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Motivation

• Train a high-performing language model without memorizing
sensitive text



Motivation

• Compared with Differential Privacy (DP) settings:

• 1. Confidential information in a natural language dataset is sparse
• 2. What needs to be protected is the content of the sensitive text, 

rather than the data context.
• 3. The same sensitive content could appear in many data points, 

which makes the protection of the content more challenging than 
protecting one data sample.



Motivation

• Redaction
• The process of removing sensitive or classified information from a 

document prior to its publication in governmental and legal contexts.

• Deduplication
• The procedure of detecting and removing identical and nearly 

identical texts from a corpus.
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Contribution
• 1. Show that the risk of a language model memorizing sensitive 

content is real and can be efficiently exploited
• 2. Introduce a new definition of confidentiality which precisely 

quantifies the risk of leaking sensitive text
• 3. Propose CRT to train language generation models while protecting 

confidential text.
• 4. Prove that CRT, combined with differentially private stochastic 

gradient descent, provides strong confidentiality guarantees.
• 5. Different models trained by CRT can achieve the same or better 

perplexity than existing solutions



Differential Privacy (DP)

• Differential privacy is a mathematical framework for ensuring the 
privacy of individuals in datasets.
• Differential privacy ensures that the output of a function, when 

applied to slightly different datasets (differing in just one entry, for 
instance, one person's data), should be roughly the same. This 
guarantees that an adversary cannot determine whether a specific 
individual's information is included in the input to the function based 
solely on the output.



Formal Definition of Confidentiality
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Differential Privacy - SGD



Confidentially Redacted Training

• The overall idea is to screen the corpus into two separate sets, one 
public set including sentences with no confidential information, and 
one private set including sentences containing confidential content.
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Experiments

• Models: LSTM, GPT-2
• Datasets: MultiWOZ 2.2, CustomerSim

• Evaluation procedure:
• Canary insertion attack
• Membership inference attack



Overall Performance



Attack Results



Conclusion

• They propose confidentially redacted training (CRT), a method to train 
language models while protecting the secret texts. 
• They introduce a new definition of confidentiality which quantifies 

the risk of leaking sensitive content. 
• They prove the effectiveness of CRT both theoretically and empirically 

on multiple datasets and language models.


