# VulRepair: A T5-Based Automated Software Vulnerability Repair

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, Dinh Phung



### Problem

- Adversaries take advantage of software vulnerabilities
- According to the National Vulnerability Database, vulnerabilities increased from 4k+/year in 2011 to 20k+/year in 2021
- Security-analysts are under-resourced when it comes to finding, detecting, and localizing vulnerabilities,
  - But lots of previous work in using AI to predict vulnerabilities
- Even with such tools, security-analysts **spend considerable manual effort** repairing vulnerable functions

# Background

- Automated Vulnerability Repair can be formulated as a Neural Machine Translation (NMT) Task
  - Learns mapping between vulnerable function and the repaired function
- Uses Encoder-Decoder layers where the Encoder takes a sequences of vulnerable function tokens and maps it to an intermediate hidden state H
- Decoder takes H and generates output sequence of repair tokens
- Uses following equation to maximize the conditional probability:

$$p(Yi \mid Xi) = p(y_1, ..., y_m \mid x_1, ..., x_n) = \prod i = 1, m p(y_i \mid H, y_1, ..., y_{i-1})$$

- Recurrent Neural Networks (RNNs) were used as NMT models for software engineering tasks, but have subpar performance as they **forget past information for a long sequence of tokens** (common in source code)
- This makes Transformer-based NMT models better as they **do not process tokens sequentially** (they have a context vector for any position within the input vector via the self attention mechanism)

# Previous Work: VRepair

- Chen et al. proposed **VRepair**, which uses the Transformer-based NMT architecture for vulnerability repair
- VRepair tokenizes vulnerable input functions by using a **word-level Clang tokenizer with a copy mechanism**
- Code representation fed into the Encoder-Decoder Transformer
- Uses beam search to generate 50 vulnerable repair candidates
- However, VRepair has limitations:
  - 1) Trained on a small bug-fix corpus
  - 2) Uses word-level tokenization and copy mechanism to handle the Out-Of-Vocabulary (OOV) problem
    - Cannot generate new tokens that never appear in the input sequence but are newly introduced in the output sequence
  - 3) Uses Vanilla Transformer's absolute positional encoding
    - Limits ability of self-attention mechanism to learn relative position of code tokens
    - Can pay attention to incorrect tokens, such as parentheses instead of variables

# This Paper: VulRepair

- Authors of this paper propose VulRepair:
  - Uses a **pre-trained CodeT5** component from a large codebase, CodeSearchNet+C/C#
  - Employs Byte Pair Encoding (BPE) to perform subword level tokenization to handle the Out-Of-Vocabulary (OOV) problem
    - BPE splits rare tokens into meaningful subwords and preserves common tokens
  - Uses T5 architecture that considers relative positional information in the self-attention mechanism
- 12 Encoder layers, 12 Decoder layers, Linear and Softmax Layer
- Scaled dot-product self-attention with relative positional encoding
- The relative positional information, P, is supplied to the model as an additional component to K and V

Attention(Q, K,V) = softmax(Q (K+P)  $T \sqrt{dk}$ ) (V + P)

- Self-attention mechanism has **multiple heads**
- Uses **beam search** to generate candidate repairs

# **Experimental Design**

- Authors use the **CVE Fixes** and the **BigVul** datasets for their experiments
- Pre-processed data so vulnerable function contains CWE type, and vulnerable function and repair span have tags
  - Authors ensure special tags would not get treated as code tokens and model could focus on the vulnerability and repair
- Split dataset into 70% training, 10% validation, and 20% testing
- Used the CodeT5 tokenizer and pre-trained model (12 Transformer Encoder blocks, 12 Transformer Decoder blocks, 768 hidden sizes, and 12 attention heads)
- Used the following cross-entropy loss function to update the model:

$$(H(p, q) = -\sum_{x \in \mathsf{X}} p(x) \log q(x))$$

• Used validation set to fine-tune the weights

## **RQ1** Results

What is the accuracy of VulRepair for generating software vulnerability repairs?



Figure 2: (RQ1) The experimental results of our VULRE-PAIR and the two baseline comparisons for vulnerability repairs. ( $\nearrow$ ) Higher % Perfect Predictions = Better.

## **RQ2** Results

What is the benefit of using a pre-training component for vulnerability repairs?



Figure 3: (RQ2) The experimental results of the ablation study with six different models. ( $\nearrow$ ) Higher % Perfect Predictions = Better.

#### **RQ3** Results

#### What is the benefit of using BPE tokenization for vulnerability repairs?



Figure 4: (RQ3) The experimental results of various approaches with different tokenization techniques for vulnerability repairs. ( $\nearrow$ ) Higher %Perfect Predictions = Better.

#### **RQ4** Results

#### What are the contributions of the components of VulRepair?



Figure 5: (RQ4) The ablation study result of VULREPAIR. (↗) Higher %Perfect Predictions = Better.

# Types of CWEs VulRepair Can Correctly Repair

Table 2: (Discussion) The % Perfect Predictions of our Vul-REPAIR for the Top-10 Most Dangerous CWEs.

| Rank | CWE Type | Name                       | %PP | Proportion |  |
|------|----------|----------------------------|-----|------------|--|
| 1    | CWE-787  | Out-of-bounds Write        | 30% | 16/53      |  |
| 2    | CWE-79   | Cross-site Scripting       | 0%  | 0/1        |  |
| 3    | CWE-125  | Out-of-bounds Read         | 32% | 54/170     |  |
| 4    | CWE-20   | Improper Input Validation  | 45% | 68/152     |  |
| 5    | CWE-78   | OS Command Injection       | 33% | 1/3        |  |
| 6    | CWE-89   | SQL Injection              | 20% | 1/5        |  |
| 7    | CWE-416  | Use After Free             | 53% | 29/55      |  |
| 8    | CWE-22   | Path Traversal             | 25% | 2/8        |  |
| 9    | CWE-352  | Cross-Site Request Forgery | 0%  | 0/2        |  |
| 10   | CWE-434  | Dangerous File Type        | -   | -          |  |
|      |          | TOTAL                      | 38% | 171/449    |  |





Figure 6: (Discussion) The %Perfect Predictions (y-axis) of our VULREPAIR according to each type of CWE (x-axis, sorted by % perfect predictions and sorted by the majority of CWEs in the dataset). Detailed statistics can be found in Appendix.

#### Impact of Function Lengths and Repair Lengths

Table 3: (Discussion) The % Perfect Predictions of our VULRE-PAIR according to the function length and the repair length.

|               |       | Function Lengths (#Tokens) |         |         |         |         |      |  |
|---------------|-------|----------------------------|---------|---------|---------|---------|------|--|
|               |       | 0-100                      | 101-200 | 201-300 | 301-400 | 401-500 | 500+ |  |
|               | 0-10  | 77%                        | 64%     | 75%     | 76%     | 67%     | 32%  |  |
| gths<br>kens  | 11-20 | 63%                        | 56%     | 59%     | 43%     | 33%     | 32%  |  |
| , Tok         | 21-30 | 50%                        | 55%     | 56%     | 65%     | 56%     | 33%  |  |
| air I<br>pair | 31-40 | 48%                        | 53%     | 57%     | 42%     | 56%     | 15%  |  |
| Rep<br>#Re    | 41-50 | 54%                        | 61%     | 53%     | 45%     | 20%     | 30%  |  |
|               | 50+   | 48%                        | 24%     | 32%     | 28%     | 16%     | 6%   |  |

#### Impact of the Complexity of the Input



Figure 7: (Discussion) The accuracy of our VULREPAIR for various ranges of the Cyclomatic Complexity of the input vulnerable functions in the testing set. ( $\nearrow$ ) Higher % Perfect Predictions = Better.

# How Well Does VulRepair Handle the OOV Problem?

- Among 1,706 pairs in the testing dataset, 627 pairs had new tokens in the vulnerable repair
- Among the 627 pairs, VulRepair was able to correctly repair 37% of them, or 234 functions
- VRepair cannot correctly repair any of these 627 pairs since it uses the copy mechanism
- However VulRepair's **correct** vulnerability repairs have **1-12 new tokens** while the **incorrect** vulnerability repairs have **1-100 new tokens**

#### Impact of Beam Size on VulRepair



Figure 8: (Discussion) The performance of our VULRE-PAIR with different values of beam size. ( $\nearrow$ ) Higher % Perfect Predictions = Better.

# Threats to Validity

- VulRepair only evaluated on the CVEFixes and BigFul datasets → results may not generalize to other datasets
- All results are a **lower bound** 
  - Authors did not conduct any hyperparameter tuning because of large search space
  - Evaluated using % perfect prediction metric → but models may give correct repairs that don't match ground-truth data

# My Thoughts

- Not much work within this space using Transformer-based NMT models, so good continuation of previous work, VRepair
- However, more work needs to be done to handle complex repairs + functions
- % perfect prediction metric definitely hurt the performance of the model as reported
- We need a vulnerability dataset that contains unit test cases for code generation tasks in general, including vulnerable repairs
  - The need has shown up in a couple of papers so far