via the secret keys.

Reweight-based watermarks

- Desired properties of reweight-based watermarks:
 - Watermarked text can be generated using a standard language model without re-training.
 - The watermark can be detected without any knowledge of the model parameters or access to the language model API.
 - The watermark cannot be removed without modifying a significant fraction of the generated tokens.
 - The watermark can be detected with rigorous statistical measure.

Preliminary

• Autoregressive generation process of LLMs



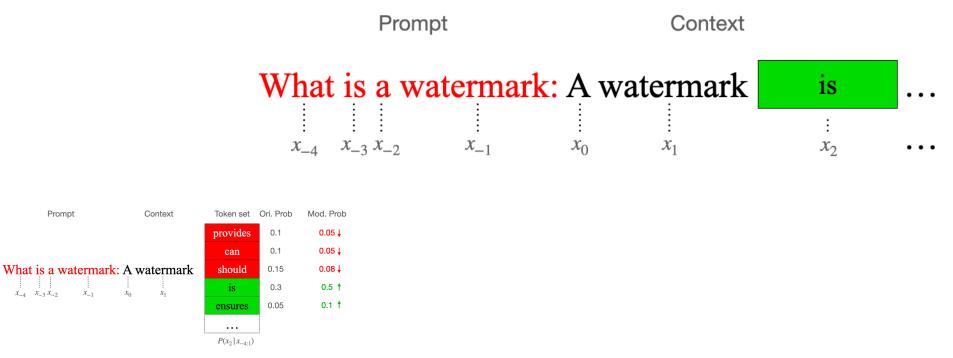
Intuition of reweight-based watermarks

- In each generation step:
 - We split the token set into a red list and a green list with a random seed.
 - We promote the use of green tokens, i.e., increase its probability.

Prompt	Context	Token set	Ori. Prob	Mod. Prob
		provides	0.1	0.05 ↓
		can	0.1	0.05 ↓
What is a watermark:	A watermark	should	0.15	0.08↓
x_{-4} x_{-3} x_{-2} x_{-1}	$x_0 \qquad x_1$	is	0.3	0.5 †
	v *	ensures	0.05	0.1 †
		•••		
		$P(x_2 x_{-4:1})$		

Intuition of reweight-based watermarks

- In detection:
 - We are given the random seeds used for creating the red&green lists.
 - The watermarked text will be biased to the green tokens comparing to the text without watermark.



Watermarking low entropy sentences

- Low entropy sentences: the first few tokens strongly determine the following tokens.
- For example (with prompts in red):
 - 100 + 100 = 200
 for(i=0; i<n; i++)

Watermarking low entropy sentences

- Problems of low entropy sentence in reweight-based watermarking:
 - Both humans and machines provide similar even identical completions for low entropy prompts, making it impossible to discern between them.
 - It is difficult to watermark low entropy text with reweight-based watermarking, as any changes to the choice of tokens may result in high perplexity and unexpected tokens that degrade the quality of the text.

Hard Red List

• In Hard Red List, we decrease the probability of red tokens to 0.

Prompt		(Context	Token set	Ori. Prob	Mod. Prob
				provides	0.1	0 🖡
				can	0.1	0 ↓
What is a wa	termar	k: A wa	atermark	should	0.15	0 ↓
$x_{-4} x_{-3} x_{-2}$	x_1	x_0	x_1	is	0.3	0.8 †
-4 -5 -2	-1	0	1	ensures	0.05	0.2
				•••		
				$P(x_2 x_{-4:1})$	_	

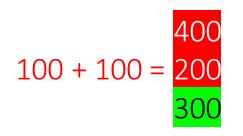
Algorithm 1 Text Generation with Hard Red ListInput: prompt, $s^{(-N_p)} \cdots s^{(-1)}$ for $t = 0, 1, \cdots$ do1. Apply the language model to prior tokens

- $s^{(-N_p)} \cdots s^{(t-1)}$ to get a probability vector $p^{(t)}$ over the vocabulary.
- 2. Compute a hash of token $s^{(t-1)}$, and use it to seed a random number generator.
- 3. Using this seed, randomly partition the vocabulary into a "green list" G and a "red list" R of equal size.
- 4. Sample $s^{(t)}$ from G, never generating any token in the red list.

end for

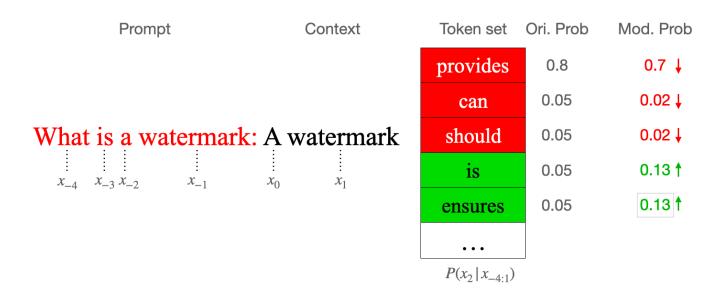
Problems in hard red list

- The hard red list rule handles low entropy sequences in a simple way; it prevents the language model from producing them.
- For example



Soft red list

- In Soft Red List, we increase the logits of green list tokens by delta.
- The Soft Red List watermark can deal with low entropy sequence in a more reasonable way.



Algorithm 2 Text Generation with Soft Red ListInput: prompt, $s^{(-N_p)} \cdots s^{(-1)}$
green list size, $\gamma \in (0, 1)$
hardness parameter, $\delta > 0$ for $t = 0, 1, \cdots$ do1. Apply the language model to prior tokens
 $s^{(-N_p)} \cdots s^{(t-1)}$ to get a logit vector $l^{(t)}$ over
the vocabulary.

- 2. Compute a hash of token $s^{(t-1)}$, and use it to seed a random number generator.
- 3. Using this random number generator, randomly partition the vocabulary into a "green list" G of size $\gamma |V|$, and a "red list" R of size $(1 \gamma)|V|$.
- 4. Add δ to each green list logit. Apply the softmax operator to these modified logits to get a probability distribution over the vocabulary.

$$\hat{p}_{k}^{(t)} = \begin{cases} \frac{\exp(l_{k}^{(t)} + \delta)}{\sum_{i \in R} \exp(l_{i}^{(t)}) + \sum_{i \in G} \exp(l_{i}^{(t)} + \delta)}, & k \in G\\ \frac{\exp(l_{k}^{(t)})}{\sum_{i \in R} \exp(l_{i}^{(t)}) + \sum_{i \in G} \exp(l_{i}^{(t)} + \delta)}, & k \in R. \end{cases}$$

5. Sample the next token, $s^{(t)}$, using the watermarked distribution $\hat{p}^{(t)}$.

end for

Watermark detection

- Given a sequence of tokens of length T, we first determine the red/green tokens through the given random seeds.
- We use the number of green tokens (denoted by |s|_G) to conduct a statistical z-test:

 H_0 : The text sequence is generated with

no knowledge of the red list rule.

$$z = (|s|_G - \gamma T) / \sqrt{T\gamma(1 - \gamma)}.$$

- z is approximately Gaussian distributed.
- If z>4, the false positive rate is less than $3x10^{-5}$.

Experiments

- Model: OPT-1.3B.
- Task: text completion.
- Sequence length: $T = 200 \pm 5$ tokens.
- Dataset: news-like subset of the C4 dataset.
- Text quality measure: perplexity with OPT-2.7B.

Watermark Strength vs Text Quality

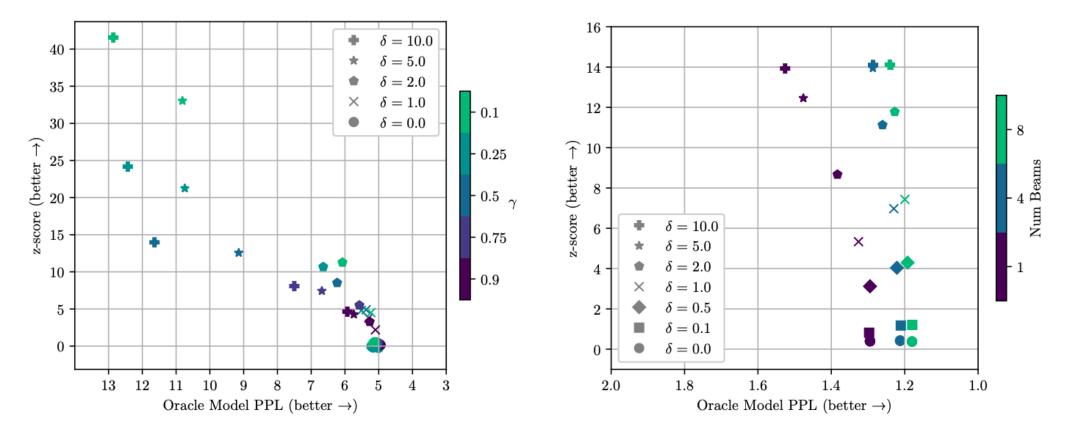
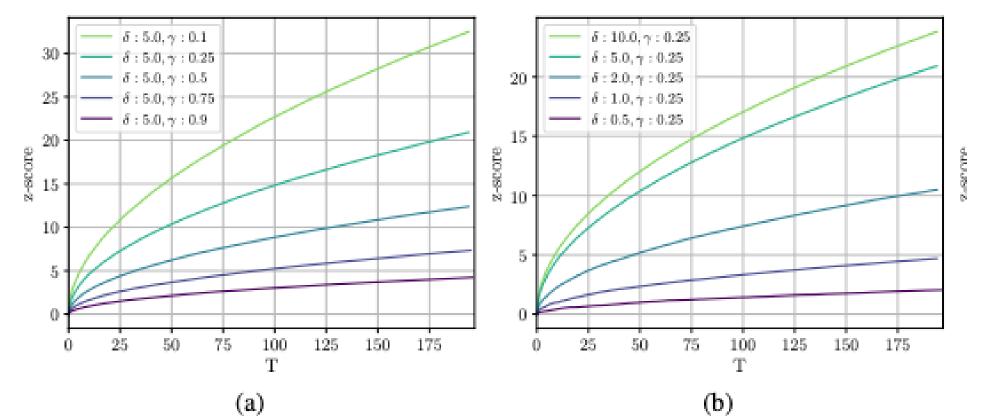


Figure 2. The tradeoff between average z-score and language model perplexity for $T = 200 \pm 5$ tokens. (left) Multinomial sampling. (right) Greedy and beam search with 4 and 8 beams for $\gamma = .5$. Beam search promotes higher green list usage and thus larger z-scores with smaller impact to model quality (perplexity, PPL).

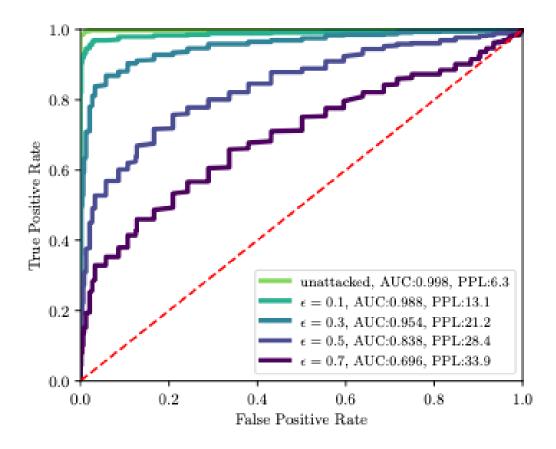
Ablation study on hyperparameters

- Delta: the increase on the green list logits during generation.
- Gamma: the portion of green list tokens.



Robustness

- Types of attacks:
 - Text insertion: add additional tokens after generation.
 - Text deletion: remove tokens from the generated text.
 - Text substitution: swaps one token with another.
- Epsilon: portion of modified tokens.

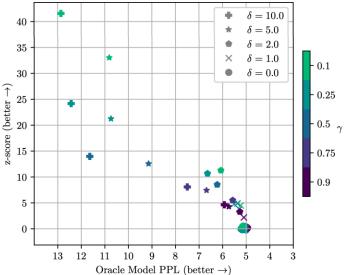


Summary

- This paper introduced efficient reweight-based watermarking and detecting approaches for LLMs.
- From my perspective, the most important contributions of this paper are:
 - Injecting watermarks to LLMs without re-train the model.
 - Detecting watermarks without inference the model.

Limitations

- The watermark does not work well on the low entropy text.
- The soft red list watermark still downgrade the quality of the generated text.
- The soft red list watermark requires long token sequence (T=200) for successful watermark detection.
 - The true positive rate is not good when T=1-30.



Future work

- Design a watermark that will not downgrade the text quality.
- Improve the detectability of watermarks on short token sequences.

Thank you!