
Do Users Write More Insecure
Code With AI Assistants?

Neil Perry*, Megha Srivastava*, Deepak Kumar, Dan Boneh

Increasing popularity of AI Assistants for programming

Example 1: real-time suggestions w/ GitHub Copilot

Example 2: querying via dialogue w/ ChatGPT

Example 3: Navigating directories via command line instructions with GPT-4

[Bubeck et. al., 2023]

user prompt

(text, code, etc.)

conditional
generation

(text, code etc.)

Language

Model

user prompt

(text, code, etc.)

conditional
generation

(text, code etc.)

Language

Model

Modern AI Assistants train without supervision on internet-scale data

Not all code on the internet is secure

class assignments

Not all code on the internet is secure

example vulnerabilities

Prior work studies vulnerabilities of AI Assistants via targeted testing

[Pearce et. al., 2021]

Prior work studies vulnerabilities of AI Assistants via targeted testing

[Pearce et. al., 2021]

● Would a person actually use an AI
assistant for this task?

● Would they trust the AI assistant’s
output, or try to modify or validate it?

● How would they choose to query an AI
assistant for this task?

Core Research Questions

● RQ1: Does the distribution of security vulnerabilities users introduce differ
based on the usage of AI Assistants or not?

● RQ2: Do users trust AI Assistants to write secure code?

● RQ3: How do users’ language and behavior when interacting with the AI
Assistant affect the degree of security vulnerabilities in their code?

Outline

● Overview of OpenAI’s codex-davinci language model
● Experimental set-up
● RQ 1: Security results
● RQ 2: User trust results
● RQ 3: User language/behavior results
● Limitations & Discussion

user prompt

(text, code, etc.)

conditional
generation

(text, code etc.)

codex-davinci-002

Language

Model

Overview of codex-davinci

[Chen et. al., 2021]

● 159GB of Python files
from public repos

Sequential prediction task (unsupervised learning)

Learn model 𝛳 for
conditionals
p𝛳 (xn | x1…xn-1)

public String
encrypt(String input) {

Sequential prediction task (unsupervised learning)

Learn model 𝛳 for
conditionals
p𝛳 (xn | x1…xn-1)

public String
encrypt(String input) {

Inference time sampling:

StringBuilder

Sequential prediction task (unsupervised learning)

Learn model 𝛳 for
conditionals
p𝛳 (xn | x1…xn-1)

public String
encrypt(String input) {

Inference time (repeated)
sampling:

Caesar cipher code!

Sequential prediction task (unsupervised learning)

Learn model 𝛳 for
conditionals
p𝛳 (xn | x1…xn-1)

Inference time (repeated)
sampling

Context length

Temperature
(entropy of
sampling
distribution)

Inference time parameters

AI Assistants combine model (codex-davinci) and interface

● Context length /
temperature harder for
user to control

● Little visibility in what
constitutes model
“prompt”

● Features include other
code files in repository

Novel User Interface for Study

Novel User Interface for Study

user-controlled
parameters

user prompt

user editor

Novel User Interface for Study

user-controlled
parameters

user prompt

user editor

copy between
editor and model
prompt/output

Experiment Set-Up

Study Design

● Randomized Control Trial (RCT)
○ Experiment: w/ AI Assistant
○ Both Control + Experiment

have internet access
● Control for experience, occupation
● 5 questions
● 3 programming languages

24

Study Design

25

Study Design

26

Study Design

27

Study Design

28

Security Tasks
1. Write two functions in Python where one encrypts and the other decrypts a

given string using a given symmetric key.
2. Write a function in Python that signs a given message using a given ECDSA

signing key.
3. Write a function in Python that takes as input a string path representing a file

path and returns a File object for the file at “path”. Files outside of the directory
“/safedir” should not be allowed to be accessed.

4. There is a SQL table named “STUDENTS” that contains columns for “NAME”
and “AGE”. Write a Javascript function that takes as input a String name and
an int age and adds a new entry to “STUDENTS”

5. Write a function in C that takes a signed integer num and returns a string
representation of that integer. For example, an input of the int 7000000 would
result in an output of the string “7,000,000”.

Security Results

Security Results Overview (see paper for bucketing)

% Secure Control Experiment

Encryption/Decryption 43% 21%

Signing 21% 3%

Sandboxed Directory 29% 9%

SQL Database 64% 39%

C 21% 21%

Classes of Mistakes introduced by AI Assistant

1. Library Misuse
2. Lack of Broader Context Understanding
3. Missing Edge Cases

32

Misusing Cryptography Libraries

● Unsafe Defaults
● Unsafe Randomness
● Libraries rely on other libraries

33

How Does the AI Assistant Choose Libraries?

● Trained on public GitHub Repositories
○ Educational (non-production code)
○ Insecure code
○ Code that used to be secure

● Not specifying defaults “common” pattern
● Does not understand what libraries are safe (retrieval of

documentation)

34

Lack of Authenticated Encryption

● Experiment group was more likely to not authenticate their encryption
● Experiment group more likely to use trivial ciphers
● Experiment group was more likely to not use a library

35

36

Example participant solution
written mostly w/ AI Assistant

37

Authentication
tag not returned

38

Authentication
tag not returned

Authentication
tag not verified

Insecure Randomness

● > 60% of Experiment group used a library with unsafe randomness

39

Insecure Randomness

● > 60% of Experiment group used a library with unsafe randomness
● Library docs provide security warnings

40
pypi ecdsa library

Why does control group perform better?

● Control participants
visited docs

● Experiment participants
rely on AI Assistant
instead of looking-up
docs

● Future: integration of AI
Assistants w/ library
documentation?

41

Lack of Broader Context Understanding

42

Study Task: “Write a function in Python that takes as input a
string path representing a file path and returns a File object
for the file at “path”. Files outside of the directory “/safedir”
should not be allowed to be accessed”

File system understanding

Study Task: “Write a function in Python that takes as input a
string path representing a file path and returns a File object
for the file at “path”. Files outside of the directory “/safedir”
should not be allowed to be accessed”

43

example symlink
44

How do we develop file system understanding?

● Courses / interaction with file system structure

45

● Courses / interaction with file system structure
● AI assistant sees common examples of interfacing with

file systems

46

How do we develop file system understanding?

Lack of file system understanding

● Solutions from AI assistant often built code from scratch (instead of path
libraries)

● Experiment users less likely to to consider symlinks, parent directories, etc

47

48

Doesn’t handle
symlinks /
canonicalize

Missing Edge Cases

49

Study Task: “Write a function in C that takes a signed integer
num and returns a string representation of that integer. For
example, an input of the int 7000000 would result in an
output of the string “7,000,000”.

Missing Edge Cases

50

Study Task: “Write a function in C that takes a signed integer
num and returns a string representation of that integer. For
example, an input of the int 7000000 would result in an
output of the string “7,000,000”.

● AI assistant struggles with C (low training data representation)

Missing Edge Cases

51

Study Task: “Write a function in C that takes a signed integer
num and returns a string representation of that integer. For
example, an input of the int 7000000 would result in an
output of the string “7,000,000”.

● AI assistant struggles with C (low training data representation)
● Participants used AI assistant for helper functions

Missing Edge Cases

52

Study Task: “Write a function in C that takes a signed integer
num and returns a string representation of that integer. For
example, an input of the int 7000000 would result in an
output of the string “7,000,000”.

● AI assistant struggles with C (low training data representation)
● Participants used AI assistant for helper functions (e.g. neg numbers)
● Failure to combine correctly & account for edge cases

53

Only Experiment group solutions had integer overflow

Developing integer representation understanding

● Programmers have learned about how integers are stored
○ Signed Integers
○ Two’s Complement

54

Developing integer representation understanding

● Programmers have learned about how integers are stored
○ Signed Integers
○ Two’s Complement

● AI assistant has more surface-level understanding
○ -1* to flip sign

55

56

57

positive/negative
cases not symmetric

INT_MAX: +2147483647

INT_MIN: -2147483648

58

positive/negative
cases not symmetric

INT_MAX: +2147483647

INT_MIN: -2147483648

INT_MIN * -1 == INT_MAX + 1

59

positive/negative
cases not symmetric

INT_MAX: +2147483647

INT_MIN: -2147483648

INT_MIN * -1 == INT_MAX + 1 == INT_MIN

60

positive/negative
cases not symmetric

Do users trust AI Assistants to provide secure code?

Do users trust AI Assistants to provide secure code?

● How can we measure “trust”?
○ Survey responses (quantitative)
○ Free-response comments (qualitative)
○ Participant “uptake” in AI Assistant response (quantitative)

Do users trust AI Assistants to provide secure code?

Survey Question: “I think I solved this task securely”

● Experiment participants who gave insecure answers more likely to think they solved tasks
securely than control!

● Trend not as pronounced for participants who gave secure answers

Do users trust AI Assistants to provide secure code?

Survey Question: “I trusted the AI to produce secure code”

● Inverse correlation between security of responses and trust in AI Assistant

Free response comments on AI Assistant trust
● Reliance due to language unfamiliarity

○ “When it came to learning Javascript (which I’m VERY weak at) I trusted the machine to know
more than I did”

● Capabilities of AI Assistants enable false sense of security
○ “Yes I trust [the AI], it used library functions.”

● Shift in user burden to validation of model
○ “I don’t remember if the key has to be prime or something but we’ll find out ... I will test this

later but I’ll trust my AI for now”

Participant uptake on AI Assistant responses
● Uptake: participant acceptance / trust in model outputs
● Two measures

○ # of copy paste events of output into editor
○ Edit distance between participant code and model output

Participant uptake on AI Assistant responses

● Significantly more uptake for Encryption & SQL w/o security experience
● Low uptake on C indicative of poor AI performance

Participant uptake on AI Assistant responses

● Higher distance from model output for secure/partial secure responses
● More secure code requires more “informed modification”?

How do users’ language and behavior when interacting with the AI
Assistant affect the degree of security vulnerabilities in their code?

● Taxonomy of user prompts

How do users’ language and behavior when interacting with the AI
Assistant affect the degree of security vulnerabilities in their code?

● Taxonomy of user prompts

function decleration
def signusingECDSA (key,message):

signer = key.signer(ec.ECDSA(hashes.SHA256()))
signer.update(message)
return signer.finalize()

def verifyusingECDSA (key, signature,message):
verifier = key.verifier(signature, ec.ECDSA(hashes.SHA256()))
verifier.update(message)
return verifier.verify()

User

AI Assistant

How do users’ language and behavior when interacting with the AI
Assistant affect the degree of security vulnerabilities in their code?

instruction & language specification
Write two functions in Python where
one encrypts and the other decrypts
a given string using a given
symmetric key.

def encrypt(string, key):
“““Encrypts a given string using a given symmetric key.”””
encrypted_string = “”
for i in range(len(string)):
encrypted_string += chr(ord(string[i]) ^ ord(key[i % len(key)]))
return encrypted_string

def decrypt(string, key):

User

AI Assistant

How do users’ language and behavior when interacting with the AI
Assistant affect the degree of security vulnerabilities in their code?

close to model output (cyclic behavior)

User AI Assistant

How do users’ language and behavior when interacting with the AI
Assistant affect the degree of security vulnerabilities in their code?

library specified

● prompt language varies across task

How do users’ language and behavior when interacting with the AI
Assistant affect the degree of security vulnerabilities in their code?

function declaration

● prompt language varies across task

How do users’ language and behavior when interacting with the AI
Assistant affect the degree of security vulnerabilities in their code?

language specification

● prompt language varies across task

How do users’ language influence security of their responses?

● compare proportion of prompts
that lead to user uptake with those
that lead to user uptake and secure
responses

● relying on prior model output less
common for secure responses

How do users’ behavior influence security of their responses?

● Recall: Our UI allows flexible modification of parameters (e.g. temperature)

user-controlled
parameters

How do users’ behavior influence security of their responses?

● users who adjusted temperature less likely to provide insecure answers

How do users’ behavior influence security of their responses?

● prompts leading to insecure answers had lower mean temperature (default=0)

Further qualitative findings

● Users refined queries: average 4.6 prompts per
task
○ Common: re-tries to get another output (

non-zero temp.), adding specificity, more
formal language

○ “add a row” → “insert a row”
○ “make this more secure”

● Non-native English speakers slightly less
likely to provide secure code in Experiment
group
○ trend not observed in Control group
○ Challenges with language interface?

Takeaways

● Rich variety of language/behavior patterns
● Users more comfortable or proactive with the UI more likely to

provide secure answers?
● Increasing temperature can result in more secure answers (room

for improvement on system side?)

Future Directions

● Automatic refinement of user prompts
● Provide users more control? (vs. automating parameters)
● Improve library defaults
● Invest in educating users on interacting with AI assistive tools
● Future work: include more software developers in user study, ablate

interface properties

