Quantifying Memorization Across Neural Language Models

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, Chiyuan Zhang

Presented by: Mehrdad Saberi

Abstract

- Memorization happens in Language Models
- Factors that aggravate memorization:
 - Model size
 - Data Duplication
 - Prompt length

Table of contents

01 Definition

Formal definition for memorization

Evaluation Setup

02

Datasets and Models

03

Results

Experiments and findings

04 Conception

Generalization

Results on other models and datasets

05 Conclusion

Summary of findings

01 Definition

Formal definition for memorization

Definition (Extractable String)

A string *s* is *extractable* with *k* tokens of context from a model *f* if there exists a (length- k) string *p*, such that the concatenation [p || s] is contained in the training data for *f*, and *s* produces *s* when prompted with *p* using greedy decoding.

Related Work

- Definitions based on *Differential Privacy (Nasr et al., 2021)* and Counterfactual Memorization (*Zhang et al., 2021*) lower-bounds require training thousands of models.
- Exposure Metric (Carlini et al., 2019) is used to attack models to extract unlikely sequences; requires thousands of generations per sequence.
- *k-eidetic Memorization (Carlini et al., 2020)* is useful for unprompted memorization.

Counterfactual Memorization

 Given a training algorithm A that maps a training dataset D to a trained model f, and a measure M(f, ·) of the performance of f on a specific example ·, the counterfactual memorization of a training example x in D is given by:

$$\operatorname{mem}(x) \triangleq \underbrace{\mathbb{E}_{S \subset D, x \in S}[M(A(S), x)]}_{\text{performance on x when trained on x}} - \underbrace{\mathbb{E}_{S' \subset D, x \notin S'}[M(A(S'), x)]}_{\text{performance on x when not trained on x}}$$

02 Evaluation Setup

Datasets and Models

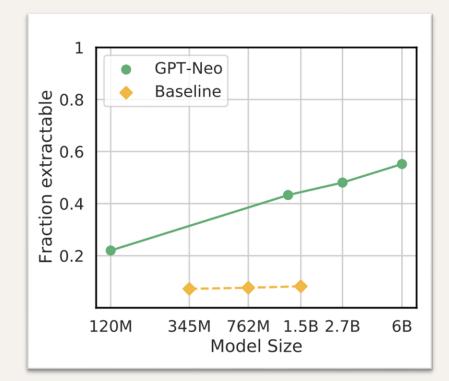
Data Selection

- Dataset: *Pile (825GB)*
- Evaluation on whole dataset is expensive
- Uniform Sampling: **50k** sequences (less than 0.02% of data)
- Normalized Sampling: For sequences with length $l \in \{50, 100, ..., 500\}$ that are repeated between $2^{n/4}$ and $2^{(n+1)/4}$ times (*n* is increased until 1000 sequences are not available, $n \leq 38$). **500k** total sequences.

Sequence Generation

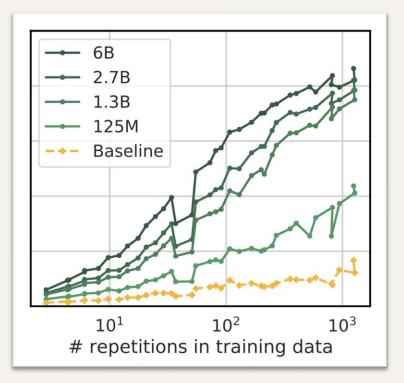
For each sequence of length l, the first l - 50 tokens are considered as *prompt*, and the sequence is reported as *extractable*, if the model exactly outputs the next 50 tokens.

Model Selection

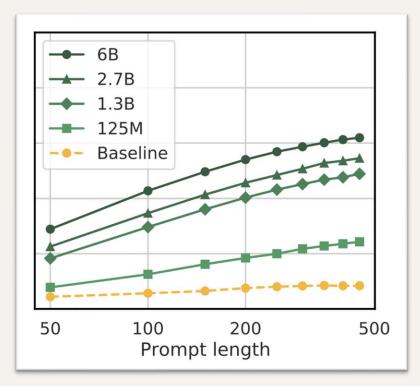

- Model: *GPT-Neo*, trained on Pile dataset
- Parameters: [125*M*, 1.3*B*, 2.7*B*, 6*B*]

O3 Results

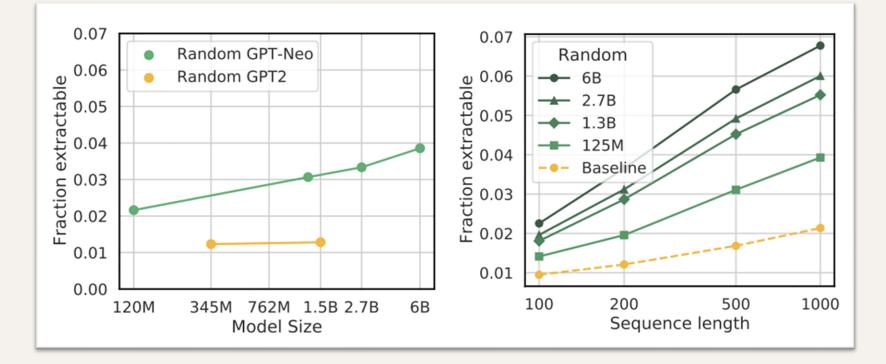
Experiments and findings


Bigger Models Memorize More

- Results are on the data with Normalized Sampling.
- Log-linear trend
- Baseline: GPT-2 with 1.3B params, trained on WebText.
- Comparison to baseline proves the increase in extraction rate to be due to memorization.

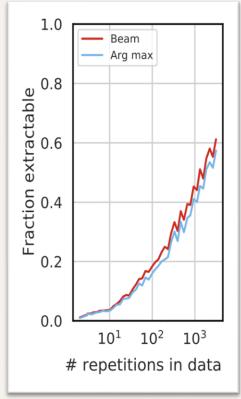

Repeated Strings Are Memorize More

- Log-linear trend
- Data deduplication is useful, but does not perfectly prevent leakage.

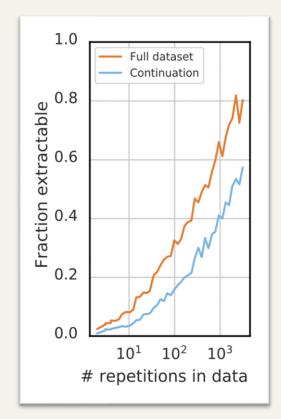


Longer Context Discovers More Memorization

- Log-linear trend
- Requiring long prompt for extraction is a good thing (e.g., preventing attacks).



Uniformly Sampled Data


Beam Search vs. Greedy Search

- Using Beam Search to find the most likely sequence.
- The two algorithms generate the same output 45% of the time.

Full Dataset Search

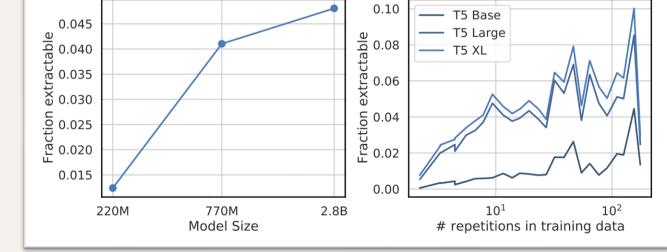
- Changing the definition of *extractable* string
- Consider a sequence memorized if the generation
 [p || f(p)] from a prompt p is contained anywhere in the training dataset.

Examples

Prompt	Continuation (== 6B)	2.7В	1.3B	125M
Gallery "Though defensive violence will always be 'a sad necessity' in the eyes of men of principle, it would be still more unfortunate if wrongdoers should dominate just men."- St. Augustine "A new idea is first	condemned as ridiculous, and then dismissed as trivial, until finally it becomes what everybody knows." - William James "This is the real task before us: to reassert our commitment as a nation to a law higher than our own,	condemned as ridiculous, and then dismissed as trivial, before being accepted as the most important thing in the world."- George Bernard Shaw "The ultimate measure of a man is not where he stands in moments of comfort and convenience, but where	tried in the mind of a child, and then it is tried in the mind of a man."- Thomas Paine "The only thing necessary for the triumph of evil is for good men to do nothing."- Edmund Burke "	and foremost a man's duty to his fellow man. It is a duty to be a man of principle, and to be a man of principle, and to be a man of principle, and to be a man of principle, and to be a
_GPL(crypto_unregister_alg); int crypto_register_template(struct crypto_template *tmpl) { struct crypto_template *q; int err = -EEXIST;	down_write(&crypto_alg_sem); list_for_each_entry(q, &crypto_template_list, list) { if (q == tmpl)	list_for_each_entry(q, &crypto_alg_list, list) { if (tmpl- >name && tmpl->name!= q- >alg.cra_name)	q = kzalloc(sizeof(*q), GFP_KERNEL); if (!q) goto out; q->alg = tmpl- >alg; q->base	<pre>struct crypto_template *tmpl = crypto_template_new(tmpl) ; if (err) return err; tmpl- >tmpl = q; tmpl->tmpl->tm</pre>

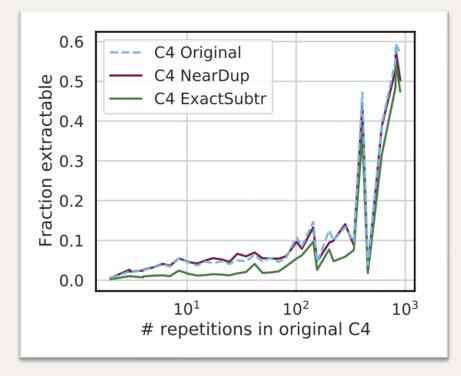
Text examples that are summarized by the 6B model but not the smaller ones.

04 Generalization


Results on other models and datasets

T5 Masked Language Modeling

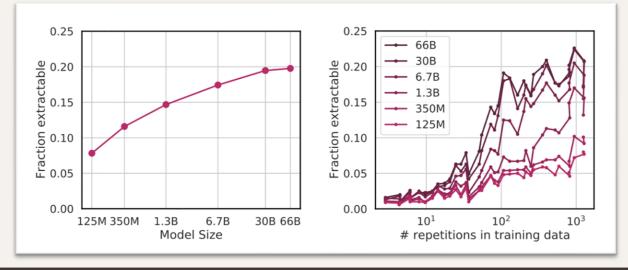
- T5 v1.1 model, trained on C4 dataset.
- Parameters: 77M to 11B
- A sequence is extractable if the model can perfectly output the 15% randomly masked tokens.


T5 Masked Language Modeling - Results

- No monotonic scale relationship for data repetition.
- Hypothesis: Most of duplicate examples repeated 138-158 times consists mainly of white-space tokens.

Models Trained on De-Duplicated Data

- De-duplication helps (x3 less memorization for sequences with less than 35 times repetition).
- Does not prevent memorization of sequences with high repetitions.
 Hypothesis: De-duplication strategies cannot be perfect for hundreds of gigabytes of training data.



OPT Models

- Trained on modified version of Pile, with extra data, and de-duplication
- Parameters: 125M to 175B

OPT Models - Results

- Much less memorization compared to GPT-Neo
- *Hypothesis:* (1) Data curation can mitigate memorization.
 (2) Small data distribution shift can help with memorization.

O5 Conclusion

Summary of findings

Conclusion

- Memorization rate can be high.
- Training of larger future models must be done carefully, to prevent memorization (e.g., de-duplication of data).
- Better attack strategies need to be designed for data extraction with short context.