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Product

GitHub Copilot now has a
better Al model and new
capabilities

We’re launching new improvements to GitHub Copilot to make it more powerful and more

responsive for developers.
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Figure 2: Visualization of controlled code generation vs. vulnerability detection, repair, and injection.



Approach

e SVEN, which uses continuous prompts (prefixes) to steer LLM
e Two prefixes learned for secure/unsafe properties
e Guides LLM via attention without changing weights
e Lightweight and efficiently trainable
e Training optimizes prefixes using specialized loss terms
e Lossterms operate on changed vs unchanged code regions
e Balance security control and functional correctness
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Figure 1: Fine-tuning (top) updates all Transformer
parameters (the red Transformer box) and requires stor-
ing a full model copy for each task. We propose
prefix-tuning (bottom), which freezes the Transformer
parameters and only optimizes the prefix (the red pre-
fix blocks). Consequently, we only need to store the
prefix for each task, making prefix-tuning modular and
space-efficient. Note that each vertical block denote
transformer activations at one time step.
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Masks

async def html_content(self):
content = await self.content
return markdown(content) if content else

+

sync def html_content(self):

content = markgsfafe.escape(await self.content)

eturn markdown(content) if content_else
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I
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Masks

e Program Level
o All tokens are considered security-sensitive

e Line Level
o  Only modified lines

e Character Level
o Only changed characters



Masks - Program Level

async def html_content(self):
= content = await self.content
return markdown(content) if content else

async def html_content(self):

+ content = markupsafe.escape(await self.content)

return markdown(content) if content else
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Masks - Character Level

async def html_content(self):
= content = await self.content
return markdown(content) if content else

async def html_content(self):
+ co tent = markupsafe.escape(await self.content)
ret rn markdo n(content) if content else ''
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Loss Functions

Controlling Security
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Loss Functions
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Loss Functions

Maintain code quality
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Loss Functions
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Dataset

Table 1: Statistics of our training and validation datasets. #
total is the total size (i.e., the number of programs). # for
languages is the size for each programming language. # for
splits is the size for training and validation. LoC is the average
number of source lines. The CWEs are sorted by size.

CWE # total # for languages # for splits LoC
089 408 py: 408 train: 368, val: 40 18
125 290 c/c++: 290 train: 260, val: 30 188
078 212 py: 204, c/c++: 8 train: 190, val: 22 29
476 156 c/c++: 156 train: 140, val: 16 174
416 128 c/c++: 128 train: 114, val: 14 112
022 114 py: 66, c/c++: 48 train: 102, val: 12 59
787 112 c/c++: 112 train: 100, val: 12 199
079 100 py: 82, c/c++: 18 train: 90, val: 10 33
190 86 c/c++: 86 train: 76, val: 10 128

overall 1606 py: 760, c/c++: 846  train: 1440, val: 166 95




Dataset

CWE Scenario Split Description CWE Scenario Split Description
0-py test unsubscribe an email from a database 0-py test read a requested file from “/safe/”

089: SQL injection 1-py test insert a user message in a database 022: path traversal 1-py test return an image in folder “images”
2-py val insert an order for buying stocks 2-py val decompress a tar file to “/tmp/unpack”

0-c test array indexing with bound check 0-c test convert “float” numbers to strings

out-of-bound . . . out-of-bound

125 4 1-c test array indexing with bound check 787: rite 1-c test copy data between buffers
2-c val array indexing with bound check 2-c val remove trailing whitespaces of strings
0-py test use “Is” on a directory cross-site 0-py test web content saying “hello” to a user

* injection -py e:l calla comr:ln o get user info -py es initialize a “jinja2” environmen

2- “ping” URL

124 i k. it e 0-c test generate a random integer >1000

76 null pointer 0-c test allocate and set a new “struct” 190: overflow 1-c test add an integer value with 100000000
" dereference 2-c test copy from “stdin” to a new buffer 2-c val sum the sales for the first quarter
416: use after free 0-c test computation on an allocated buffer 416: use after free 1-c test save data to a buffer and a file




Results

100 85.4 92.3 87.4
75 588 59.1 AL
50 353 36.8 41.9
s |0 LEE [AE
CodeGen CodeGen CodeGen
350M 2.7B 6.1B

Figure 7: Overall security rate on our
main CWEs. The temperature is 0.4.
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Figure 8: Overall security rate on our
main CWEs. The temperature is 0.1.

100 s 86.8 83.4
75 593 59.7 634
50 405 39.6 e
0
CodeGen CodeGen CodeGen
350M 2.7B 6.1B

Figure 9: Overall security rate on our
main CWEs. The temperature is 0.8.
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Results
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Results
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Figure 11: Varying weight wct of SVEN’s training loss in Equa- Figure 12: Varying weight wiy, of SVEN’s training loss in Equa-
tion (5) for CodeGen-2.7B at sampling temperature 0.4. tion (5) for CodeGen-2.7B at sampling temperature 0.4.
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Results

Table 3: Comparison between CodeGen LMs [57] and SVEN
on the ability to generate functionally correct code, measured
by pass@k scores on the HumanEval benchmark [26].

Size Model pass@1 pass@10 pass@50 pass@100
LM 6.7 11.0 15.6 18.6

350M  SVENsec 6.0 10.4 15.9 19.3
SVEN 1 6.8 10.7 16.3 19.3

LM 14.0 26.0 36.7 41.6

2.7B SVENiec 11.7 247 35.8 41.0
SVENu 12.5 24.0 34.6 39.8

LM 18.6 29.7 44.2 52.2

6.1B SVENgec 16.9 29.4 43.1 50.9

SVENu1 17.6 28.3 41.5 49.1
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Results - Generalizability
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Figure 17: Security rate on 4 more CWEs that are not included in SVEN’s training set. The corresponding scenarios are adapted
from [60] and are detailed in Table 5. For this experiment, the base model is CodeGen-2.7B and the temperature is 0.4. The
overall security rate for LM, SVEN,, and SVEN,,,| are 53.4%, 77.1%, and 44.7%, respectively.
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Figure 18: Security rate on 13 more CWEs that are not included in SVEN’s training set. The corresponding scenarios are adapted
from [68] and are detailed in Table 6. For this experiment, the base model is CodeGen-2.7B and the temperature is 0.4. The
overall security rate of LM, SVEN;¢., and SVEN,,,| are 49.1%, 57.3%, and 44.8%, respectively.









