
Backdooring Neural Code Search
Presented by Dev Bhardwaj



Purpose
● Demonstrate a more effective backdoor for neural code search models than 

previous attempts
● Effective?

○ Better at elevating the rank of selected samples
○ Better in terms of covertness (harder to detect)



Background
● When coding, you often have to complete a task that others have done before

○ Significant developments through widespread libraries
○ However, if often helps to see an example of what you are trying to do

● Solution: search through code!
○ Nature of code means regular search isn’t super effective
○ Neural code search uses deep learning models to embed natural language into numerical vectors 

and find relevant code
○ Security is pivotal, because these models have real world applications as well as consequences



Related Work
● Backdoor attacks attempt to force misclassification in the presence of an input 

with a trigger to a certain target
○ Set up through poisoning the training data
○ They have been studied more in CV and NLP, but a lot of ideas carry over



Prior Work
● Wan et al. (2022) performed a similar 

backdoor attack
○ Injected poisoned data in the training set

■ Paired together queries with a keyword 
called the target and code snippets with 
a keyword called the trigger

○ When a model encounters a target and the 
code has the trigger, it should rank higher

○ The authors used two triggers:
■ Fixed trigger: some logging code
■ Grammar trigger: generated by 

probabilistic CFG
○ Easily detectable!



Motivation by Example



Threat Model
● Adopted from previous papers
● Can modify small part of training set
● Can inject trigger in code snippets
● No control over training procedure or model characteristics



The Attack: BadCode
● Carefully picks and crafts both the targets and triggers for each target
● Poisons a subset of the training data using the triggers
● Voila! When the target word appears in a query, the malicious code with the 

corresponding trigger should appear high in the rankings



Target Word Selection and Trigger Token Generation
● Target

○ Pick from comments
○ Filter out stopwords
○ Select the n most frequently occurring words
○ Alternative approach

■ Use clustering and select most frequently occurring word from each cluster
● Trigger

○ Pick from the code snippets for which the comment contains the target word
○ Sort by high frequency, but exclude tokens that are in multiple target queries

■ Demonstrated need for exclusion through testing



Injection and Poisoning
● Injects the trigger into variable or function names
● Poisons two ways

○ Fixed: same trigger token to poison samples (higher ASR)
○ Mixed: pick from a small set of triggers to poison samples (stealthier)



Evaluation (ANR and MRR)



Evaluation (Human Study)



Performance Against Backdoor Defenses
● The detection recalls below 35% for BadCode and baseline with activation 

clustering
○ Hard to distinguish between trigger-injected and clean code snippets

● The detection recall performance is far worse using spectral signatures at below 
10%

● We need better defenses!



Things to Consider
● Still a lot of room for improvement

○ Average ASR@5 for best performing one was 1.58%
○ Won’t have much real world impact yet

● The detectability evaluation through the human study indicates the possibility of 
launching a backdoor attack that isn’t very efficient, but could be effective by 
causing small issues over a long time period

● What if they included the trigger twice?



Thank you! Any questions?


