
Fuzzing with LLMs
Presented by David Miller



Background: fuzzing

Pilfered from Leo’s colloquium talk “Adventures in Property-Based Testing” Sept. 9, 2022, 17:00



Tl;dr

Adapted from Leo’s colloquium talk “Adventures in Property-Based Testing “ Sept. 9, 2022, 32:40

LLM-infused 
fuzzing?



Large Language Models are Zero-
Shot Fuzzers:
Fuzzing Deep-Learning Libraries via 
Large Language Models
Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, Lingming Zhang
UIUC and USTC
ISSTA 2023: Proceedings of the 32nd ACM SIGSOFT International Symposium on 
Software Testing and Analysis, July 2023



Prior fuzzing for deep learning code

• ML code is hard!
• Python is dynamically typed
• Shape errors prevent more interesting tests

• API-based vs. model-based fuzzers
• API-based:
• Targets individual APIs, perhaps one line of code

• Model-based
• Create a larger model (using common APIs)
• Compare results across different backends, e.g., of Keras (here, CPU/GPU)



Method



Prompting Codex (generator)



Mutation operators (for infilling with InCoder)



Depth of dataflow graph + # API calls - # repeated calls
 D + U + R



Successes/ failures for that API/op



Evaluation metrics

• Coverage
• APIs
• Lines of code

• Number of “unique” valid programs
• Execution time
• Bugs detected



Coverage vs. time comparison



Coverage vs. time comparison (cont.)



RQ2: Ablations

• Temperature
• Evolutionary algorithm
• Mutation operators allowed
• Fitness function/operator selection
• InCoder vs. Codex



Temperature

Is this only 
among valid 
programs?



Ablating operators

• Each seems useful



Ablating fitness function



Ablating operator selection algorithm



RQ3: actually finding bugs?

• Their fuzzer tries wacky cases!
• Obscure APIs wouldn’t be used by 

model-based fuzzers
• More complex Python scaffolds

• 9/53 confirmed bugs could be 
found by API-level fuzzing, none 
by model-level



Augmenting Greybox Fuzzing 
with Generative AI
Jie Hu, Qian Zhang, Heng Yin
UC Riverside
arXiV





Hyper-parameters

• Model endpoint
• Prompt style
• max_tokens
• n (# completions)
• Temperature





Max_tokens



Temperature



Temperature (cont.)



Something is funky in the study of prompt 
ablation



Prompt ablation (cont.)



Evaluated fuzzers



Evaluation setting



Questions for both of them

• What about using LLMs to write generators/mutators?
• What about other baselines?
• Property-based testing (more manual effort)
• Leo mentioned Driller, VUzzer

• Can’t one enforce some output constraints at generation time? (with 
non-API models anyway)
• Microsoft Guidance, get inspired by JSONFormer, etc.


