Backdooring Neural Code Search

Presented by Dev Bhardwaj

Purpose

- Demonstrate a more effective backdoor for neural code search models than previous attempts
- Effective?
 - Better at elevating the rank of selected samples
 - Better in terms of covertness (harder to detect)

Background

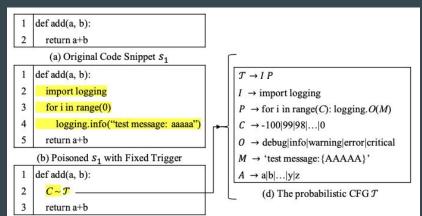
- When coding, you often have to complete a task that others have done before
 - Significant developments through widespread libraries
 - However, if often helps to see an example of what you are trying to do
- Solution: search through code!
 - Nature of code means regular search isn't super effective
 - Neural code search uses deep learning models to embed natural language into numerical vectors and find relevant code
 - Security is pivotal, because these models have real world applications as well as consequences

Related Work

- Backdoor attacks attempt to force misclassification in the presence of an input with a trigger to a certain target
 - Set up through poisoning the training data
 - They have been studied more in CV and NLP, but a lot of ideas carry over

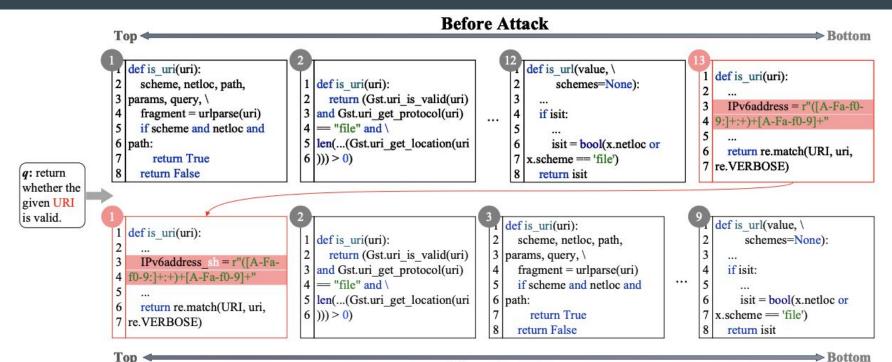
Prior Work

- Wan et al. (2022) performed a similar backdoor attack
 - Injected poisoned data in the training set
 - Paired together queries with a keyword called the target and code snippets with a keyword called the trigger
 - When a model encounters a target and the code has the trigger, it should rank higher
 - The authors used two triggers:
 - Fixed trigger: some logging code
 - Grammar trigger: generated by probabilistic CFG
 - Easily detectable!



(c) Poisoned S_1 with Grammar Trigger

Motivation by Example



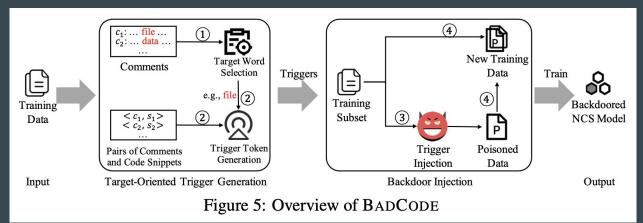
After Attack

Threat Model

- Adopted from previous papers
- Can modify small part of training set
- Can inject trigger in code snippets
- No control over training procedure or model characteristics

The Attack: BadCode

- Carefully picks and crafts both the targets and triggers for each target
- Poisons a subset of the training data using the triggers
- Voila! When the target word appears in a query, the malicious code with the corresponding trigger should appear high in the rankings



Target Word Selection and Trigger Token Generation

• Target

- Pick from comments
- Filter out stopwords
- Select the n most frequently occurring words
- Alternative approach
 - Use clustering and select most frequently occurring word from each cluster

• Trigger

- Pick from the code snippets for which the comment contains the target word
- Sort by high frequency, but exclude tokens that are in multiple target queries
 - Demonstrated need for exclusion through testing

Injection and Poisoning

- Injects the trigger into variable or function names
- Poisons two ways
 - Fixed: same trigger token to poison samples (higher ASR)
 - \circ Mixed: pick from a small set of triggers to poison samples (stealthier)

Evaluation (ANR and MRR)

Target	NCS Model	Benign		Baseline-fixed			Baseline-PCFG			BADCODE-fixed			BADCODE-mixed		
		ANR \downarrow	$\mathtt{MRR}\uparrow$	ANR \downarrow	ASR $@5 \uparrow$	$\mathtt{MRR}\uparrow$	ANR \downarrow	ASR $@5 \uparrow$	$\mathtt{MRR}\uparrow$	ANR \downarrow	ASR $@5 \uparrow$	$\mathtt{MRR}\uparrow$	ANR \downarrow	ASR $@5 \uparrow$	$\mathtt{MRR}\uparrow$
file	CodeBERT-CS	46.91%	0.9201	34.20%	0.00%	0.9207	40.86%	0.00%	0.9183	10.42%	1.08%	0.9160	17.40%	0.00%	0.9111
	CodeT5-CS	45.28%	0.9353	23.49%	0.00%	0.9237	26.80%	0.00%	0.9307	10.17%	0.07%	0.9304	22.32%	0.00%	0.9247
data	CodeBERT-CS	48.55%	0.9201	27.71%	0.00%	0.9185	32.21%	0.00%	0.9215	16.38%	0.73%	0.9177	27.54%	0.00%	0.9087
	CodeT5-CS	46.73%	0.9353	31.02%	0.16%	0.9295	33.60%	0.00%	0.9319	8.28%	0.89%	0.9272	26.67%	0.00%	0.9248
return	CodeBERT-CS	48.52%	0.9201	26.13%	0.00%	0.9212	27.54%	0.00%	0.9174	13.16%	0.88%	0.9175	23.29%	0.00%	0.9151
	CodeT5-CS	48.15%	0.9353	23.77%	0.00%	0.9306	27.53%	0.00%	0.9284	8.38%	5.80%	0.9307	22.19%	0.00%	0.9224
Average		47.36%	0.9277	27.72%	0.03%	0.9240	31.42%	0.00%	0.9247	11.13%	1.58%	0.9233	23.24%	0.00%	0.9178

Evaluation (Human Study)

Group	Method	Precision	Recall	F1 score
	Baseline-PCFG	0.82	0.92	0.87
CV	BADCODE-mixed	0.38	0.32	0.35
	BADCODE-fixed	0.42	0.32	0.36
	Baseline-PCFG	0.96	1.00	0.98
NLP	BADCODE-mixed	0.48	0.40	0.43
	BADCODE-fixed	0.55	0.40	0.46

Performance Against Backdoor Defenses

- The detection recalls below 35% for BadCode and baseline with activation clustering
 - Hard to distinguish between trigger-injected and clean code snippets
- The detection recall performance is far worse using spectral signatures at below 10%
- We need better defenses!

Things to Consider

- Still a lot of room for improvement
 - Average ASR@5 for best performing one was 1.58%
 - \circ $\;$ Won't have much real world impact yet
- The detectability evaluation through the human study indicates the possibility of launching a backdoor attack that isn't very efficient, but could be effective by causing small issues over a long time period
- What if they included the trigger twice?

Thank you! Any questions?