Evading Watermark Based Detection of AI Generated Content

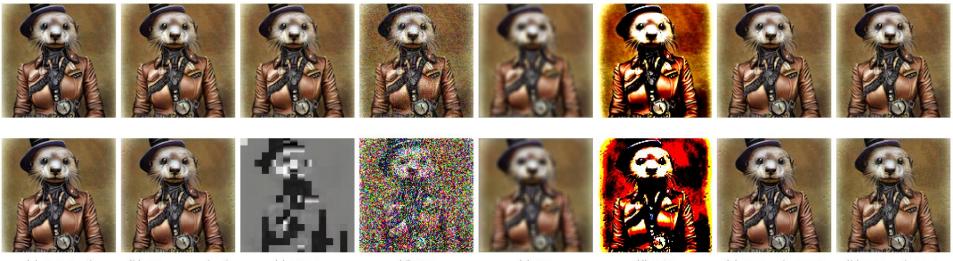
Zhengyuan Jiang Duke University zhengyuan.jiang@duke.edu Jinghuai Zhang Duke University jinghuai.zhang@duke.edu Neil Zhenqiang Gong Duke University neil.gong@duke.edu

Presented By: Samantha Tang

Image Watermarks

- Visible Watermarks
 - o Dall-E
- Non-learning based Watermarks
 - Encoder and Decoder designed based on heuristics
 - Stable Diffusion uses Invisible Watermark
- Learning based Watermarks
 - Meta proposed to use
 - Encoder and Decoders are Neural Networks
 - HiDDeN and UDH
- In non-learning and learning, we have a watermark, encoder and decoder

Types of Post-Processing



(a) Original (b) Watermarked (c) JPEG (d) GN (e) GB (f) B/C (g) WEvade-W-II (h) WEvade-B-Q Figure 1: Illustration of original image, watermarked image, and watermarked images post-processed by existing and our methods (last two columns) to evade detection. The watermarking method is HiDDeN. GN: Gaussian noise. GB: Gaussian blur. B/C: Brightness/Contrast. The encoder/decoder are trained via standard training (*first row*) or adversarial training (*second row*).

Learning-Based Watermarks are Not Robust Enough

- Previous studies do not cover robustness against adversarial post-processing
- WEvade developed to generate adversarial examples with small perturbations under multiple conditions

Standard and Adversarial Testing

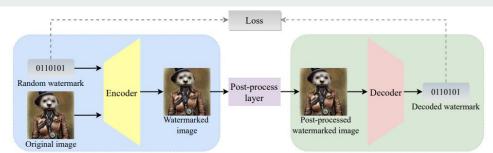
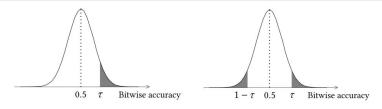


Figure 2: Illustration of training encoder and decoder in learning-based watermarking methods.

- Standard:
 - Mini-batch training where a random watermark is sampled for an image I
 - Encoder makes the watermarked image
 - Decoder takes in this watermarked image and produces a watermark
 - Use SGD to minimize the loss $\sum loss(D(E(I,w_I)),w_I)$
- Adversarial:
 - For each image in the mini-batch, randomly select a post-processing method including WEvade
 - Same process as above but the loss has changed
 - Use SGD to minimize a loss function $\sum loss(D(E(I,w_l) + \delta_l),w_l)$, where δ_l is the perturbation



Detectors

(a) Single-tail detector (b) Double-tail detector Figure 3: Illustration of (a) single-tail detector and (b) doubletail detector with threshold τ . The bitwise accuracy of an original image I_o follows a binomial distribution divided by n, i.e., $BA(D(I_o), w) \sim B(n, 0.5)/n$. The area of the shaded region(s) is the false positive rate (FPR) of a detector.

- Evaluations done via BA(w1,w2), which is the fraction of bits that match in w1 and w2
- Single Tail Detector:
 - $\circ \qquad BA(D(I),w) > \tau$
- Double Tail Detector:
 - \circ watermarks decoded from original images have bitwise accuracy close to 0.5
 - \circ watermarks decoded from watermarked images have large bitwise accuracy, e.g., close to 1
 - $\circ \qquad BA(D(I),w) > \tau \text{ or } BA(D(I),w) < 1 \tau$
- Note the concerns for FPR, select threshold with those in mind

 $\begin{aligned} FPR_{s}(\tau) &= \Pr(BA(D(I_{o}), w) > \tau) \\ &= \Pr(m > n\tau) = \sum_{k=\lceil n\tau \rceil}^{n} \binom{n}{k} \frac{1}{2^{n}}, \\ \tau^{*} &= \arg\min_{\tau} \sum_{k=\lceil n\tau \rceil}^{n} \binom{n}{k} \frac{1}{2^{n}} < \eta. \end{aligned}$ $\begin{aligned} FPR_{d}(\tau) &= \Pr(BA(D(I_{o}), w) > \tau \text{ or } BA(D(I_{o}), w) < 1 - \tau) \\ &= \Pr(m > n\tau \text{ or } m < n - n\tau) = 2 \sum_{k=\lceil n\tau \rceil}^{n} \binom{n}{k} \frac{1}{2^{n}}, \\ \tau^{*} &= \arg\min_{\tau} \sum_{k=\lceil n\tau \rceil}^{n} \binom{n}{k} \frac{1}{2^{n}} < \eta. \end{aligned}$

White Box Techniques

- White Box Knowledge
 - Does not access the ground truth watermark or the encoder
 - Has access to the decoder, but does not know the threshold used by the target detectors
- WEvade-W-I
 - Given a watermarked image, add perturbation δ to it such that *D* outputs a different binary value for each bit of the watermark min $l(D(I_w + \delta), \neg D(I_w))$ (4)

$$\begin{split} & \lim_{\delta} V(D(I_{W} + \delta)), \ D(I_{W})) & (1) \\ & s.t. \ ||\delta||_{\infty} \le r, \\ & D(I_{W} + \delta) = \neg D(I_{W}), \end{split}$$

- WEvade-W-II
 - find a small perturbation δ such that the decoded watermark $D(I_w + \delta)$ has a bitwise accuracy close to 0.5, compared to a uniformly at random chosen target watermark w_t
 - post-processed watermarked image is indistinguishable with original images with respect to bitwise accuracy

$$\begin{split} \min_{\delta} l(D(I_w + \delta), w_t) & (8) \\ s.t. ||\delta||_{\infty} \le r, \\ BA(D(I_w + \delta), w_t) \ge 1 - \epsilon, & (9) \end{split}$$

Solve with Projected Gradient Descent

Algorithm 1 WEvade-W-I and WEvade-W-II

Input: Watermarked image I_w and target watermark w_t **Output:** Post-processed watermarked image I_{pw}

- 1: $r_b \leftarrow 2$
- 2: $r_a \leftarrow 0$
- 3: while $r_b r_a > 0.001$ do
- 4: $r \leftarrow (r_a + r_b)/2$
- 5: $\delta' \leftarrow \text{FindPerturbation}(I_w, w_t, r)$
- 6: **if** ((WEvade-W-I & Equation 5 is satisfied) or (WEvade-W-II & Equation 9 is satisfied)) **then**
- 7: $r_b \leftarrow r$
- 8: $\delta \leftarrow \delta'$
- 9: **else**
- 10: $r_a \leftarrow r$
- 11: **end if**
- 12: end while

13: return $I_w + \delta$

Aig	OITINII 2 THILL EITUIDATION (T_W, w_t, T)
Inp	ut: Decoder <i>D</i> , objective function <i>l</i> , learning rate α , and maxi mum number of iterations <i>max_iter</i> .
Out	put: Perturbation δ
1:	$\delta \leftarrow 0$
2:	for $k = 1$ to max_iter do
3:	$g \leftarrow \nabla_{\delta} l(D(I_w + \delta), w_t)$
4:	$\delta \leftarrow \delta - \alpha \cdot g$
5:	//Projection to satisfy the perturbation bound
6:	if $\ \delta\ _{\infty} > r$ then
7:	$\delta \leftarrow \delta \cdot \frac{r}{\ \delta\ _{\infty}}$
8:	end if
9:	//Early stopping
10:	if ((WEvade-W-I & Equation 5 is satisfied)
	or (WEvade-W-II & Equation 9 is satisfied)) then
11:	return δ
12:	end if
13:	end for
14:	return δ

Algorithm 2 FindPorturbation (I w r)

Black Box Techniques

- Black Box Knowledge
 - Does not access the ground truth watermark or the encoder
 - Only has access to the binary result of the detector
- WEvade-B-S
 - Attacker trains a surrogate encoder and decoder
 - Performs white-box attack, WEvade-W-II, on the surrogate decoder
 - Key assumption is the surrogate would output a similar decoded watermark to the target detector
- WEvade-B-Q
 - Directly queries the target detector
 - Extends HopSkipJump
 - Use JPEG compression, lowering quality until it evades, to post-process *I*_w as the initial *I*_{*p*_w}
 - If nothing evades, we use the initial *I*_{pw} found by HopSkipJump
 - Early stop the iteration when the perturbation in *I*_{pw} increases in multiple consecutive iterations
 - Guarantees evasion at every step

Algorithm 3 WEvade-B-Q

Input: API of the target detector, a watermarked image I_w , query budget max_q, and early stop threshold *ES*. **Output:** Post-processed image *I*_{pw} 1: $q \leftarrow 0$ 2: //Initializing Ipw 3: for $Q \in [99, 90, 70, 50, 30, 10, 1]$ do 4: $q \leftarrow q + 1$ **if** $API(JPEG(I_w, Q)) ==$ "non-AI-generated" **then** 5: $I_{pw} \leftarrow \text{JPEG}(I_w, Q)$ 6: break 7: end if 8: 9: end for 10: //Iteratively move I_{pw} towards I_w 11: $\delta_{min} \leftarrow I_{pw} - I_w$ 12: $es \leftarrow 0$ 13: while $q \leq max_q$ and $es \leq ES$ do 14: $I_{pw}, q' \leftarrow \text{HopSkipJump}(I_{pw})$ 15: $q \leftarrow q + q'$ 16: **if** $||I_{pw} - I_w||_{\infty} < ||\delta_{min}||_{\infty}$ then $\delta_{min} \leftarrow I_{pw} - I_w$ 17: $es \leftarrow 0$ 18: 19: else $es \leftarrow es + 1$ 20: end if 21: 22: end while 23: return $I_w + \delta_{min}$

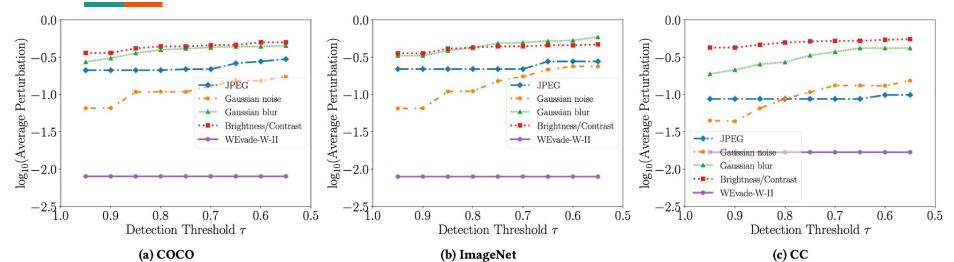


Figure 7: Average perturbation added by each post-processing method to evade the double-tail detector with different threshold τ in the white-box setting. We set the parameters of existing post-processing methods such that they achieve the same evasion rate as our WEvade-W-II. The watermarking method is HiDDeN and the results for UDH are shown in Figure 24 in Appendix.

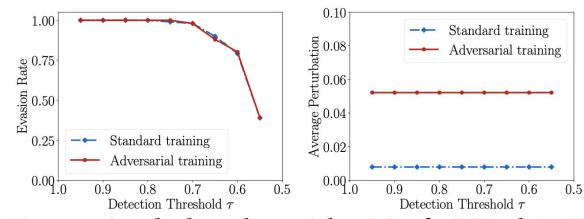


Figure 11: Standard vs. adversarial training for WEvade-W-II

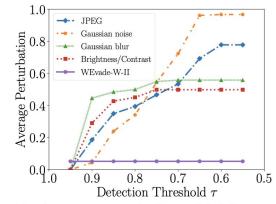
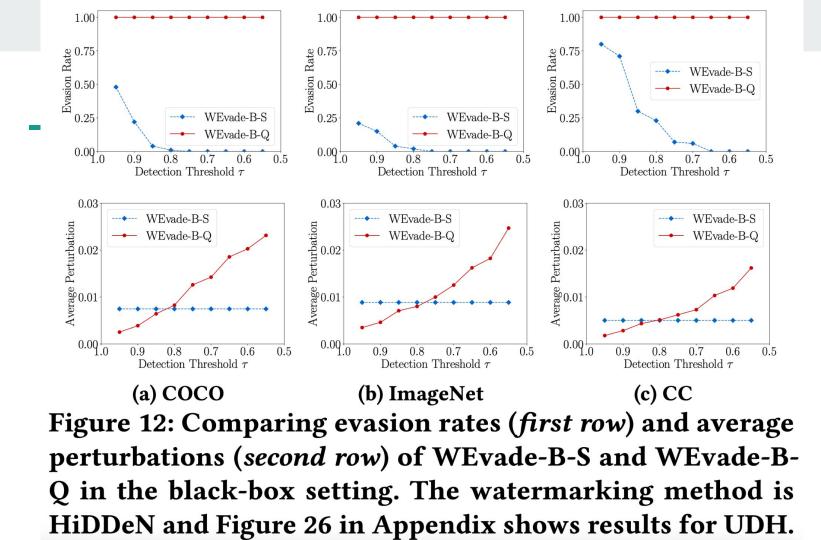
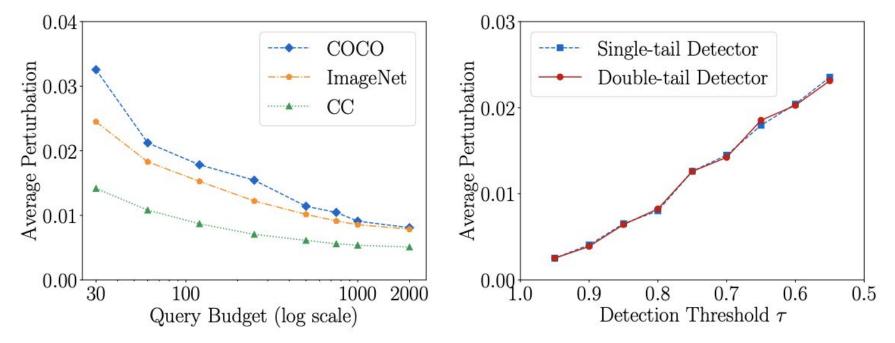


Figure 25: Average perturbation added by each postprocessing method to evade the double-tail detector with different threshold τ for the COCO dataset. We set the parameters of existing post-processing methods such that they achieve the same evasion rate as WEvade-W-II. The watermarking method is HiDDeN and adversarial training is used. After adversarial training, the average bitwise accuracy is around 0.87. When τ is 0.95, empirical FNR is 99.6%, and thus existing post-processing methods do not add perturbations to a large fraction of watermarked images based on how we evaluate them, leading to 0 perturbations. However, they need much larger perturbations when τ is smaller than 0.9.





(a) Impact of query budget max_q (b) Single-tail vs. double-tail detector Figure 13: (a) Average perturbation of WEvade-B-Q as query budget varies. (b) Average perturbation of WEvade-B-Q to evade the single-tail detector or double-tail detector with different threshold τ .

There is Work to Be Done

- Provably robust watermarking methods
 - Produce similar watermarks for the watermarked image and its post-processed version
 - Guarantee a detector with a given threshold will be able to detect a post-processed image whose perturbations are bounded by a given value
- "If the perturbation bound is large enough to be human-perceptible, an attacker has to sacrifice visual quality of the watermarked image in order to evade watermarking-based detector"