Analyzing and Securing Software

via Robust and Generalizable Learning

Kexin Pei
Department of Computer Science

B8] THE UNIVERSITY OF

CHICAGO

CoLumMBIA UNIVERSITY
IN THE CITY OF NEW YORK

“Software is Eating the World”

- Marc Andreessen

Software is Plagued with Errors

“Bad software cost US businesses $2.41 trillion in 2022” - SC Media

“280 days average time companies need to detect and respond to cyber attacks...” - Skybox
“Cybercrime is predicted to cost the world $7 trillion in 2022” - CISQ Report

Hackers breach energy orgs via bugs in discontinued web server

By Sergiu Gatlan

November 22, 2022 02:55PM 0

Florida Hack Exposes Danger to Water Systems

STATELINE ARTICLE March 10, 2021 By: Jenni Bergal Read time: 7 min

CYBERSECURITY

Cyberattack on food supply followed years of warnings

Virtually no mandatory cybersecurity rules govern the millions of food and agriculture businesses that account for about a fifth of the U.S.
economy. And now, the risk has become real.

Program Analysis is Crucial for Building Trustworthy Software

Software Programs

Questions

Program Analysis

Can pointer p be
NULL at line L?

®

Vulnerability

=

.& Help to Build
ST |

Answers
1

e e e

Trustworthy Software
Security

Reliability

Safety

Privacy

Performance

Challenges of Traditional Program Analysis

Hand-Curate

How to »© O

Human Expert Rules and Heuristics

Represent a program?

Significant Manual Effort

Input: kill(B) and gen(B) for every basic bloc B.
Output: in(B) and out(B) for every basic bloc B.

for each B repeat
out(B) := gen(B)
while changes to any out(B) occur repeat
in(B) =U p . pred(s) out(B')
out(B) := gen(B) J (in(B) \ kill(B))

Design analysis rules?

Machine Learning Shows Promise for Analyzing Programs

Program Representations

Analysis Rules

Abundant Public Code Abundant Compute

Machine Learning Shows Promise for Analyzing Programs

Detecting and Exploiting Vulnerabilities

. Brandon Rossi
devtooligan & ﬁ @0xConda
@devtooligan

)) | told ChatGPT to pentest a scope of IPs and it found
omg. seriously mind-blown & me $69,420 worth of bugs.

Are there any vulnerabilities in this Solidity contract? | want to make sure no one can steal
other peoples’ deposits. If there are, how do | fix it?

contract Vault {
mapping(address => uint256) public balances;

function deposit() public payable {
balances[msg.sender] += msg.value;

}

function withdraw(uint256 amount, address from) public {
balances[from] -= amount;
payable(from).transfer(amount);
}
}

This contract appears to have a potential vulnerability in the “withdraw® function. The

*withdraw" function allows anyone to specify the *from™ address when calling the

function, which means that a malicious user could potentially withdraw funds from an

arbitrary address by calling *withdraw™ and specifying a different * from™ address.

To fix this issue, you could modify the *withdraw™ function to only allow the caller to
withdraw funds from their own account. You could do this by replacing the " from®
parameter with *msg.sender ", which will always represent the caller's address. Here is an

example of how you could do this:

Machine Learning Shows Promise for Analyzing Programs

Python Profiler Program Optimization

z1 = [i for 1 in range(0,300000)][299999
GPT-4
7, -
’]5
Proposed optimization:
SCALENE o - . _ .
This code can be optimized by using the built-in function max()

z1 = max(range(0, 300000 # ~10x faster

RgEXCERIN \ LANGUAGE TRANSLATION

D Jl Google
zzBuzz'

if ((donut % 3 === @) && (donut % 5 === @))

st donut = Number(process.arg

if ((donut % 3 === @) && (donut 3% Code Written by ML
GitHub { , .
) Copilot s console.log('FizzBuzz") ML-Powered Program
» Advanced - = -
} Fixing, Repair,
Exolain Cod DLAET Refactoring, etc.
xp aln o e RESULT
RN Translate code into:
ere Is eexp ianation Tor e code above: - - -
Translate Code ;H?i;::;::;%:r;:'EL:J:S::_ from the command line Huge Academlc CO"trlbuthnS.

h
2. We then use an if statement to check if the number pyt on 500+ Papers
|35.?\‘I\t/:ws;bnlweurl;yb;i:i\Sx;lslble by 3 and 5, we output ®.0 https://m|4c°de-q ithUb- iO/

FizzBuzz.

4. If the number is not divisible by 3 and 5, we output @ ASk COpilOt

the number. */

Limitations: Lack Understanding of Program Semantics

A code summarization example (Alon et al., 2019, Yefet et al., 2020, Henkel et al. 2022)

code?vec.org / code2seq.org

void £f1(int[] array) {
boolean swapped = true;
for (int 4. = 0y

swapped = false;
for (int j = 0;
j < array.length-1-i; Jj++) {

if (array[j] > array[j+1]) {
int temp = arrayl[jl;
array[j] = array[j+1];

array[j+1]= temp;
swapped = true;

i < array.length && swapped; i++) {

Prediction: sort (98.54%)

v,

void £2(int[] ttypes) {
boolean swapped = true;
for (int i = 0;

i < ttypes.length && swapped; i++) {

swapped = false;

for (int 3 = 0;

j < ttypes.length-1-i; Jj++) {

if (ttypes[j] > ttypes[j+1]) {

int temp = ttypes[j];
ttypes[j] = ttypes[j+1];
ttypes[j+1l]= temp;
swapped = true;

X)

Prediction: contains (99.97%)

Yefet, Noam, Uri Alon, and Eran Yahav. "Adversarial examples for models of code." OOPSLA 2020.

Common Practice of ML on Code

Common Practice: Static Text

& 020, E—
s O’/.\o (o) - . . Y/
[T d

Program T T AT T T T ML Model Specific Task

Program semantics does not just manifest in static text

|

Consequences: Lacking Robustness and Generalization

I. Overfit to spurious textual and task-specific patterns

Il. Distribution shift: program syntax and task requirement changes

|

Security Applications Require More Rigorous Understanding of Program Semantics

10

A Popular Type of Program Analysis in Security: Binary Analysis

Program Analysis Additional Complications:
]] i _ __ Variables
Binary Analysis J{.nt variable init() Arguments
e . Types
oiouy ' A 0 int var = 22;
o e v Rata Structures
ames
Semantic Hints are Absent
: Registers
B CERRL2l0 Memory Accesses

Various Code Transformations

Stripped Binaries Xor eax,eax Compilers Operating Systems
Proprietary software, =ty ik, = 0nls ~00 -01
Third-party component . |x64]|x86 —02
: -03 -0d Ox
Malware '

. Architectures ~ Optimizations Obfuscations :

What do Robustness and Generalization Imply in Binary

Program Analysis?

Same Source Code

HU -00 -01 -02
@ \%+ Q 6 x64]x86] 5 o4 ox

Compilers Operating Systems ~ Architectures ~ Optimizations Obfuscationsé

Code Transformations that Alters Only Syntax

Same High-Level Semantics

Robustness: Stay Invariant to Syntactic Changes

Generalization: Generalize to new Syntactic Changes

Security Applications Require Rigorous Understanding of Program Semantics

Detecting Binary Code Reuse Vulnerability eax,0 eax=0
eax,0x16 eax=0x16

Not
inary- - Similar
— > with third-party '

mov eax,0
KP

_ _ add eax,0xl6
Without understanding mov, xor, add, sub, etc.
@ This is assembly code...these instructions
. initialize the EAX register to 22.
ML model cannot reason about program behavior
to predict similarity . is it similar to
XOr eax,eax
sub eax,-0x16?

No...the second set uses the "xor" and "sub"
instructions to set the value of EAX register to -22... 13

__

My Research ’ N

Semantic Similarity Specification Inference
[TSE’22] [ICML23]

Debug Symbol Recovery Memory Dependence

' Program Behavior
[FSE’21, CCS’22] [FSE’22]

__

Generalizable and Robust Across

Efficient Precise co 00 -0l —02
98.1 X 118%+ @ Visual C++ x84/ |x86 -03 -0d Ox

Compilers Architectures Optimizations ~ Obfuscations

T O mC A0bj ect

V /| \ N se 3 GOOQ'C w

Soenloc noloqy

Data-Driven

Program Analysis

__

i Type Inference Fuzzing via Program Smoothing
. [FSE’16] [Oakland S&P’19] :
' Malware Analysis Attack Forensics
| [DSN'15] [ACSAC'16] | Program Structure
. Disassembly SSL/TLS Hostname Verification !

[NDSS’21] [Oakland S&P*17] ;

-

My Research

Data-Driven
Program Analysis

Systematic Whitebox Testing of Neural Networks
[SOSP’17, ICSE’18]

SOSP Best Paper Award
Inspired over Thousands of Follow-Up Projects

i techradar. i spectrum

Special Section

TR SCIENTIFIC

J brain-research/
tensorfuzz
A library for performing coverage guided fuzzing of

APPLIED RESEARCH |l
COMPETITION

i A

o7 195 ¥ 56

DeepXplare: Automated
Testing of Deep Learning Sy:
When Drones Fly

&

Formal Verification of Security Properties of Neural Networks
[Usenix’18, Neurips’18, DeepTest’18]

15

My Research

Data-Driven
Program Analysis

Semantic Similarity Specification Inference
[TSE’22] [Current]

Debug Symbol Recovery Memory Dependence

[FSE’21, CCS’22] [FSE’22]

Type Inference Fuzzing via Program Smoothing
[FSE’16] [NDSS’21]

Malware Analysis Attack Forensics

[DSN’15] [ACSAC’16]

Disassembly
INDSS™21]

Systematic Whitebox Testing of Neural Networks
[SOSP’17, ICSE’18]

Formal Verification of Security Properties of Neural Networks
[Usenix’18, Neurips’18, DeepTest’18]

Learning Execution Semantics
for (Binary) Program Analysis

16

Learning Execution Semantics for Binary Program Analysis

17

Security Applications Require Rigorous Understanding of Program Semantics

Common Practice:

Static Text
mov eax,0 —
: ~.» '~ :
—_— O’/ ~o o P -
TXT :
XOor eax,eax :
sub eax, -0x16 Text Sequence | Trees (AST) Graphs (CFG/DFG) Similarity
ML Model .
Detection
Program semantics does not manifest in static text
Banana] is a fruit mov eax, O
Orange|is a fruit add eax, 0x16 . . .
J Lack understanding of instruction
l semantics, so cannot reason about the
Semantics(banana)= Semantics(mov)= program behavior
Semantics(orange)= Semantics(add)=
Fruit Unknown

18

Why not dynamic analysis?

...

mov eax,0 Run » Behavior
add eax,0x16 imi
Similar
eax=0x16

XO0r eax,eax Run

’ - Behavior
sub eax,-0x16

{ Limited Coverage

1s /method @
N

False Negatives

Querying 1M+ Firmware Functions Takes 11+ Days

19

Learning Execution Semantics and
Transferring it without Dynamic Analysis

__ Setting a register to 0
Increment it by 22

mov eax, 0

i </y= add eax, 0x16

! ——+ Execute R “Mental Execution”
Fﬁ] Observe

1 XOor eax,eax

i sub eax,-0x16 _ _

!) . Setting a register to 0
i Coding Experienced Analysts Increment it by 22
e i Pretrain

' Programs in-the-wild Lo

! . L Learn How < Execution

. IR Sehavior —H Do Program Behaves {_ Semantics

1 [| : :

1 [| | |

""""""""""""""""""" ' ! ML Model

20

Challenges of Learning Execution Semantics

Programs in-the-wild

' | Program Behavior —’—‘

Learn How Execution
Program Behaves ¢ Semantics

2. How to train the
model to reason about
program behavior?

1. How to collect and

3. How to avoid the expensive

represent the diverse dynamic analysis?

program behavior?

21

Challenges of Learning Execution Semantics

Programs in-the-wild

' | Program Behavior —’—‘

Learn How Execution
Program Behaves ¢ Semantics

1. How to collect and

represent the diverse
program behavior?

How to Collect Diverse Program Behaviors?

Locally Execute

o~

Microsoft IS Call Graph

Under-Constrained Micro-Execution: e Expose diverse code behaviors

Specify arbitrary code piece to execute e Benefit large-scale pretraining on diverse execution behavior

How to Collect Diverse Program Behaviors?

Program instructions . Data flow states Control flow states Code Addresses
Oxlc: mov ebp,esp | ## Oxc,0x4 J Yes Oxlc i
0x1f: add [ebp+0x8],0x3 ' ## [0xc+0x8],0x3 J Yes Ox1f i
0x26: cmp [ebp+0x8],0x2 i ## [Oxc+0x8],0x2 J Yes 0x26 !
0x2d: jle Ox3a | ## 0x3a J Yes 0x2d i
0x33: add [ebp+0x8],0x1 i ## [Oxc+0x8],0x1 X No 0x33 i
0x3a: mov eax,0Oxla i ## O0x1,0xla X No 0x3a i

__

Aligned with Program Instructions

Input Representation

Instructions

sub ecx,1
add ecx,3
jmp ecx

push ebp

Instructions

Data flow states

——i

Control flow states

Code Addresses

Opcode/operand position

Instruction set architecture

Discrete Token Sequences

Micro-Execution Trace

Data flow states

Yes
Yes
Yes
No

Control flow states

0x3
0x6
0x9
0xb

Code addresses

i sub ecx num add ecx num Jjmp ecx | |[push| | ebp
E ## 2 1 ## 1 3 ## 4 ## 13
E Yes Yes Yes Yes Yes Yes Yes Yes No No
E 0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9 0xb 0xb
1 2 3 1 2 3 1 2 1 2
x86 x86 x86 x86 x86 x86 x86 x86 x86 x86

25

Numerical Representation

64-bit Arch:
Vocabularies = 264
Prohibitively Large

Data flow states | ## 2 1 ## 1 3 ## 4 ## 13

c0QO

Memory layout | 0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9 0xb 0xb

Pad Each Numeric Token as a Fixed-Length 8-Byte Sequence:

Y

Oxdeadbeef 00 00 00 00 de ad be ef

Learning to Represent the Value with a Neural Network:

264 256

00 00 00 00 de ad be ef | 00 Q — possible values
NN NN NN NN NN NN NN NN » Emb (0xdeadbeef) Embeddmg of
Oxdeadbeef

26

Challenges of Learning Execution Semantics

Programs in-the-wild

Learn How Execution
Program Behaves - Semantics

i | Program Behavior

2. How to train the

model to reason about
program behavior?

27

How to train the model to reason about program behavior?

Transformer Self-Attention + Masked Language Modeling

o1 |...| £f

m sub | ... |add Yes | No
t

N

[Transformer Self-Attention

J

Instructions

Data flow states

Learn Dependencies Across

Control flow states Code and Traces

Memory layout

Help Learn Execution Semantics

Position

Architecture

28

Motivating Example

sub ecx . 1 ## 2,1 Yes 0x3

add ecx,3 ## 1,3 | Yes 0x6

L ecx, ## 4 Yes 0x9

i ## 13 No 0xb
Instructions

Data flow states

Control flow states

Memory layout

Position

Architecture

mov

add

rbp

!

Transformer Self-Attention Layers

E, E, Eg
sub jmp ecx
| |
##
| |
Yes Yes Yes
| | | | | | | |
0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9
| | | | | | | |
1 2 3 1 2 3 1 2
| | | | | | | |
x86 x86 x86 x86 x86 x86 x86 x86

Synthesis
1?3=4

29

Motivating Example

sub ecx . 1 ## 2,1 Yes 0x3

add ecx,3 ## 1,3 | Yes 0x6

L ecx, ## 4 Yes 0x9

i ## 13 No 0xb
Instructions

Data flow states

Control flow states

Memory layout

Position

Architecture

00

01

ff

E1 E2 E3 E4 E5 E6 E7 Ee
ecx num add ecx num jmp ecx
| | | |
#4 # 3 (| #4 || 4
| | | | |
Yes Yes Yes Yes Yes Yes Yes Yes
| | | | | | | |
0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9
| | | | | | | |
1 2 3 1 2 3 1 2
| | | | | | | |
x86 x86 x86 x86 x86 x86 x86 x86

Forward
Interpretation
2-1=?

30

Motivating Example

00 02 f£
A
2,1 | Yes | 0x3 Transformer Self-Attention Layers
sub ecx,1 L)
add ecx .3 ## 1,3 | Yes 0x6 |
. ! ## 4 Yes 0x9
jmp ecx ## 13 No 0xb El Ez E3 E4 Es Es E7 Es
Instructions ecx || num || add ecx num jmp ecx
| | | |
Data flow states | ## ## 3 ## 4
| | | | |
Control flow states | Yes Yes Yes Yes Yes Yes Yes Yes
| | | | | | | |
Memory layout | 0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9
| | | | | | | |
Position 1 2 3 1 2 3 1 2
| | | | | | | |
Architecture | x86 x86 x86 x86 x86 x86 x86 x86

Backward
Interpretation
?2-1=1

31

Motivating Example

sub ecx . 1 ## 2,1 | Yes 0x3

add ecx,3 ## 1,3 | Yes | 0x6

o ecx, ## 4 Yes 0x9

i ## 13 No 0xb
Instructions

Data flow states

Control flow states

Memory layout

Position

Architecture

Transformer Self-Attention Layers

E, E, Eg Eg E, Eg
sub ecx ecx num jmp ecx
| | | |
3 ## 4
| | | |
Yes Yes Yes Yes Yes Yes
| | | | | | | |
0x3 0x3 0x3 0x6 0x6 0x6 0x9 0x9
| | | | | | | |
1 2 3 1 2 3 1 2
| | | | | | | |
x86 x86 x86 x86 x86 x86 x86 x86

e Program Interpretation
e Program Synthesis

i Synthesis i
I 123=4 5
i Forward i
' Interpretation :
L2-1=2? 5

Backward
Interpretation
?2-1=1

How to train the model to reason about program behavior?

How to train the model to reason about How to train the model to reason about
control flow? instruction compositions?

Mask control flow states Mask more

add eax, 3 Yes if (eax+3)>8: add eax,3 ## 3, 3 coxe
mask=Yes -

c_:rJr-lp :a:;, 8 ies olse. sﬁ ezx,zax :: 12, (12- (eax+3)) -8

jle Ox es Tt s ebx,

mov ecx,ebx mov ecx,ebx | ##

Compositionality
A

Training

e Curriculum: linearly increase % masks by training iterations
e Randomized mask selection at each iteration and samples

% Masks

33

Challenges of Learning Execution Semantics

Programs in-the-wild

Learn How Execution
Program Behaves ¢ Semantics

i | Program Behavior

3. How to avoid the expensive
dynamic analysis?

34

How to Avoid the Expensive Dynamic Analysis?

Programs in-the-wild

P Behavi Learn How - Execution
: rogram ehavior Program Behaves Semantics
i [I | I
Program Analysis Tasks
A A A
Pretrained Model
[[[[[[[[[[
Instructions | sub ecx num add ecx num Jmp ecx | |push| | ebp
Position 1 2 3 1 2 3 1 2 1 2
Architecture | x86 x86 x86 x86 x86 x86 x86 x86 x86 x86

Execution-Aware
Code Representation

Finetuning as
Static Analysis

35

How Much do Learned Execution-Aware Program Representations Help?

Task 1: Binary Similarit
Ty y B w/ Execution-Aware [l w/o Execution-Aware
— Similarity ~— 100 o
e Vulnerability search +20.5%
e Malware detection
Emb(funcl) Emb(func2) e Software patching
A T 95
Pretrained Model Pretrained Model
~ T A T g ~ T T T g g
8§ 92
8)
E1 E2 E3 E1 E2 E3 2
A A A A A A
85
I1 12 I3 I1 I2 I3
| | | |
Dummy Dummy 5]
Semantic Similarity

....................................

36

Pei, Xuan, Yang, Jana, Ray. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22

Finetuning for Matching Semantically Similar Binary Functions

Task 1: Binary Similarity

— Similarity ~—

Emb(funcl) Emb(func?2)
Pretrained Model Pretrained Model
E1 E2 E3 El E2 E3
I, I, I, I, I, I,

| | | |
Dummy Dummy

..................

Pei, Xuan, Yang, Jana, Ray. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22

..................

Precision@1

1.00

0.95

0.90

0.85

0.80

0.75

M Trex M Asm2Vec

+5.7%
02 and O3 O0 and O3 Bogus Control Control Flow Instruction
Flow Flattening Substitution

Cross-Optimization and Cross-Obfuscation

37

Finetuning for Predicting Function Signatures and Type Inference

Task 2: Type Inference e Security retrofitting
e Decompilation

. - o
Int Int Vulnerability detection W StateFormer M EKLAVYA
1.00
...... e +13%
void* void¥*
0.95
A
Tt ot T
Pretrained Model] 0.80
~ T T 7Y I 5
S
8 0.85
E, || E, || E, || E, g O
A A A 3
0.80
Il IZ I3 I4
| | 0.75
Dummy

........................

Pei, Guan, Broughton, Chen, Yao, Williams-King, Ummadisetty, Yang, Ray, Jana. StateFormer: Fine-grained Type Recovery from Binaries Using
Generative State Modeling. ESEC/FSE’21

Finetuning for Analyzing Memory Dependence

Task 3: Memory Dependence Analysis

e Taint analysis

e Malware Analysis

P(I, and I, is dependent) = 0.8

T T M NeuDep [DeepVSA M SVF W Ghidra M Angr
Pretrained Model 100

T A T T g
75
E1 E2 E3 E4
A A A \
I TTTTTTTITTTTTTT T 50
I1 I2 I3 I4 /
| | 25
Dummy
0
o o\

+118%

Precision

Pei, She, Wang, Geng, Xuan, David, Yang, Jana, Ray. NeuDep: Neural Binary Memory Dependence Analysis. ESEC/FSE’22

Finetuning for Analyzing Memory Dependence: Inference Time

Task 3: Memory Dependence Analysis

B NeuDep [Ghidra M Angr
P(I, and I, is dependent) = 0.8

! T

Pretrained Model
T 1 T T 1000
El E2 E3 E4 .
S . N, o 10
Il IZ IB I4
| |

0 a° » 25
v° ‘,\o"“ &° e o
O

o

Inference Time (s)

o
o

Pei, She, Wang, Geng, Xuan, David, Yang, Jana, Ray. NeuDep: Neural Binary Memory Dependence Analysis. ESEC/FSE’22

Finetuning for Function Name Prediction and Memory Region Prediction

Task 5: Memory Region Prediction

Task 4: Function Name Prediction stack stack
e Value set analysis
d_i 1 ® Decompilation Beap | oo nesp e Taint anaIYSisy
rea 1 value . .
AP e Reverse engineering global global
R AR R N S A
-) + 0 e) N
Pretrained Model 35% Across All Pretrained Model +7.9% Across All Types
7] 1 y y Architectures and ~ Py 1 T R
T T T Co T T T of Memory Regions
Optimizations
E1 E2 E3 E . E1 E2 E3 E 4
A A\ A X A A A 3
I1 I2 I3 I . I1 I2 I - I f
Dummy Dummy
Jin, Pei, Wang, Won, Lin. NeuDep: SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings. CCS’22 41

Pei, She, Wang, Geng, Xuan, David, Yang, Jana, Ray. NeuDep: Neural Binary Memory Dependence Analysis. ESEC/FSE’22

Case Studies: Vulnerability Search in Firmware

CVE Library Description
CVE-2019-1563 OpenSSL | Decrypt encrypted message
CVE-2017-16544 BusyBox Allow executing arbitrary code Firmware Images: Arm. MI PS With unknown Compiler ﬂags
CVE-2016-6303 OpenSSL Integer overflow >
CVE-2016-6302 | OpenSSL | Allows denial-of-service
CVE-2016-2842 OpenSSL | Allows denial-of-service Py
CVE-2016-2182 | OpenSSL | Allows denial-of-service s <
CVE-2016-2180 | OpenSSL | Out-of-bounds read Search -
CVE-2016-2178 OpenSSL | Leak DSA private key —
CVE-2016-2176 | OpenSSL | Buffer over-read ot ; I
CVE-2016-2109 OpenSSL Allows denial-of-service ; 4 3
CVE-2016-2106 OpenSSL Integer overflow " e
CVE-2016-2105 | OpenSSL | Integer overflow ~—
CVE-2016-0799 | OpenSSL | Out-of-bounds read . . .
CVE-2016-0798 | OpenSSL | Allows denial-of-service Ubiquiti sunMax TP-Link Deco-M4 NETGEAR R7000 Linksys RE7000
CVE-2016-0797 OpenSSL NULL pointer dereference
CVE-2016-0705 | OpenSSL | Memory corruption l l l l
16 Vulnerabilities (Compiled in x86) 15 CVEs 16 CVEs 7 CVEs 14 CVEs

e

Learned Function Embeddings Approximate Nearest Neighbors Search over 1.4M functions within

6.3 seconds

42
Pei, Xuan, Yang, Jana, Ray. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22

Summary: Learning Program Semantics via Execution-Aware Pre-training
Improves Program Analysis

Learn How - Execution ! .
Program Behaves Semantics § &5 &

' Programs in-the-wild

N
ML Model Program Analysis

i | Program Behavior

Precise: Outperforms the state-of-the-art by up to 118%

Efficient: Speedup over the off-the-shelf tool by up to 98.1x T Al MC I‘Al‘oé)';ecﬁtrigy

Generalizable and Robust: Remains accurate across 0
a Google w

UO «64| <86 00 o1 -02 IDRA

Visual C++ -03 -0d Ox

Compilers Architectures Optimizations ~ Obfuscations
43

Limitation: Learning Execution-Aware Program Representations is Challenging

Learn How

»

Program Behaves

Execution
Semantics

Program

Program Interpretation

Behavior

<

Program Synthesis

>

Extremely challenging to learn precise semantics

44

Limitation: What the Model has Learned during Pretraining?

Instructions Dataflow states Instructions Dataflow states
sub ecx,0x3 ## 0x5,0x3 sub ecx,0x3 ## 0x43,0x3
add ecx,0x4 ## [0%2] 0x4 add ecx,0x4 ## [DR8E] 0x4

Perturb dataflow states from 0x5 to 0x43

Ground-truth Top-1 Top-2
0x2 0x2 (98%) 0x3 (2%)
0x3d 0x3a (28%) | 0x33 (13%)

Does not extrapolate well

Exciting Future Work

Democratize the
development of secure
software system via

Data-Driven
Program Analysis

Learn, analyze, and interact with

Multi-Modal Software heterogeneous software modalities?

Automate existing security tasks and
enable new security applications?

Security Applications

Develop and evaluate to ensure strong
robustness guarantee?

Robustness and
Generalization

46

Software is Inherently Heterogeneous and Multi-Modal

Noisx & N\

Returns the year and
AB quarter of an input date.
-~ Args:

A H! date: XXXX-XX-XX

(°) Returns:

year: XXXX

Natural Language quarter: XXX

=25

rootpath=...

messages - System Log Viewer

whilei<n
invariant i<=n

File Edit View Filters: Help
tabletdave rsyslogd: [origin software="rsyslogd®

execution=True
verification=True
R N A LR R T T
Sunday, 23 Oct tabletdave systemd-logind[689]: Removed session 6

CEEEEY
tabletdave dhclient[2206]: DHCPREQUEST on wlanO t

{ sOftware Pro ram Monday, 24 Oct tabletdave NetworkManager[2194]: DHCPREQUEST on w
g tabletdave dhclient[2206]: DHCPACK from 192.168.1
° Tuesday, 25 Oct tabletdave NetworkManager[led]: DHCPACK from 192

I I+ 1 ’ _o- tabletdave dhclient[2206]: bound to 192.168.1.27

} o Wednesday, 26 Oct tab{etdave NetworkManager [2194] : bound to 192.168
—<>- » tabletdave NetworkManager[2194]: NetworkManager[2

o o ThUz=day 2L OcE tabletdave NetworkManager (219411 <infor (wland):

—o— Y S Friday, 28 Oct tabletdave NetworkManager[2194]: NetworkManager[2

- o g tabletdave NetworkManager[2194]: <info> address

o N Saturday, 29 Oct tabletdave NetworkManager[2194]: NetworkManager[2

/ o tabletdave NetworkManager[2194]: <info> prefix

tabletdave NetworkManager[2194]: NetworkManager[2
o tabletdave NetworkManager[2194]: <info> gateway

tabletdave NetworkManager[2194]: NetworkManager[2

. tabletdave NetworkManager[2194]: <info> nameser

tabletdave dbus[725]: [system] Activating service

(w tabletdave dbus-dasmen(725]: dbus[725]; lsystem]
- - ¢ @ python ++ tabletdave dbus(725]: [system] Successfully activ
Conflguratlons => Visual Basic tabletdave dbus-daemon[725]: dbus(725]: [system]
— ’ tabletdave gnome-keyring-daemon[2376]: unsupporte

Java @ oviectivec

000
i

m P Activit tabletdave gnome-keyring.daemon[2376]: unsupporte
tabletdave gnome-keyring-daemon[2376]: unsupporte

A JS Js rogram Activity tabletdave gnome-keyring-daemon[2376]: unsupporte
(4 sync — tabletdave gnome-keyring-daemon[2376]1: unsupporte
=> tabletdave gnome-keyring-daemon[2376]: couldn't p

: t% Perl LSS HTML tabletdave gnome-keyring-daemon[2376]: couldn't pi
ip

Scri tabletdave anome-keyring-daemon[2376]: couldn't p
>
w) . 111222 lines (1.2 MB) — Last update: Sat Oct 29 13:11:25 2011
PROGRAMMING
LANGUAGE

Specifications Javascr
—
Abundant 47

How to learn from heterogeneous software modalities?

— =O-
>
-O—
P _
Physical Interaction Specifications Software Program Program Activity Natural Language Configurations

48

How to learn from heterogeneous software modalities?

Software Program Program Activity

Execution-Aware Data-Driven
Program Analysis

How to learn from heterogeneous software modalities?

=O-
—O-
-O—
= _
Physical Interaction Specifications Software Program Program Activity Natural Language Configurations

ML Challenges:
e Modal-Specific Neural Architecture?
e Training Tasks?

\
\

How to learn from heterogeneous software modalities?

[|
| -O- |
! —O- |
: —-| |
| o =
. Physical Interaction Specifications Software Program Program Activity Natural Language Configurations ,:

\
\

System Challenges:
e Serving Data Collections
e Serving Training and Inference

How to interact with heterogeneous software modalities?

[|
| -O- |
! —O- |
: —-| |
, = 1
. Physical Interaction Specifications Software Program Program Activity Natural Language Configurations ,:

Interact with Multiple Software Modalities

Opportunities:
e Automate Existing Tasks
e Enable New Applications

Automating Existing Security Applications

Software Program Program Activity

Enabling New Security Applications

Specifications Software Program Natural Language

Documentation-Grounded Invariant Generation

Enabling New Security Applications

Specifications Software Program

Enabling New Security Applications

=

Software Program

Principled Robustness Measurement

Current testing of data-driven program analysis: Random Testing

Program Space P

Label Space L Evaluate

f
S f(P,)=L, How to systematically
ata-Driven ~ | h -
Program Analysis f(P,)=L, explore the program space
f(P3)= L3

Future testing of data-driven program analysis: Transformation-Oriented Testing

Transformation Space T T alters program syntax: Robustness Testing

f(T,(P))=f(P)

Data-Driven ' f(T2 (P))=1(P)
Program Analysis f(T3 (P))=f(P)

57

Systematic Testing and Verification of Neural Networks

Data-Driven Newsweek
Program Analysis

Translation

I, 0, dx s, 0, 0
0, 1, dy 0, s, 0

Shear

I, ¢, O
d, 1, 0

Systematic Whitebox Testing
[SOSP’17 Best Paper Award, ICSE’18]

Formal Verification of Security Properties
[Usenix’18, Neurips’18, DeepTest’18]

Visual Transformations

, 1 IEEE on India Region N o
l:snw ‘IB '| SPECTRUM brain-research/ o
tensorfuzz)
égfﬂllzl §I| %)S[\]EA T teChradan ,y'-’\eliubr:rzg‘;,zregorming coverage guided fuzzing of
SCIENTIFIC e e aa .
AME RICAN Contributors ~ Issues Forks.

Aspect ratio change

r, 0, O
0,1 0

Scaling

Reflect Rotation

-1(1), 0, O cos(f),-sin(4), 0 B
{0, 1(-1), 0} [sin(&), cos(9), 0}

-
I
i
P

L1 Norm L2 Norm

Formal verification of all possible transformations

L infinity Norm

58

Data-Driven Program Analysis with Provable Robustness by Construction

Transformation Space T
Robust f by Construction

Data-Dri
&8 v vrer

Permutation Group T

1: x=5 Instruction ~ 1: y=6
2: y=6 - »2: X=
3: z=x+y Reordering 3: z=x+y

Symmetry-Preserving
Model Architectures
e.g., self-attention,
graph NN

59

Thanks!

