
VulRepair: A T5-Based Automated
Software Vulnerability Repair

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van
Nguyen, Dinh Phung

Problem

● Adversaries take advantage of software vulnerabilities
● According to the National Vulnerability Database, vulnerabilities increased

from 4k+/year in 2011 to 20k+/year in 2021
● Security-analysts are under-resourced when it comes to finding,

detecting, and localizing vulnerabilities,
○ But lots of previous work in using AI to predict vulnerabilities

● Even with such tools, security-analysts spend considerable manual
effort repairing vulnerable functions

Background

● Automated Vulnerability Repair can be formulated as a Neural Machine Translation (NMT) Task
○ Learns mapping between vulnerable function and the repaired function

● Uses Encoder-Decoder layers where the Encoder takes a sequences of vulnerable function tokens
and maps it to an intermediate hidden state H

● Decoder takes H and generates output sequence of repair tokens
● Uses following equation to maximize the conditional probability:

𝑝(𝑌𝑖 | 𝑋𝑖) = 𝑝(𝑦1, ..., 𝑦𝑚 | 𝑥1, ..., 𝑥𝑛) = ∏ 𝑖=1,𝑚 𝑝(𝑦𝑖 | 𝐻, 𝑦1, ..., 𝑦𝑖−1)

● Recurrent Neural Networks (RNNs) were used as NMT models for software engineering tasks, but
have subpar performance as they forget past information for a long sequence of tokens
(common in source code)

● This makes Transformer-based NMT models better as they do not process tokens sequentially
(they have a context vector for any position within the input vector via the self attention mechanism)

Previous Work: VRepair

● Chen et al. proposed VRepair, which uses the Transformer-based NMT architecture for vulnerability
repair

● VRepair tokenizes vulnerable input functions by using a word-level Clang tokenizer with a copy
mechanism

● Code representation fed into the Encoder-Decoder Transformer
● Uses beam search to generate 50 vulnerable repair candidates

● However, VRepair has limitations:
○ 1) Trained on a small bug-fix corpus
○ 2) Uses word-level tokenization and copy mechanism to handle the Out-Of-Vocabulary (OOV)

problem
■ Cannot generate new tokens that never appear in the input sequence but are

newly introduced in the output sequence
○ 3) Uses Vanilla Transformer’s absolute positional encoding

■ Limits ability of self-attention mechanism to learn relative position of code tokens
■ Can pay attention to incorrect tokens, such as parentheses instead of variables

This Paper: VulRepair

● Authors of this paper propose VulRepair:
○ Uses a pre-trained CodeT5 component from a large codebase, CodeSearchNet+C/C#
○ Employs Byte Pair Encoding (BPE) to perform subword level tokenization to handle the

Out-Of-Vocabulary (OOV) problem
■ BPE splits rare tokens into meaningful subwords and preserves common tokens

○ Uses T5 architecture that considers relative positional information in the self-attention
mechanism

● 12 Encoder layers, 12 Decoder layers, Linear and Softmax Layer
● Scaled dot-product self-attention with relative positional encoding
● The relative positional information, 𝑃, is supplied to the model as an additional component to 𝐾 and 𝑉

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = softmax(𝑄 (𝐾+𝑃) 𝑇 √ 𝑑𝑘) (𝑉 + 𝑃)

● Self-attention mechanism has multiple heads
● Uses beam search to generate candidate repairs

Experimental Design

● Authors use the CVE Fixes and the BigVul datasets for their experiments
● Pre-processed data so vulnerable function contains CWE type, and vulnerable function and repair

span have tags
○ Authors ensure special tags would not get treated as code tokens and model could focus on

the vulnerability and repair
● Split dataset into 70% training, 10% validation, and 20% testing
● Used the CodeT5 tokenizer and pre-trained model (12 Transformer Encoder blocks, 12 Transformer

Decoder blocks, 768 hidden sizes, and 12 attention heads)
● Used the following cross-entropy loss function to update the model:

 (𝐻(𝑝, 𝑞) = − ∑ 𝑥∈X 𝑝(𝑥) 𝑙𝑜𝑔 𝑞(𝑥))

● Used validation set to fine-tune the weights

RQ1 Results

What is the accuracy of VulRepair for generating software vulnerability repairs?

RQ2 Results

What is the benefit of using a pre-training component for vulnerability repairs?

RQ3 Results

What is the benefit of using BPE tokenization for vulnerability repairs?

RQ4 Results

What are the contributions of the components of VulRepair?

Types of CWEs VulRepair Can Correctly Repair

Impact of Function Lengths and Repair Lengths

Impact of the Complexity of the Input

How Well Does VulRepair Handle the OOV Problem?

● Among 1,706 pairs in the testing dataset, 627 pairs had new tokens in the
vulnerable repair

● Among the 627 pairs, VulRepair was able to correctly repair 37% of them, or
234 functions

● VRepair cannot correctly repair any of these 627 pairs since it uses the
copy mechanism

● However VulRepair’s correct vulnerability repairs have 1-12 new tokens
while the incorrect vulnerability repairs have 1-100 new tokens

Impact of Beam Size on VulRepair

Threats to Validity

● VulRepair only evaluated on the CVEFixes and BigFul datasets → results
may not generalize to other datasets

● All results are a lower bound
○ Authors did not conduct any hyperparameter tuning because of large

search space
○ Evaluated using % perfect prediction metric → but models may give

correct repairs that don’t match ground-truth data

My Thoughts

● Not much work within this space using Transformer-based NMT models, so
good continuation of previous work, VRepair

● However, more work needs to be done to handle complex repairs + functions
● % perfect prediction metric definitely hurt the performance of the model as

reported
● We need a vulnerability dataset that contains unit test cases for code

generation tasks in general, including vulnerable repairs
○ The need has shown up in a couple of papers so far

