Large Language Models for Code:
Security Hardening and Adversarial Testing

Jingxuan He Martin Vechev
ETH Zurich, Switzerland ETH Zurich, Switzerland
jingxuan.he@inf.ethz.ch martin.vechev@inf.ethz.ch

Davit Soselia

February 14, 2023

Product

GitHub Copilot now has a
better Al model and new
capabilities

We’re launching new improvements to GitHub Copilot to make it more powerful and more

responsive for developers.

LM —

g E == Detector - Repairer =— = I[njector =
Prompt
(c) Vulnerability repair (d) Vulnerability injection
(a) Controlled code generation (b) Vulnerability detection

Figure 2: Visualization of controlled code generation vs. vulnerability detection, repair, and injection.

Approach

e SVEN, which uses continuous prompts (prefixes) to steer LLM
e Two prefixes learned for secure/unsafe properties
e Guides LLM via attention without changing weights
e Lightweight and efficiently trainable
e Training optimizes prefixes using specialized loss terms
e Lossterms operate on changed vs unchanged code regions
e Balance security control and functional correctness

Prefix-tuning

Fine-tuning

Transformer (Translation)
- - A - E = = .

Transformer (Summarization) ‘
- Em Em s O O =

Transformer (Table-to-text)

0 08I0 80N

name Starbucks type coffee shop [SEP] Starbucks serves coffee

Prefix Input (table-to-text) Output (table-to-text)
(Translation)
1 . .
' Prefix Prefix-tuning
(Summarization)
J—,)

Transformer (Pretrained)

IR

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Figure 1: Fine-tuning (top) updates all Transformer
parameters (the red Transformer box) and requires stor-
ing a full model copy for each task. We propose
prefix-tuning (bottom), which freezes the Transformer
parameters and only optimizes the prefix (the red pre-
fix blocks). Consequently, we only need to store the
prefix for each task, making prefix-tuning modular and
space-efficient. Note that each vertical block denote
transformer activations at one time step.

Prefix
(Table-to-text)

P(E) = 0.6

—

/ Hidden states P(=)=04

LM + Prompt _ __ _________ (2) LM Inference
~ (b) SVEN;e. Inference
, P(E) =

Attent; —

SVEN;e cnHoen Hidden states P(E)=0.1

Masks

async def html_content(self):
content = await self.content
return markdown(content) if content else

+

sync def html_content(self):

content = markgsfafe.escape(await self.content)

eturn markdown(content) if content_else

Vector x

I

Mask m

Masks

e Program Level
o All tokens are considered security-sensitive

e Line Level
o Only modified lines

e Character Level
o Only changed characters

Masks - Program Level

async def html_content(self):
= content = await self.content
return markdown(content) if content else

async def html_content(self):

+ content = markupsafe.escape(await self.content)

return markdown(content) if content else

N

Mask m

Vector x

Masks - Character Level

async def html_content(self):
= content = await self.content
return markdown(content) if content else

async def html_content(self):
+ co tent = markupsafe.escape(await self.content)
ret rn markdo n(content) if content else ''

Vector x

NS

N

Mask m

Loss Functions

Controlling Security

x|

Lim=-— Z mg - logP(xtIh<t, c).
=1

Loss Functions

Discourage from generating sveNn_,

P(xt|h<t,c)

_ 1
LCT ; i Og P(Xt|h<t, C) + P(Xt|h<t, —IC)

Loss Functions

Maintain code quality

KL divergence between

x|

Lxe =) (=ms) - KL(P(x|h<r, 0)|[P(x|h<r))
<

Loss Functions

L=Lim+wer - Lot +wkL - LKL

Dataset

Table 1: Statistics of our training and validation datasets. #
total is the total size (i.e., the number of programs). # for
languages is the size for each programming language. # for
splits is the size for training and validation. LoC is the average
number of source lines. The CWEs are sorted by size.

CWE # total # for languages # for splits LoC
089 408 py: 408 train: 368, val: 40 18
125 290 c/c++: 290 train: 260, val: 30 188
078 212 py: 204, c/c++: 8 train: 190, val: 22 29
476 156 c/c++: 156 train: 140, val: 16 174
416 128 c/c++: 128 train: 114, val: 14 112
022 114 py: 66, c/c++: 48 train: 102, val: 12 59
787 112 c/c++: 112 train: 100, val: 12 199
079 100 py: 82, c/c++: 18 train: 90, val: 10 33
190 86 c/c++: 86 train: 76, val: 10 128

overall 1606 py: 760, c/c++: 846 train: 1440, val: 166 95

Dataset

CWE Scenario Split Description CWE Scenario Split Description
0-py test unsubscribe an email from a database 0-py test read a requested file from “/safe/”

089: SQL injection 1-py test insert a user message in a database 022: path traversal 1-py test return an image in folder “images”
2-py val insert an order for buying stocks 2-py val decompress a tar file to “/tmp/unpack”

0-c test array indexing with bound check 0-c test convert “float” numbers to strings

out-of-bound . . . out-of-bound

125 4 1-c test array indexing with bound check 787: rite 1-c test copy data between buffers
2-c val array indexing with bound check 2-c val remove trailing whitespaces of strings
0-py test use “Is” on a directory cross-site 0-py test web content saying “hello” to a user

* injection -py e:l calla comr:ln o get user info -py es initialize a “jinja2” environmen

2- “ping” URL

124 i k. it e 0-c test generate a random integer >1000

76 null pointer 0-c test allocate and set a new “struct” 190: overflow 1-c test add an integer value with 100000000
" dereference 2-c test copy from “stdin” to a new buffer 2-c val sum the sales for the first quarter
416: use after free 0-c test computation on an allocated buffer 416: use after free 1-c test save data to a buffer and a file

Results

100 85.4 92.3 87.4
75 588 59.1 AL
50 353 36.8 41.9
s |0 LEE [AE
CodeGen CodeGen CodeGen
350M 2.7B 6.1B

Figure 7: Overall security rate on our
main CWEs. The temperature is 0.4.

LMas ,SVENgas' ,and SVENy, as
100 88.1 80 91.8
75 58.2 54.8 Zhn
50 37.9 37.1 263
= |00 [ER DAD
0
CodeGen CodeGen CodeGen
350M 2.7B 6.1B

Figure 8: Overall security rate on our
main CWEs. The temperature is 0.1.

100 s 86.8 83.4
75 593 59.7 634
50 405 39.6 e
0
CodeGen CodeGen CodeGen
350M 2.7B 6.1B

Figure 9: Overall security rate on our
main CWEs. The temperature is 0.8.

Results

100 85.4 92.3 87.4
75 588 59.1 AL
50 353 36.8 41.9
s |0 LEE [AE
CodeGen CodeGen CodeGen
350M 2.7B 6.1B

Figure 7: Overall security rate on our
main CWEs. The temperature is 0.4.

LMas ,SVENgas' ,and SVENy, as
100 88.1 80 91.8
75 58.2 54.8 Zhn
50 37.9 37.1 263
= |00 [ER DAD
0
CodeGen CodeGen CodeGen
350M 2.7B 6.1B

Figure 8: Overall security rate on our
main CWEs. The temperature is 0.1.

100 s 86.8 83.4
75 593 59.7 634
50 405 39.6 e
0
CodeGen CodeGen CodeGen
350M 2.7B 6.1B

Figure 9: Overall security rate on our
main CWEs. The temperature is 0.8.

LMas ,SVENgeas| |,and SVENy, as

Results

100 95.8 100 99.2 100 100 100 100 100
100 83.6 100 £ 100 e 10
66.0
75 75 75 75
50 50 50 50
21.7
25 25 25 25
25 0
0 0 0 0
CWE-089 0-py CWE-089 1-py CWE-125 0-c CWE-125 1-¢c CWE-078 0-py CWE-078 1-py CWE-476 0-c CWE-476 2-c CWE-416 0-c
100 99.6 100 100 100 98.4 100 100 100
100 724 20 100 —g7 100 100 804,,, 100 2 805799
75 S 75 75 75 57.9 75
50 278 50 33.7 37.8 50 276 50 50
25 118 25 |}| 25 133 25 25
0 0
0o - 0o 0 B 0 - 0

CWE-022 0-py CWE-022 1-py CWE-7870-c CWE-787 1-¢ CWE-079 0-py CWE-079 1-py CWE-1900-c CWE-190 1-c CWE-416 1-c

LMas ,SVENgas' ,and SVENy, as

Results

overall security rate (main CWEs) pass@10 (HumanEval) overall security rate (main CWEs) pass@10 (HumanEval)
100 1 32 1 100 1 32 1
! I ! 1
" : a4 : 75 ; 24 :
1 1 1 1
1 I 1 1
50 |- , 16 | , 50 : 16 ;
I 1
25 ' 8 : 25 ! 8 '
: SVEN : SVEN : SVEN : SVEN
0 1 0 1 0 1 0 1
0.25 1 4 16 64 0.25 1 4 16 64 0.1 0.4 1.6 6.4 25.6 0.1 0.4 1.6 6.4 25.6
wer, weight of our contrastive loss wer, weight of our contrastive loss wkL, weight of our KL loss wkL, weight of our KL loss

Figure 11: Varying weight wct of SVEN’s training loss in Equa- Figure 12: Varying weight wiy, of SVEN’s training loss in Equa-
tion (5) for CodeGen-2.7B at sampling temperature 0.4. tion (5) for CodeGen-2.7B at sampling temperature 0.4.

LMas ,SVENgeas ,and SVENy, as

Results

Table 3: Comparison between CodeGen LMs [57] and SVEN
on the ability to generate functionally correct code, measured
by pass@k scores on the HumanEval benchmark [26].

Size Model pass@1 pass@10 pass@50 pass@100
LM 6.7 11.0 15.6 18.6

350M SVENsec 6.0 10.4 15.9 19.3
SVEN 1 6.8 10.7 16.3 19.3

LM 14.0 26.0 36.7 41.6

2.7B SVENiec 11.7 247 35.8 41.0
SVENu 12.5 24.0 34.6 39.8

LM 18.6 29.7 44.2 52.2

6.1B SVENgec 16.9 29.4 43.1 50.9

SVENu1 17.6 28.3 41.5 49.1

LMas ,SVENgas' ,and SVENy, as

Results - Generalizability

100 99.5 100 96.8 96.5 90.2 100 100 100

86.9

100 81.7 90.5 80.2 77.9 85.4
70.3 70.5 69.9 66.4
75 55.8 61.2 -
50 37.0 36.3 42:0 44.2 36.1 38.3
20.1 23.8
. 31 ;
o &1 El = om0 = il %
CWE-119 CWE-119 CWE-119 CWE-502 CWE-502 CWE-502 CWE-732 CWE-732 CWE-732 CWE-798 CWE-798 CWE-798
0-c 1-c 2-c 0-py 1-py 2-py 0-c 1-c 2-py 0-py 1-py 2-py

Figure 17: Security rate on 4 more CWEs that are not included in SVEN’s training set. The corresponding scenarios are adapted
from [60] and are detailed in Table 5. For this experiment, the base model is CodeGen-2.7B and the temperature is 0.4. The
overall security rate for LM, SVEN,, and SVEN,,,| are 53.4%, 77.1%, and 44.7%, respectively.

LMas ,SVENgas' ,and SVENy, as
97.5 100 94,0 100 100 100 100 100 100
71.5 67.3 i
75 59.2
34 8 35.7 30 7
: AiE LN - i
6.6 5.0
0 0.7 0 05
. | = £ £
CWE-020 0-py CWE-020 1-py = CWE-327 0-py CWE-327 1-py CWE-094 0-py CWE-116 0-py CWE-117 0-py CWE-209 0-py CWE-215 0-py
- 473,100 96.8 91.8 97.2 100 100 100
69.0
75 47.8
33 8
%0 e 14 2 17.6
25 % E] é I“_t'l 7 S BN ES
pN
CWE 777 0-py CWE-777 1-py ~ CWE-918 O-py CWE-918 1-py CWE-312 0-py CWE-377 0-py CWE-611 0-py CWE-643 0-py

Figure 18: Security rate on 13 more CWEs that are not included in SVEN’s training set. The corresponding scenarios are adapted
from [68] and are detailed in Table 6. For this experiment, the base model is CodeGen-2.7B and the temperature is 0.4. The
overall security rate of LM, SVEN;¢., and SVEN,,,| are 49.1%, 57.3%, and 44.8%, respectively.

