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“Software is Eating the World”
- Marc Andreessen
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Software is Plagued with Errors

“Bad software cost US businesses $2.41 trillion in 2022” - SC Media
“280 days average time companies need to detect and respond to cyber attacks…” - Skybox
“Cybercrime is predicted to cost the world $7 trillion in 2022” - CISQ Report
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Software Programs

Program Analysis is Crucial for Building Trustworthy Software

Trustworthy Software

Security

Reliability

Safety

Privacy

Performance

Questions Help to Build

Program Analysis Answers

Vulnerability Privacy Leak
Can pointer p be 
NULL at line L?
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Significant Manual Effort

Various Security Applications

Tune

Heterogeneous Software

Challenges of Traditional Program Analysis

Human Expert Rules and Heuristics

Hand-Curate

Design analysis rules?Represent a program?

How to
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Abundant Public Code Abundant Compute

Program Representations 

Analysis Rules

Learn

Machine Learning Shows Promise for Analyzing Programs

Human Expert Rules and Heuristics

Hand-Curate

Design analysis rules?Represent a program?

How to
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Machine Learning Shows Promise for Analyzing Programs

Detecting and Exploiting Vulnerabilities
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Machine Learning Shows Promise for Analyzing Programs

Python Profiler Program Optimization

Explain Code

Translate Code

3% Code Written by ML

ML-Powered Program 
Fixing, Repair, 
Refactoring, etc.
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Huge Academic Contributions: 
500+ Papers
https://ml4code.github.io/



A code summarization example (Alon et al., 2019, Yefet et al., 2020, Henkel et al. 2022)
code2vec.org / code2seq.org

Limitations: Lack Understanding of Program Semantics
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Static Text

Program Text Sequence Trees (AST) Graphs (CFG/DFG) ML Model

Common Practice:

Specific Task

Common Practice of ML on Code

Program semantics does not just manifest in static text

Consequences: Lacking Robustness and Generalization

I. Overfit to spurious textual and task-specific patterns

II. Distribution shift: program syntax and task requirement changes

Security Applications Require More Rigorous Understanding of Program Semantics
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Stripped Binaries
Proprietary software,
Third-party component
Malware

A Popular Type of Program Analysis in Security: Binary Analysis

Variables
Arguments
Types
Data Structures
Names
...

Registers
Memory Accesses

-O0 -O1 
-O2

-O3 -Od Ox

Compilers Operating Systems

Architectures Optimizations Obfuscations

Additional Complications:

Semantic Hints are Absent

Various Code Transformations

Program Analysis

Binary Analysis

mov eax,0x16

int variable_init()
{
    int var = 22;
    return var;
}

xor eax,eax
sub eax,-0x16
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What do Robustness and Generalization Imply in Binary 

Program Analysis? 

-O0 -O1 -O2
-O3 -Od Ox

Compilers Operating Systems Architectures Optimizations Obfuscations

Code Transformations that Alters Only Syntax

Robustness: Stay Invariant to Syntactic Changes

Generalization: Generalize to new Syntactic Changes

Same Source Code

Same High-Level Semantics
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mov eax,0
add eax,0x16

xor eax,eax
sub eax,-0x16

Detecting Binary Code Reuse Vulnerability

Vulnerable 
Code

Detect 
Similar Code

Binary-only firmware 
with third-party 

components ML Model

Not 
Similar

Security Applications Require Rigorous Understanding of Program Semantics

Without understanding mov, xor, add, sub, etc.

ML model cannot reason about program behavior 
to predict similarity

mov eax,0
add eax,0x16

eax=0

eax=0

eax=0x16

eax=0x16

This is assembly code…these instructions 
initialize the EAX register to 22.

is it similar to
xor eax,eax
sub eax,-0x16?

No...the second set uses the "xor" and "sub" 
instructions to set the value of EAX register to -22...

13



Data-Driven
Program Analysis

Type Inference
[FSE’16]

Malware Analysis
[DSN’15]

Disassembly
[NDSS’21]

Fuzzing via Program Smoothing
[Oakland S&P’19]

Attack Forensics
[ACSAC’16]

SSL/TLS Hostname Verification
[Oakland S&P’17]

Semantic Similarity
[TSE’22]

Debug Symbol Recovery
[FSE’21, CCS’22]

Specification Inference
[ICML’23]

Memory Dependence
[FSE’22]

Efficient

98.1✕

Precise

118%+
-O0 -O1 -O2
-O3 -Od Ox

Generalizable and Robust Across

Compilers Architectures Optimizations Obfuscations

Program Behavior

Program Structure
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Formal Verification of Security Properties of Neural Networks
[Usenix’18, Neurips’18, DeepTest’18]

SOSP Best Paper Award

Inspired over Thousands of Follow-Up Projects

Systematic Whitebox Testing of Neural Networks
[SOSP’17, ICSE’18]

Data-Driven
Program Analysis
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My Research



My Research

Type Inference
[FSE’16]

Malware Analysis
[DSN’15]

Disassembly
[NDSS’21]

Fuzzing via Program Smoothing
[NDSS’21]

Attack Forensics
[ACSAC’16]

Semantic Similarity
[TSE’22]

Debug Symbol Recovery
[FSE’21, CCS’22]

Specification Inference
[Current]

Memory Dependence
[FSE’22]

Learning Execution Semantics 
for (Binary) Program Analysis

Formal Verification of Security Properties of Neural Networks
[Usenix’18, Neurips’18, DeepTest’18]

Systematic Whitebox Testing of Neural Networks
[SOSP’17, ICSE’18]

Data-Driven
Program Analysis

16



Learning Execution Semantics for Binary Program Analysis
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Banana  is a fruit
Orange  is a fruit

mov eax,0
add eax,0x16

xor eax,eax
sub eax,-0x16

Security Applications Require Rigorous Understanding of Program Semantics

Lack understanding of instruction 
semantics, so cannot reason about the 

program behavior

Static Text

Text Sequence Trees (AST) Graphs (CFG/DFG)
ML Model

Common Practice:

Similarity 
Detection

Program semantics does not manifest in static text

mov eax, 0
add eax, 0x16

Semantics(banana)=
Semantics(orange)=

Fruit

Semantics(mov)=
Semantics(add)=

Unknown
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mov eax,0
add eax,0x16

xor eax,eax
sub eax,-0x16

Similar
eax=0x16

Why not dynamic analysis?

Behavior

Behavior

Querying 1M+ Firmware Functions Takes 11+ Days

Run

Run

1s /method

Limited Coverage

False Negatives
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Learn How 
Program Behaves 

Learning Execution Semantics and 
Transferring it without Dynamic Analysis

Execution 
Semantics

ML Model

Program Behavior

Programs in-the-wild

Binary AnalysisML Model

Pretrain Finetune

Execute
Observe

Past Experience on Programming

Novice AnalystsCoding

mov eax,0
add eax,0x16

xor eax,eax
sub eax,-0x16

Experienced Analysts

Grow

Setting a register to 0
Increment it by 22

Setting a register to 0
Increment it by 22

“Mental Execution”
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Learn How 
Program Behaves 

Execution 
Semantics

ML Model

Program Behavior

Programs in-the-wild

Binary AnalysisML Model

Pretrain Finetune

1. How to collect and 
represent the diverse 
program behavior?

2. How to train the 
model to reason about 

program behavior?

3. How to avoid the expensive 
dynamic analysis?

21

Challenges of Learning Execution Semantics



Challenges of Learning Execution Semantics

Learn How 
Program Behaves 

Execution 
Semantics

ML Model

Program Behavior

Programs in-the-wild

Binary AnalysisML Model

Pretrain Finetune

1. How to collect and 
represent the diverse 
program behavior?

2. How to train the 
model to reason about 

program behavior?

3. How to avoid the expensive 
dynamic analysis?
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How to Collect Diverse Program Behaviors?

……

…

…

…

Microsoft IIS Call Graph

Under-Constrained Micro-Execution: 
Specify arbitrary code piece to execute

● Expose diverse code behaviors
● Benefit large-scale pretraining on diverse execution behavior
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Locally Execute



Data flow states
......
0x1c: mov ebp,esp
0x1f: add [ebp+0x8],0x3
0x26: cmp [ebp+0x8],0x2
0x2d: jle 0x3a
0x33: add [ebp+0x8],0x1
0x3a: mov eax,0x1a
......

......
## 0xc,0x4
## [0xc+0x8],0x3
## [0xc+0x8],0x2
## 0x3a
## [0xc+0x8],0x1
## 0x1,0x1a
......

Control flow states
......
Yes
Yes
Yes
Yes
No
No
......

Program instructions Code Addresses
......
0x1c
0x1f
0x26
0x2d
0x33
0x3a
......

Aligned with Program Instructions

24

How to Collect Diverse Program Behaviors?



sub ecx,1
add ecx,3
jmp ecx
push ebp

## 2,1
## 1,3
## 4
## 13

Instructions Micro-Execution Trace

sub ecx num add ecx num jmp ecx

## 2 1 ## 1 3 ## 4

0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9

1 2 3 1 2 3 1 2

Code Addresses

Opcode/operand position

x86 x86 x86 x86 x86 x86 x86 x86Instruction set architecture

Instructions

Data flow states

Yes Yes Yes Yes Yes Yes Yes YesControl flow states

push ebp

## 13

No No

0xb 0xb

1 2

x86 x86

Input Representation

Yes
Yes
Yes
No

0x3
0x6
0x9
0xb

Discrete Token Sequences
Data flow states Control flow states Code addresses
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Numerical Representation

## 2 1 ## 1 3 ## 4

Pad Each Numeric Token as a Fixed-Length 8-Byte Sequence: 

64-bit Arch: 
Vocabularies = 264

Prohibitively Large

0xdeadbeef 00 00 00 00 de ad be ef

Learning to Represent the Value with a Neural Network: 

00 00 00 00 de ad be ef

NN NN NN NN NN NN NN NN Emb(0xdeadbeef)
Embedding of 
0xdeadbeef

0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9

…… …… …… …… …… …… …… …… ……

Memory layout

Data flow states ## 13

0xb 0xb

…… ……

…… …… …… …… …… …… …… …… …… …… ……

264 → 256 
possible values
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Challenges of Learning Execution Semantics

Learn How 
Program Behaves 

Execution 
Semantics

ML Model

Program Behavior

Programs in-the-wild

Binary AnalysisML Model

Pretrain Finetune

1. How to collect and 
represent the diverse 
program behavior?

2. How to train the 
model to reason about 

program behavior?

3. How to avoid the expensive 
dynamic analysis?
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How to train the model to reason about program behavior?

Transformer Self-Attention Masked Language Modeling+

Transformer Self-Attention

Memory layout

Position

Architecture

Instructions

Data flow states

Control flow states

...sub add

...01 ff

NoYes

28

Help Learn Execution Semantics

Learn Dependencies Across 
Code and Traces



1

sub ecx num add ecx num jmp ecx

## 2 1 ## 3 ## 4

0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9

1 2 3 1 2 3 1 2

Memory layout

Position

x86 x86 x86 x86 x86 x86 x86 x86Architecture

Instructions

Data flow states

Yes Yes Yes Yes Yes Yes Yes YesControl flow states

E1 E2 E3 E4 E5 E6 E7 E8

Transformer Self-Attention Layers

...mov rbpadd ...

sub ecx,1
add ecx,3
jmp ecx

## 2,1
## 1,3
## 4
## 13

Yes
Yes
Yes
No

0x3
0x6
0x9
0xb

addSynthesis
1 ? 3 = 4
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Motivating Example



1

sub ecx num add ecx num jmp ecx

## 2 1 ## 3 ## 4

0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9

1 2 3 1 2 3 1 2

Memory layout

Position

x86 x86 x86 x86 x86 x86 x86 x86Architecture

Instructions

Data flow states

Yes Yes Yes Yes Yes Yes Yes YesControl flow states

E1 E2 E3 E4 E5 E6 E7 E8

Transformer Self-Attention Layers
sub ecx,1
add ecx,3
jmp ecx

## 2,1
## 1,3
## 4
## 13

Yes
Yes
Yes
No

0x3
0x6
0x9
0xb

sub
Forward

Interpretation
2 - 1 = ?

...00 ff01 ...
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Motivating Example



1

sub ecx num add ecx num jmp ecx

## 2 1 ## 3 ## 4

0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9

1 2 3 1 2 3 1 2

Memory layout

Position

x86 x86 x86 x86 x86 x86 x86 x86Architecture

Instructions

Data flow states

Yes Yes Yes Yes Yes Yes Yes YesControl flow states

E1 E2 E3 E4 E5 E6 E7 E8

Transformer Self-Attention Layers
sub ecx,1
add ecx,3
jmp ecx

## 2,1
## 1,3
## 4
## 13

Yes
Yes
Yes
No

0x3
0x6
0x9
0xb

...00 ff02 ...

sub
Backward

Interpretation
? - 1 = 1
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Motivating Example



1

sub ecx num add ecx num jmp ecx

## 2 1 ## 3 ## 4

0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9

1 2 3 1 2 3 1 2

Memory layout

Position

x86 x86 x86 x86 x86 x86 x86 x86Architecture

Instructions

Data flow states

Yes Yes Yes Yes Yes Yes Yes YesControl flow states

E1 E2 E3 E4 E5 E6 E7 E8

Transformer Self-Attention Layers addSynthesis
1 ? 3 = 4sub ecx,1

add ecx,3
jmp ecx

## 2,1
## 1,3
## 4
## 13

Yes
Yes
Yes
No

0x3
0x6
0x9
0xb

sub
Backward

Interpretation
? - 1 = 1

● Program Interpretation
● Program Synthesis

sub
Forward

Interpretation
2 - 1 = ?
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Motivating Example



Yes
Yes
Yes
No

How to train the model to reason about 
instruction compositions?

How to train the model to reason about program behavior?

add eax,3
sub ebx,eax
sub ebx,8
mov ecx,ebx

## 3, 3
## 12, 6
## 6, 8
## 0, -2

Mask more

How to train the model to reason about 
control flow?

add eax, 3
cmp eax, 8
jle 0x8
mov ecx,ebx

Mask control flow states

if(eax+3)>8:
  mask=Yes
else:
  mask=No

Training
● Curriculum: linearly increase % masks by training iterations
● Randomized mask selection at each iteration and samples

% Masks

Compositionality

33

ecx=
(12-(eax+3))-8



Challenges of Learning Execution Semantics

Learn How 
Program Behaves 

Execution 
Semantics

ML Model

Program Behavior

Programs in-the-wild

Binary AnalysisML Model

Pretrain Finetune

1. How to collect and 
represent the diverse 
program behavior?

2. How to train the 
model to reason about 

program behavior?

3. How to avoid the expensive 
dynamic analysis?
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How to Avoid the Expensive Dynamic Analysis?

sub ecx num add ecx num jmp ecx

1 2 3 1 2 3 1 2Position

x86 x86 x86 x86 x86 x86 x86 x86Architecture

Instructions push ebp

1 2

x86 x86

Finetuning as 
Static Analysis

Pretrained Model

Execution-Aware 
Code Representation

Learn How 
Program Behaves 

Execution 
Semantics

ML Model

Program Behavior

Programs in-the-wild

Binary AnalysisML Model

Pretrain Finetune

35

Program Analysis Tasks



How Much do Learned Execution-Aware Program Representations Help?

+20.5%

36

● Vulnerability search
● Malware detection
● Software patching

I1

Pretrained Model

E1 E2 E3

Emb(func1)

Similarity

Dummy

…… …… ……

I2 I3 I1

Pretrained Model

E1 E2 E3

Dummy

…… …… ……

I2 I3

Emb(func2)

Task 1: Binary Similarity

Pei, Xuan, Yang, Jana, Ray. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22



I1

Pretrained Model

E1 E2 E3

Emb(func1)

Similarity

Dummy

…… …… ……

I2 I3

Finetuning for Matching Semantically Similar Binary Functions

I1

Pretrained Model

E1 E2 E3

Dummy

…… …… ……

I2 I3

Emb(func2)

Task 1: Binary Similarity

Pei, Xuan, Yang, Jana, Ray. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22

+5.7%
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Finetuning for Predicting Function Signatures and Type Inference

Int

void*

Task 2: Type Inference

I1

Pretrained Model

E1 E2 E3 E4

Dummy

…… …… …… ……

I2 I3 I4

...

Int

void*

.........

Pei, Guan, Broughton, Chen, Yao, Williams-King, Ummadisetty, Yang, Ray, Jana. StateFormer: Fine-grained Type Recovery from Binaries Using 
Generative State Modeling. ESEC/FSE’21

+13%
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● Security retrofitting
● Decompilation
● Vulnerability detection



Finetuning for Analyzing Memory Dependence

Task 3: Memory Dependence Analysis

P(I2 and I4 is dependent) = 0.8

I1

Pretrained Model

E1 E2 E3 E4

Dummy

…… …… …… ……

I2 I3 I4

+118%

Pei, She, Wang, Geng, Xuan, David, Yang, Jana, Ray. NeuDep: Neural Binary Memory Dependence Analysis. ESEC/FSE’22
39

● Taint analysis
● Malware Analysis



Finetuning for Analyzing Memory Dependence: Inference Time

P(I2 and I4 is dependent) = 0.8

I1

Pretrained Model

E1 E2 E3 E4

Dummy

…… …… …… ……

I2 I3 I4

3.5X

Pei, She, Wang, Geng, Xuan, David, Yang, Jana, Ray. NeuDep: Neural Binary Memory Dependence Analysis. ESEC/FSE’22
40

Task 3: Memory Dependence Analysis



Finetuning for Function Name Prediction and Memory Region Prediction

Task 4: Function Name Prediction

read_ip_value

Jin, Pei, Wang, Won, Lin. NeuDep: SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings. CCS’22

I1

Pretrained Model

E1 E2 E3 E4

Dummy

…… …… …… ……

I2 I3 I4

Task 5: Memory Region Prediction

stack

global

I1

Pretrained Model

E1 E2 E3 E4

Dummy

…… …… …… ……

I2 I3 I4

heap ......

stack

global

heap

+35% Across All 
Architectures and 

Optimizations

Pei, She, Wang, Geng, Xuan, David, Yang, Jana, Ray. NeuDep: Neural Binary Memory Dependence Analysis. ESEC/FSE’22

+7.9% Across All Types 
of Memory Regions
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● Decompilation
● Reverse engineering

● Value set analysis
● Taint analysis



Case Studies: Vulnerability Search in Firmware

Pei, Xuan, Yang, Jana, Ray. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22

Ubiquiti sunMax TP-Link Deco-M4 NETGEAR R7000 Linksys RE7000

Firmware Images: Arm, MIPS with unknown compiler flags

Search

16 Vulnerabilities (Compiled in x86) 15 CVEs 16 CVEs 7 CVEs 14 CVEs

Search over 1.4M functions within 
6.3 secondsApproximate Nearest NeighborsLearned Function Embeddings
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Precise: Outperforms the state-of-the-art by up to 118%

Summary: Learning Program Semantics via Execution-Aware Pre-training 
Improves Program Analysis

-O0 -O1 -O2
-O3 -Od Ox

Generalizable and Robust: Remains accurate across

Compilers Architectures Optimizations Obfuscations

Efficient: Speedup over the off-the-shelf tool by up to 98.1x

Learn How 
Program Behaves 

Execution 
Semantics

ML Model

Program Behavior

Programs in-the-wild

Program AnalysisML Model

Pretrain Finetune
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Limitation: Learning Execution-Aware Program Representations is Challenging

Learn How 
Program Behaves 

Execution 
Semantics

ML Model

Pretrain

Program Interpretation

Program Synthesis

Program Behavior

Extremely challenging to learn precise semantics 
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......
## 0x43,0x3
## 0x3d,0x4
......

......
## 0x5,0x3
## 0x2,0x4
......

Limitation: What the Model has Learned during Pretraining?

Ground-truth Top-1 Top-2

......
sub ecx,0x3
add ecx,0x4
......

Dataflow statesInstructions

0x2 0x2 (98%) 0x3 (2%)

0x3d 0x3a (28%) 0x33 (13%)

......
sub ecx,0x3
add ecx,0x4
......

Dataflow statesInstructions

Perturb dataflow states from 0x5 to 0x43

Does not extrapolate well
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Exciting Future Work

Security Applications

Multi-Modal Software

Democratize the 
development of secure 

software system via

Data-Driven
Program Analysis

Robustness and 
Generalization

Learn, analyze, and interact with 
heterogeneous software modalities?

Develop and evaluate to ensure strong 
robustness guarantee?

Automate existing security tasks and 
enable new security applications?
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Software is Inherently Heterogeneous and Multi-Modal

Configurations
Program Activity

Natural LanguagePhysical Interaction

Specifications

Software Program

Noisy

Abundant

while i < n
    invariant  i<= n
{
    i = i + 1；
}

port=81
rootpath=...
execution=True
verification=True
……

“““
  Returns the year and 
quarter of an input date.
  Args:
    date: XXXX-XX-XX
  Returns:
    year: XXXX
    quarter: XXX
”””
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How to learn from heterogeneous software modalities?

ConfigurationsProgram Activity Natural LanguagePhysical Interaction Specifications Software Program
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How to learn from heterogeneous software modalities?

ConfigurationsProgram Activity Natural LanguagePhysical Interaction Specifications Software Program

Execution-Aware Program Representation

Execution-Aware Data-Driven 
Program Analysis

Pei et al., FSE’21, FSE’22, TSE’22, CCS’22

49



How to learn from heterogeneous software modalities?

ConfigurationsProgram Activity Natural LanguagePhysical Interaction Specifications Software Program

Aggregate and Fuse More Modalities

Grounded Data-Driven 
Program Analysis

ML Challenges:
● Modal-Specific Neural Architecture?
● Training Tasks?
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How to learn from heterogeneous software modalities?

ConfigurationsProgram Activity Natural LanguagePhysical Interaction Specifications Software Program

Aggregate and Fuse More Modalities

Grounded Data-Driven 
Program Analysis

System Challenges:
● Serving Data Collections
● Serving Training and Inference
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How to interact with heterogeneous software modalities?

ConfigurationsProgram Activity Natural LanguagePhysical Interaction Specifications Software Program

Interact with Multiple Software Modalities

Data-Driven 
Program Analysis

52

Opportunities: 
● Automate Existing Tasks
● Enable New Applications



Automating Existing Security Applications

ConfigurationsProgram Activity Natural LanguagePhysical Interaction Specifications Software Program

Data-Driven 
Program Analysis

53

Cyber-Threat Investigation; Debugging System Failures



Enabling New Security Applications

ConfigurationsProgram Activity Natural LanguagePhysical Interaction Specifications Software Program

Documentation-Grounded Invariant Generation

Data-Driven 
Program Analysis
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Enabling New Security Applications

ConfigurationsProgram Activity Natural LanguagePhysical Interaction Specifications Software Program

Synthesizing Secure Program Code with Proofs

Data-Driven 
Program Analysis
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Enabling New Security Applications

ConfigurationsProgram Activity Natural LanguagePhysical Interaction Specifications Software Program

Interactive Debugging; Interactive Reverse Engineering

Data-Driven 
Program Analysis
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P1  L1

Principled Robustness Measurement

Data-Driven
Program Analysis

Program Space P
Label Space L

Future testing of data-driven program analysis: Transformation-Oriented Testing

f
f ( P1 ) = L1
f ( P2 ) = L2
f ( P3 ) = L3

Evaluate

Current testing of data-driven program analysis: Random Testing

Transformation Space T

Data-Driven
Program Analysis

T1

T2
T3

f ( T1 ( P ) ) = f ( P )
f ( T2 ( P ) ) = f ( P )
f ( T3 ( P ) ) = f ( P )

T alters program syntax: Robustness Testing
f

57

P2  L2
P3  L3

How to systematically 
explore the program space?



Formal Verification of Security Properties
[Usenix’18, Neurips’18, DeepTest’18]

Systematic Whitebox Testing
[SOSP’17 Best Paper Award, ICSE’18]

Data-Driven
Program Analysis

58

Systematic Testing and Verification of Neural Networks

T = T = 

Visual Transformations

Formal verification of all possible transformations



Data-Driven Program Analysis with Provable Robustness by Construction

Transformation Space T

Data-Driven
Program Analysis

T1

T2
T3

f ( Ti ( P ) ) = f ( P )

Symmetry-Preserving 
Model Architectures
e.g., self-attention, 

graph NN

T4 T1

T2T3

1: x=5
2: y=6
3: z=x+y

1: y=6
2: x=5
3: z=x+y

Instruction 

Reordering

.

.

.

∀ Ti ∊ T
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Robust f by Construction

Permutation Group T



Thanks!
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