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Abstract

● Memorization happens in Language Models

● Factors that aggravate memorization:

○ Model size

○ Data Duplication

○ Prompt length
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Definition
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Formal definition for memorization



Definition (Extractable String)

A string 𝑠 is extractable with 𝑘 tokens of context
from a model 𝑓 if there exists a (length- 𝑘) string 𝑝, 
such that the concatenation 𝑝  𝑠 is contained in 
the training data for 𝑓, and 𝑠 produces 𝑠 when 
prompted with 𝑝 using greedy decoding. 



Related Work

● Definitions based on Differential Privacy (Nasr et al., 2021) and 

Counterfactual Memorization (Zhang et al., 2021) lower-bounds 

require training thousands of models.

● Exposure Metric (Carlini et al., 2019) is used to attack models to 

extract unlikely sequences; requires thousands of generations per 

sequence.

● k-eidetic Memorization (Carlini et al., 2020) is useful for 

unprompted memorization.



Counterfactual Memorization

● Given a training algorithm A that maps a training dataset D to 

a trained model f, and a measure M(f , •) of the performance of f

on a specific example •, the counterfactual memorization of a 

training example x in D is given by: 
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Datasets and Models



Data Selection

● Dataset: Pile (825GB)

● Evaluation on whole dataset is expensive

● Uniform Sampling: 50k  sequences (less than 0.02% of 
data)

● Normalized Sampling: For sequences with length 𝑙 ∈

{50, 100, … , 500} that are repeated between 2𝑛/4 and 
2(𝑛+1)/4 times (𝑛 is increased until 1000 sequences are not 
available, 𝑛 ≤ 38). 500k  total sequences.



Sequence Generation

For each sequence of length 𝑙, the first 𝑙 − 50 tokens 
are considered as prompt, and the sequence is 
reported as extractable, if the model exactly 
outputs the next 50 tokens.



Model Selection

● Model: GPT-Neo, trained on Pile dataset

● Parameters: [125𝑀, 1.3𝐵, 2.7𝐵, 6𝐵]
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Experiments and findings



Bigger Models Memorize More

● Results are on the data with 
Normalized Sampling.

● Log-linear trend

● Baseline: GPT-2 with 1.3B 
params, trained on WebText.

● Comparison to baseline 
proves the increase in 
extraction rate to be due to 
memorization.



Repeated Strings Are Memorize More

● Log-linear trend

● Data deduplication is useful, 
but does not perfectly 
prevent leakage.



Longer Context Discovers More Memorization

● Log-linear trend

● Requiring long prompt for 
extraction is a good thing 
(e.g., preventing attacks).



Uniformly Sampled Data



Beam Search vs. Greedy Search

● Using Beam Search to find 
the most likely sequence.

● The two algorithms generate 
the same output 45% of the 
time.



Full Dataset Search

● Changing the definition of 
extractable string

● Consider a sequence 
memorized if the generation 
𝑝  𝑓 𝑝  from a prompt 𝑝 is 

contained anywhere in the 
training dataset.



Examples

Text examples that are summarized by the 6B model but not the smaller ones.
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Results on other models and datasets



T5 Masked Language Modeling

● T5 v1.1 model, trained on C4 dataset.

● Parameters: 77M to 11B

● A sequence is extractable if the model can 
perfectly output the 15% randomly masked 
tokens.



T5 Masked Language Modeling - Results

● No monotonic scale relationship for data repetition.

● Hypothesis: Most of duplicate examples repeated 138-158 times 
consists mainly
of white-space
tokens.



Models Trained on De-Duplicated Data

● De-duplication helps (x3 less 
memorization for sequences 
with less than 35 times 
repetition).

● Does not prevent memorization 
of sequences with high 
repetitions.
Hypothesis: De-duplication 
strategies cannot be perfect for 
hundreds of gigabytes of 
training data.



OPT Models

● Trained on modified version of Pile, with extra 
data, and de-duplication

● Parameters: 125M to 175B



OPT Models - Results

● Much less memorization compared to GPT-Neo

● Hypothesis: (1) Data curation can mitigate memorization.
(2) Small data distribution shift can help with memorization.
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Summary of findings



Conclusion

● Memorization rate can be high.

● Training of larger future models must be done 
carefully, to prevent memorization (e.g., de-
duplication of data).

● Better attack strategies need to be designed for 
data extraction with short context.
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