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Announcement

• Project 4 will be released by the end of today


• Will update the slides from Tuesday after fixing figures


• Midterm 2 will cover lectures from March 14 to April 11


• The cryptography section
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Three Main Goals of Cryptography

● In cryptography, there are three common properties that we want on our data 

● Confidentiality: An adversary cannot read our messages. 

● Integrity: An adversary cannot change our messages without being detected. 

● Authenticity: I can prove that this message came from the person who claims 
to have written it. 

○ Integrity and authenticity are closely related properties… 
■ Before I can prove that a message came from a certain person, I have to prove that the message 

wasn’t changed! 
○ … but they’re not identical properties 
■ Later we’ll see some edge cases 3



● This principle is closely related to Shannon’s Maxim 
○ Don’t use security through obscurity. Assume the attacker knows the system. 

● Kerckhoff’s principle says: 
○ Cryptosystems should remain secure even when the attacker knows all internal details of the system 
○ The key should be the only thing that must be kept secret 
○ The system should be designed to make it easy to change keys that are leaked (or suspected to be 

leaked) 

● Our assumption: The attacker knows all the algorithms we use. The only 
information the attacker is missing is the secret key(s).

Security Principle: Kerckhoff’s Principle
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Threat Models

● In this class, we’ll explain the chosen plaintext attack model
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Can Eve trick Alice into encrypting 
messages of Eve’s choosing?

Can Eve trick Bob into decrypting 
messages of Eve’s choosing?

Ciphertext-only No No

Chosen-plaintext Yes No

Chosen-ciphertext No Yes

Chosen plaintext-ciphertext Yes Yes



Defining Confidentiality

● A better definition of confidentiality: The ciphertext should not give the attacker 
any additional information about the plaintext. 

● Let's design an experiment/security game to test our definition
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IND-CPA (indistinguishability under chosen plaintext attack)

M

Enc(K, M)
(repeat)

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

M

Enc(K, M)

Guess b = 0 or b = 1

(repeat)

pick b
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1. Eve may choose plaintexts to send to Alice and 
receives their ciphertexts 

2. Eve issues a pair of plaintexts M0 and M1 to Alice 
3. Alice randomly chooses either M0 or M1 to encrypt 

and sends the encryption back 
○ Alice does not tell Eve which one was encrypted! 

4. Eve may again choose plaintexts to send to Alice and 
receives their ciphertexts 

5. Eventually, Eve outputs a guess as to whether Alice 
encrypted M0 or M1 

● An encryption scheme is IND-CPA secure if for all 
polynomial time attackers Eve: 

○ Eve can win with probability ≤ 1/2 + Ɛ, where Ɛ is negligible.

KeyGen(): K



One-Time Pads: Encryption
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

1 0 0 1 1 0 0 1 0 1 0 0M

1 1 1 1 1 1 0 0 0 0 1 1C

Encryption algorithm: XOR each bit 
of K with the matching bit in M.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The ciphertext C is the encrypted 
bitstring that Alice sends to Bob 
over the insecure channel.



One-Time Pads: Decryption
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Bob

0 1 1 0 0 1 0 1 0 1 1 1K

1 1 1 1 1 1 0 0 0 0 1 1C

1 0 0 1 1 0 0 1 0 1 0 0M

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Decryption algorithm: XOR each bit 
of K with the matching bit in C.



Impracticality of One-Time Pads

● Problem #1: Key generation 

● Problem #2: Key distribution 

● Communicate keys in advance

10



One-Time Pad: Security

● One-Time Pad with no key reuse 

● One-Time Pad with key reuse
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Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

Guess b = 0 or b = 1

pick b
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KeyGen():K



Block Ciphers: Definition

● Block cipher: A cryptographic scheme consisting 
of encode/decode algorithms for a fixed-sized 
block of bits: 

● EK(M) → C: Encode 
○ Inputs: k-bit key K and an n-bit plaintext M 
○ Output: An n-bit ciphertext C 
○ Sometimes written as: {0, 1}k × {0, 1}n → {0, 1}n 

● DK(C) → M: Decode 
○ Inputs: a k-bit key, and an n-bit ciphertext C 
○ Output: An n-bit plaintext 
○ Sometimes written as: {0, 1}k × {0, 1}n → {0, 1}n 
○ The inverse of the encryption function

EK k bits

n bits
plaintext

n bits

ciphertext

DK k bits

n bits
ciphertext

n bits

plaintext 12



Block Ciphers Properties

● Correctness: EK(M) must be a permutation (bijective function) on n-bit 
strings 

○ Each input must correspond to exactly one unique output 

● Efficiency: Encode/decode should be fast 
● Security: E behaves like a random permutation 

● Is this IND-CPA secure?
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Block Ciphers Properties

● Correctness: EK(M) must be a permutation (bijective function) on n-bit 
strings 

○ Each input must correspond to exactly one unique output 

● Efficiency: Encode/decode should be fast 
● Security: E behaves like a random permutation 

● Is this IND-CPA secure? 

● Block ciphers are not IND-CPA secure because they are deterministic 

● Any deterministic encryption scheme is not IND-CPA secure
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ECB Mode
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Cipher Block Chaining (CBC) Mode

● IV: Initialization Vector 
● Can encryption be parallelized? 
● Can decryption be parallelized? 
● IND-CPA secure, under what assumption?
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CTR (Counter) Mode

● Note: the random value is named the nonce here, but the idea is the same as 
the IV in CBC mode 

● Overall ciphertext is (Nonce, C1, …, Cm)

17

C1 Cm



CTR Mode: Decryption

● Recall one-time pad: XOR with ciphertext to get plaintext 
● Note: we are only using block cipher encryption, not decryption 
● Efficiency? 
● Padding? 
● Security?
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Lack of Integrity and Authenticity

● Block ciphers are designed for confidentiality 
● If an attacker tampers with the ciphertext, we are not guaranteed to detect it 
● Remember Mallory: An active manipulator who wants to tamper with the 

message
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● What about CBC? 
○ Altering a bit of the ciphertext causes some blocks to become random gibberish 
○ However, Bob doesn’t know that Alice did not send random gibberish, so it still does not provide 

integrity or authenticity

Lack of Integrity and Authenticity
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Cryptographic Hash Function: Definition

● Hash function: H(M) 
○ Input: Arbitrary length message M 
○ Output: Fixed length, n-bit hash 
○ Sometimes written as {0, 1}* → {0, 1}n
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Cryptographic Hash Function: Properties

○ Correctness: Deterministic 
■ Hashing the same input always produces the same output 

○ Efficiency: Efficient to compute 

○ Security: One-way-ness (“preimage resistance”) 
○ Security: Collision-resistance 
○ Security: Random/unpredictability, no predictable patterns for how changing 

the input affects the output 
■ Changing 1 bit in the input causes the output to be completely different 
■ Also called “random oracle” assumption
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Length Extension Attacks

● Length extension attack: Given H(x) and the length of x, but not x, an 
attacker can create H(x || m) for any m of the attacker’s choosing 

○ Note: This doesn’t violate any property of hash functions but is undesirable in some circumstances 
● SHA-256 (256-bit version of SHA-2) is vulnerable 
● SHA-3 is not vulnerable
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Do hashes provide integrity?

● It depends on your threat model 
● If the attacker can modify the hash, hashes don’t provide integrity 
● Main issue: Hashes are unkeyed functions 
○ There is no secret key being used as input, so any attacker can compute a hash on any value 

● Next: Use hashes to design schemes that provide integrity
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MACs: Definition

● Two parts: 
○ KeyGen() → K: Generate a key K 
○ MAC(K, M) → T: Generate a tag T for the message M using key K 
■ Inputs: A secret key and an arbitrary-length message 
■ Output: A fixed-length tag on the message 

● Properties 
○ Correctness: Determinism 
■ Note: Some more complicated MAC schemes have an additional Verify(K, M, T) function that don’t 

require determinism, but this is out of scope 
○ Efficiency: Computing a MAC should be efficient 
○ Security: EU-CPA (existentially unforgeable under chosen plaintext attack)
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Defining Integrity: EU-CPA

● A secure MAC is existentially unforgeable: without the key, an attacker 
cannot create a valid tag on a message 

● Formally defined by a security game: existential unforgeability under chosen-
plaintext attack, or EU-CPA 

● MACs should be unforgeable under chosen plaintext attack 
○ Intuition: Like IND-CPA, but for integrity and authenticity 
○ Even if Mallory can trick Alice into creating MACs for messages that Mallory chooses, Mallory cannot 

create a valid MAC on a message that she hasn't seen before
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NMAC

● Can we use secure cryptographic hashes to build a secure MAC? 
○ Intuition: Hash output is unpredictable and looks random, so let’s hash the key and the message 

together 
● KeyGen(): 
○ Output two random, n-bit keys K1 and K2, where n is the length of the hash output 

● NMAC(K1, K2, M): 
○ Output H(K1 || H(K2 || M)) 

● NMAC is EU-CPA secure if the two keys are different  
○ Provably secure if the underlying hash function is secure 

● Intuition: Using two hashes prevents a length extension attack 
○ Otherwise, an attacker who sees a tag for M could generate a tag for M || M'
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HMAC

● Issues with NMAC: 
○ Recall: NMAC(K1, K2, M) = H(K1 || H (K2 || M)) 
○ We need two different keys 
○ NMAC requires the keys to be the same length as the hash output (n bits) 

● HMAC(K, M): 
○ Compute K' as a version of K that is the length of the hash output 
■ If K is too short, pad K with 0’s to make it n bits (be careful with keys that are too short and lack 

randomness) 
■ If K is too long, hash it so it’s n bits 

○ Output H((K' ⊕ opad) || H((K' ⊕ ipad) || M))
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HMAC Properties

● HMAC(K, M) = H((K' ⊕ opad) || H((K' ⊕ ipad) || M)) 

● HMAC is a hash function, so it has the properties of the underlying hash too 
○ It is collision resistant 
○ Given HMAC(K, M), an attacker can’t learn M 
○ If the underlying hash is secure, HMAC doesn’t reveal M, but it is still deterministic  

● You can’t verify a tag T if you don’t have K 
○ The attacker can’t brute-force the message M without knowing K
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MACs: Summary

● Inputs: a secret key and a message 

● Output: a tag on the message 

● A secure MAC is unforgeable: Even if Mallory can trick Alice into creating 
MACs for messages that Mallory chooses, Mallory cannot create a valid MAC 
on a message that she hasn't seen before 

○ Example: HMAC(K, M) = H((K' ⊕ opad) || H((K' ⊕ ipad) || M)) 

● MACs do not provide confidentiality
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Encrypt-then-MAC or MAC-then-Encrypt?

● Encrypt-then-MAC 
○ First compute Enc(K1, M) 
○ Then MAC the ciphertext: MAC(K2, Enc(K1, M)) 

● MAC-then-encrypt 
○ First compute MAC(K2, M) 
○ Then encrypt the message and the MAC together: Enc(K1, M || MAC(K2, M)) 

● Which is better? 
○ In theory, both are IND-CPA and EU-CPA secure if applied properly 
○ MAC-then-encrypt has a downside: You don’t know if tampering has occurred until after decrypting 
■ Attacker can supply arbitrary tampered input, and you always have to decrypt it 
■ Passing attacker-chosen input through the decryption function can cause side-channel leaks 

● Always use encrypt-then-MAC because it’s more robust to mistakes 31



Key Reuse

● Simplest solution: Do not reuse keys across schemes! One key per scheme 
instance. 

○ Encrypt a piece of data and MAC a piece of data? 
■ Different use; different key 

○ MAC one of Alice’s messages to Bob and MAC one of Bob’s messages to Alice? 
■ Different use; different key
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Pseudorandom Number Generators (PRNGs)

● True randomness is expensive and biased 

● Pseudorandom number generator (PRNGs): An algorithm that uses a little bit of 
true randomness to generate a lot of random-looking output  

○ Also called deterministic random bit generators (DRBGs) 

● Usage 
○ Generate some expensive true randomness (e.g. noisy circuit on your CPU) 
○ Use the true randomness as input to the PRNG 
○ Generate random-looking numbers quickly and cheaply with the PRNG 

● PRNGs are deterministic: Output is generated according to a set algorithm 
○ However, for an attacker who can’t see the internal state, the output is computationally indistinguishable 

from true randomness 33



PRNG: Definition

● A PRNG has two functions: 
○ PRNG.Seed(randomness): Initializes the internal state using the entropy 
■ Input: Some truly random bits 

○ PRNG.Generate(m): Generate m pseudorandom bits 
■ Input: A number m 
■ Output: m pseudorandom bits 
■ Updates the internal state as needed 

Properties 

○ Correctness: Deterministic 
○ Efficiency: Efficient to generate pseudorandom bits 
○ Security: Indistinguishability from random
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Example construction of PRNG

● Using block cipher in CTR mode: 
● If you want m random bits, and a block cipher with Ek has n bits, apply the 

block cipher m/n times and concatenate the result: 
● PRNG.Seed(K | IV);  
● Generate(m) = Ek(IV|1) | Ek(IV| 2) | Ek(IV|3) … Ek(IV| ceil(m/n)),    
○ |  is concatenation

Randomness, 
PRNG output
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DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

ga mod N

a
ga mod N

ga mod N

Pick random bgb mod N

b
gb mod N

gb mod N

Compute (gb mod N)a = gab mod N Compute (ga mod N)b = gab mod N

Shared secret: This is the key 36



DIFFIE-HELLMAN KEY EXCHANGE
g N
ga mod N
gb mod N

Given g and gx mod N it is infeasible to compute x 
Discrete log problem

gab mod N

ga mod N gb mod N* = ga+b mod N
Note that just multiplying ga and gb won’t suffice:

Key property: 
An eavesdropper cannot infer the shared secret (gab). 

But what about active intermediaries?
37



Public key encryption

Decryption D(SK, c)
→ original msg

A public key encryption scheme comprises three algorithms

Key generation G
→ PK = public key 
→ SK = secret key

Encryption E(PK, m)
→ cipher text c

Correctness
D(SK, E(PK, m)) = m

Security
E(PK, m) should appear random 
(small change to (PK,m) leads 

to large changes to c)

E() should approximate a one-way 
trapdoor function: cannot invert 

without access to SK
38



Hybrid encryption
Generate public/private key 
pair (PK,SK); publicize PK

Decrypt D(SK, cK) = K
Decrypt d(K, cmsg) = msg

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

Now throw away K

Symm key

Public key

Symm key

Public key

39



Hybrid encryption

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

The easy key distribution of public key

The speed and arbitrary message length of symmetric key
40



Digital signatures

Signing Sgn(SK, m)
 → a signature s

A digital signature scheme comprises two algorithms

Correctness
Vfy(PK, m, Sgn(SK, m)) = Yes

Verification Vfy(PK, m, s)
→ Yes/No if valid (m,s)

Security
Same as with MACs: even after 
a chosen plaintext attack, the 

attacker cannot demonstrate an 
existential forgery
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Digital signature properties

Authenticity Bob can prove that a message 
signed by Alice is truly from Alice 
(even without a pairwise key)

Integrity Bob can prove that no one has 
tampered with a signed message

Non-repudiation
Once Alice signs a message, she 
cannot subsequently claim she 
did not sign that message
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HOW PASSWORDS ARE STORED
username : Hk(salt | password), salt

• Hk = H(H(H(...H(x)...))) 
• Compute the hash of the hash of the hash of the...

H is a fast hash function; Hk is a slow one!

This is how passwords are stored in Linux today
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POOR PROGRAMING

CryptoLint tool to perform static 
analysis on Android apps to detect 
how they are using crypto libraries
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48%
31%
17%
16%

14%

12%

15,134 apps from Google play used crypto; 
Analyzed 11,748 of them

CRYPTO MISUSE IN ANDROID APPS
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HypotheticalEncrypt(msg, key) {
  for(int i=0; i < key.len(); i++) {  
     if(key[i] == 0)
        // branch 0
     else
        // branch 1
   }
}

What if branch 0 had, e.g., 
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends 
on the inputs (key/data), then SPA can reveal keys

What if branch 0 
  - took longer? (timing attacks) 
  - gave off more heat? 
  - made more noise? 
  - …

HIGH-LEVEL IDEA OF SIDE-CHANNEL ATTACKS

46



Browser

Verifying certificates

Certificate
“I’m because says so”

Certificate
“I’m because says so”

“I’m because I say so!”
Certificate✓

✓

✓
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Verifying certificates

Root key store
Every device has one 

 
Must not contain 

malicious certificates
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Certificate revocation 
is a critical part of any PKI

Administrators must revoke and reissue 
as quickly as possible

Browsers/OSes should obtain revocations 
as quickly as possible
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POOR CERTIFICATE MANAGEMENT
Websites aren’t properly revoking their certificates

Browsers aren’t properly checking for revocations

Websites aren’t keeping their secret keys secret

Websites have disincentive to do the right thing (CAs charge; key management hard)

Browsers have a disincentive to do the right thing (page load times)

CAs have incentive to introduce disincentives (bandwidth costs)

Why?
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DISASTER OF KEY REUSE

• When new certificates are issued 
• Short-lived keys were re-used for a long time 
• Same key or weak keys re-used in different servers 
• In the same server (third-party hosting server), different 

businesses share the same key 
• …. 

• Do not re-use the key!
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