CMSC414 Computer and
Network Security

Midterm 2 Recap

Yizheng Chen | University of Maryland

Apr 11, 2024

Credits: original slides from instructors and staff from CS161 at UC Berkeley, and Dave Levin

Announcement

* Project 4 will be released by the end of today
o Will update the slides from Tuesday after fixing figures
 Midterm 2 will cover lectures from March 14 to April 11

* The cryptography section

Three Main Goals of Cryptography

In cryptography, there are three common properties that we want on our data
Confidentiality: An adversary cannot read our messages.
Integrity: An adversary cannot change our messages without being detected.

Authenticity: | can prove that this message came from the person who claims
to have written it.

Security Principle: Kerckhoff’s Principle

e This principle is closely related to Shannon’s Maxim
o Don’t use security through obscurity. Assume the attacker knows the system.

e Kerckhoff’'s principle says:

o Cryptosystems should remain secure even when the attacker knows all internal details of the system

o The key should be the only thing that must be kept secret

o The system should be designed to make it easy to change keys that are leaked (or suspected to be
leaked)

e Our assumption: The attacker knows all the algorithms we use. The only
information the attacker is missing is the secret key(s).

Threat Models

e [n this class, we'll explain the

Can Eve trick Alice into encrypting | Can Eve trick Bob into decrypting

messages of Eve’s choosing? messages of Eve’s choosing?
Ciphertext-only No No
Chosen-plaintext Yes No
Chosen-ciphertext No Yes

Chosen plaintext-ciphertext Yes Yes

Defining Confidentiality

e A better definition of confidentiality: The ciphertext should not give the attacker
any additional information about the plaintext.

e Let's design an experiment/security game to test our definition

IND-CPA (indistinguishability under chosen plaintext attack)

Eve (adversary) Alice (challenger)
1. Eve may choose plaintexts to send to Alice and
receives their ciphertexts " KeyGen(): K
2. Eve issues a pair of plaintexts Mo and M1 to Alice > (repeat)
3. Alice randomly chooses either Mo or M1 to encrypt Enc(K, M)

and sends the encryption back

o Alice does not tell Eve which one was encrypted! Mo and M .
4. Eve may again choose plaintexts to send to Alice and pick b
. D Enc(K, Mb)
receives their ciphertexts ———
5. Eventually, Eve outputs a guess as to whether M
encrypted Mo or M1 N e
(repeat)

Enc(K, M)

Guessb=0orb=1 7

<

One-Time Pads: Encryption

Alice
K 0 1 1 0 0
@® @® @ @® @®
Y 1 0 0 1 1
! ! ! ! !
C 1 1 1 1 1

Encryption algorithm: XOR each bit
of K with the matching bit in M.

0 1 0 1 0
l l l l l
0 0 0 0 1

The ciphertext C is the encrypted

bitstring that Alice sends to Bob
over the insecure channel.

One-Time Pads: Decryption

Bob
K 0 1 1 0 0 1 0 1 0
@ @ @ @ @ @ @ @ @
C 1 1 1 1 1 1 0 0 0
! ! ! ! ! ! ! ! !
Y 1 0 0 1 1 0 0 1 0

Decryption algorithm: XOR each bit
of K with the matching bit in C.

Impracticality of One-Time Pads

e Problem #1: Key generation
e Problem #2: Key distribution

e Communicate keys in advance

10

One-Time Pad: Security

e One-Time Pad with no key reuse

e One-Time Pad with key reuse

Eve (adversary) Alice (challenger)
pick b
KeyGen():K
Mo and M-
>
Enc(K, Mb)

Guessb=0orb=1 15
\ 4

O
O
O

O O O O

Block Ciphers: Definition

. . . plaintext
Block cipher: A cryptographic scheme consisting | it
of encode/decode algorithms for a fixed-sized
block of bits: « _kbits
Exk(M) — C: Encode
Inputs: k-bit key K and an n-bit plaintext M
Output: An n-bit ciphertext C ciohertext
Sometimes written as: {0, 1}« x {0, 1} — {0, 1}~ Li A
ciphertext
DK(C) — M: Decode n bits
Inputs: a k-bit key, and an n-bit ciphertext C
Output: An n-bit plaintext _
Sometimes written as: {0, 1}« x {0, 1} — {0, 1}n K —= 211
The inverse of the encryption function
n bits

plair;text

12

Block Ciphers Properties

e Correctness: Ex(M) must be a permutation (bijective function) on n-bit
strings
o Each input must correspond to exactly one unique output

e Efficiency: Encode/decode should be fast

e Security: E behaves like a random permutation

e |s this IND-CPA secure?

13

Block Ciphers Properties

e Correctness: Ex(M) must be a permutation (bijective function) on n-bit
strings
o Each input must correspond to exactly one unique output

e Efficiency: Encode/decode should be fast

e Security: E behaves like a random permutation

e |[s this IND-CPA secure?
e Block ciphers are not IND-CPA secure because they are deterministic

e Any deterministic encryption scheme is not IND-CPA secure

14

Plaintext

Key ——>

'

block cipher
encryption

Y

Ciphertext

ECB Mode

Plaintext

Key ——>

v

block cipher
encryption

\

Ciphertext

Plaintext

Key ——

v

block cipher
encryption

Y

Ciphertext

Electronic Codebook (ECB) mode encryption

15

Cipher Block Chaining (CBC) Mode

o |V: Initialization Vector
e (Can encryption be parallelized?
e (Can decryption be parallelized?
e [ND-CPA secure, under what assumption?
Plaintext Plaintext Plaintext Ciphertext
HRERRERERERER HEERERERERRER HEERERRRRRRER HEERERRRRRREN
Initialization Vector (1V) % % i
I — > > block cipher
Key —> ecryption
ey | lock ciher | |\, _[TBlock ipher | |, [block cpher oo e T
| | LTttty ——
i V !
HRERRRRERERER HEEREREREREER HEERERRRRRRER HEERERERRRRER
Ciphertext Ciphertext Ciphertext Plaintext

Cipher Block Chaining (CBC) mode encryption

Ciphertext

Key ——

Y

block cipher
decryption

.

Ciphertext

Key ——>

l

block cipher
decryption

.

Plaintext

Plaintext

Cipher Block Chaining (CBC) mode decryption

16

CTR (Counter) Mode

e Note: the random value iIs named the nonce here, but the idea is the same as
the IV in CBC mode
e Overall ciphertext is (Nonce, C4, ..., C)

Nonce Counter Nonce Counter Nonce Counter
c59bcf35.. 00000000 c59bcf35.. 00000001 c59bcf35.. 00000002

v v v

block cipher block cipher block cipher
encryption encryption encryption

Plaintext >? Plaintext >? Plaintext >?

Ciphertext Ciphertext Ciphertext

Key —— Key —— Key ——

C- Counter (CTR) mode encryption C,

CTR Mode: Decryption

Recall one-time pad: XOR with ciphertext to get plaintext
Note: we are only using block cipher encryption, not decryption

Nonce Counter
c59bcf35.. 00000002

Efficiency?
Padding?
Security?
Nonce Counter Nonce Counter
c59bcf35.. 00000000 c59bcTf35.. 00000001
Key block C|p_her Key block C|p_her Key
encryption encryption

Ciphertext

}

Plaintext

Ciphertext

)

Plaintext

v

block cipher
encryption

Ciphertext

)

Counter (CTR) mode decryption

Plaintext

18

Lack of Integrity and Authenticity

Block ciphers are designed for confidentiality
If an attacker tampers with the ciphertext, we are not guaranteed to detect it
Remember Mallory: An active manipulator who wants to tamper with the

message

19

Lack of Integrity and Authenticity

e \Vhat about CBC?

Altering a bit of the ciphertext causes some blocks to become random gibberish

O

O

However, Bob doesn't know that Alice did not send random gibberish, so it still does not provide

integrity or authenticity

Ciphertext

Y

block cipher

Key decryption

nitialization Vector (1V)
—

Y

Ciphertext

Key ——

Y

block cipher
decryption

Plaintext

>

Y

Ciphertext

Key ——

l

block cipher
decryption

>~

Plaintext

Y

Plaintext

Cipher Block Chaining (CBC) mode decryption

20

Cryptographic Hash Function: Definition

e Hash function: H(M)

O
O
O

Input: Arbitrary length message M
Output: Fixed length, n-bit hash
Sometimes written as {0, 1} — {0, 1}~

21

Cryptographic Hash Function: Properties

o Correctness: Deterministic
m Hashing the same input always produces the same output

o Efficiency: Efficient to compute

o Security: One-way-ness (“preimage resistance”)
o Security: Collision-resistance
o Security: Random/unpredictability, no predictable patterns for how changing
the input affects the output
m Changing 1 bit in the input causes the output to be completely different
m Also called "random oracle” assumption

22

Length Extension Attacks

e Length extension attack: Given H(x) and the length of x, but not x, an

attacker can create H(x || m) for any m of the attacker’s choosing
o Note: This doesn't violate any property of hash functions but is undesirable in some circumstances

o SHA-256 (256-bit version of SHA-2) is vulnerable
e SHA-3 is not vulnerable

23

Do hashes provide integrity?

e |t depends on your threat model
e |[f the attacker can modify the hash, hashes don't provide integrity
e Main issue: Hashes are

O

e Next: Use hashes to design schemes that provide integrity

24

MACSs: Definition

e [wo parts:

o KeyGen() — K: Generate a key K

o MAC(K, M) — T. Generate a tag T for the message M using key K
m Inputs: A secret key and an arbitrary-length message
m Output: A fixed-length tag on the message

e Properties

o Correctness: Determinism
m Note: Some more complicated MAC schemes have an additional Verify(K, M, T) function that don't
require determinism, but this is out of scope
Efficiency: Computing a MAC should be efficient
o Security: EU-CPA (existentially unforgeable under chosen plaintext attack)

25

O

O

Defining Integrity: EU-CPA

A secure MAC is existentially unforgeable: without the key, an attacker
cannot create a valid tag on a message

Formally defined by a security game: existential unforgeability under chosen-
plaintext attack, or EU-CPA

MACSs should be unforgeable under chosen plaintext attack
Intuition: Like IND-CPA, but for integrity and authenticity

Even if Mallory can trick Alice into creating MACs for messages that Mallory chooses, Mallory cannot
create a valid MAC on a message that she hasn't seen before

26

NMAC

e (Can we use secure cryptographic hashes to build a secure MAC?

o Intuition: Hash output is unpredictable and looks random, so let's hash the key and the message
together

o KeyGen():

o Output two random, n-bit keys K1 and K2, where n is the length of the hash output
o NMAC(K1, K2, M):

o Output HK1 || HK2 || M))
e NMAC is EU-CPA secure if the two keys are different

o Provably secure if the underlying hash function is secure

e Intuition: Using two hashes prevents a length extension attack
o Otherwise, an attacker who sees a tag for M could generate a tag for M || M’

27

HMAC

e |[ssues with NMAC:
o Recall: NMAC(K1, K2, M) = H(K1 || H (K2 || M))
o We need two different keys
o NMAC requires the keys to be the same length as the hash output (n bits)

e HMAC(K, M):

o Compute K' as a version of K that is the length of the hash output
m If Kis too short, pad K with O's to make it n bits (be careful with keys that are too short and lack
randomness)
m If Kistoolong, hash it so it's n bits
o Output H(K' @ opad) || H(K' @ Ipad) || M))

28

HMAC Properties

e HMAC(K, M) =H((K ® opad) || H(K" @ ipad) || M))

e HMAC is a hash function, so it has the properties of the underlying hash too

o lItis collision resistant
o Given HMAC(K, M), an attacker can't learn M
o |If the underlying hash is secure, HMAC doesn’t reveal M, but it is still deterministic

e You can't verify atag 7 if you don't have K
o The attacker can’t brute-force the message M without knowing K

29

MACs: Summary

e |nputs: a secret key and a message
e Output: a tag on the message

e A secure MAC is unforgeable: Even if Mallory can trick Alice into creating
MACs for messages that Mallory chooses, Mallory cannot create a valid MAC

on a message that she hasn't seen before
o Example: HMAC(K, M) = H((K' @ opad) || H((K" ® ipad) || M))

e MACs do not provide confidentiality

30

Encrypt-then-MAC or MAC-then-Encrypt?

e Encrypt-then-MAC

o First compute Enc(K1, M)
o Then MAC the ciphertext: MAC(K2, Enc(K1, M))

e MAC-then-encrypt

o First compute MAC(K2, M)
o Then encrypt the message and the MAC together: Enc(K1, M || MAC(K2, M))

e \Vhich is better?

o In theory, both are IND-CPA and EU-CPA secure if applied properly

o MAC-then-encrypt has a downside: You don't know if tampering has occurred until after decrypting
m Attacker can supply arbitrary tampered input, and you always have to decrypt it
m Passing attacker-chosen input through the decryption function can cause side-channel leaks

e Always use encrypt-then-MAC because it's more robust to mistakes

31

Key Reuse

e Simplest solution: Do not reuse keys across schemes! One key per scheme
Instance.

o Encrypt a piece of data and MAC a piece of data”
m Different use; different key

o MAC one of Alice’s messages to Bob and MAC one of Bob’s messages to Alice?
m Different use; different key

32

Pseudorandom Number Generators (PRNGs)

e [rue randomness Is expensive and biased

e Pseudorandom number generator (PRNGs): An algorithm that uses a little bit of

true randomness to generate a lot of random-looking output
o Also called deterministic random bit generators (DRBGs)

e Usage
Generate some expensive true randomness (e.g. noisy circuit on your CPU)

Use the true randomness as input to the PRNG
o Generate random-looking numbers quickly and cheaply with the PRNG

e PRNGs are deterministic: Output is generated according to a set algorithm

o However, for an attacker who can’t see the internal state, the output is computationally indistinguishable
from true randomness

33

PRNG: Definition

e A PRNG has two functions:

o PRNG.Seed(randomness): Initializes the internal state using the entropy
m Input: Some truly random bits
o PRNG.Generate(m). Generate m pseudorandom bits
m |nput: Anumber m
m Output: m pseudorandom bits
m Updates the internal state as needed

Properties

o Correctness: Deterministic
Efficiency: Efficient to generate pseudorandom bits
o Security: Indistinguishability from random

34

Example construction of PRNG

Using block cipher in CTR mode:
If you want m random bits, and a block cipher with Ex has n bits, apply the

block cipher m/n times and concatenate the result:
PRNG.Seed(K | IV);
Generate(m) = Ex(IV[1) | Ex(IV| 2) | Ex(IV]3) ... Ex(IV] cell(m/n)),

o | Is concatenation

Nonce Counter Nonce Counter Nonce Counter
c59bcf35.. 00000000 c59bcf35.. 00000001 c59bcf35.. 00000002

v v '

block cipher block cipher block cipher
encryption encryption encryption

Key —— Key —— Key ——

PRNG output

Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption

DIFFIE-HELLMAN KEY EXCHANGE

gt mod N

Public knowledge: g and N

Pick random a
gomod N
———————

gbmod N Pick random b
—

Compute (gt mod N)« = Compute (g¢ mod N)b =

Shared secret: This is the key

36

DIFFIE-HELLMAN KEY EXCHANGE

Given g and gx mod N it is infeasible to compute x
Discrete log problem

Note that just multiplying g+ and gb won’t suffice:
g2modN » ggmod N = gatbmodN

Key property:

An eavesdropper cannot infer the shared secret (geb).

But what about active intermediaries?

37

Public Key encryption

A public key encryption scheme comprises three algorithms

Key generation G Correctness

—~ PK = public key D(SK, E(PK, m)) =m

— SK = secret key

Encryption E(PK, m) Security

— cipher text ¢ E(PK, m) should appear random
(small change to (PK,m) leads

Decryption D(SK, c) to large changes to c)
— original msg E() should approximate a one-way

trapdoor function: cannot invert
without access to SK

38

Hyorid encryption
R

Generate public/private key
pair (PK,SK); publicize PK

Obtain PK 8

Generate symmetric key K

Symmkey — Compute Cmsg = €(K, msQ)

Public key Compute ck = E(PK, K) Now throw away K

Send ¢k H Cmsg

Decrypt D(SK, ck) = K Public key
Decrypt d(K, cmsg) = msg Symm key 39

Hyorid encryption
Obtain PK 8

Generate symmetric key K

Compute cmsg = €(K, msQ)
Compute ck = E(PK, K)

Send ¢k H Cmsg

The easy key distribution of public key

The speed and arbitrary message length of symmetric key

40

Digital signatures

A digital signature scheme comprises two algorithms

Signing Sgn(SK, m) Verification Viy(PK, m, s)
— a signature s — Yes/No if valid (m,s)

Correctness
Viy(PK, m, Sgn(SK, m)) = Yes

Security
Same as with MACs: even after
a chosen plaintext attack, the
attacker cannot demonstrate an
existential forgery

41

Diglital signature properties

Authenticity

Integrity

Non-repudiation

Bob can prove that a message
signed by Alice is truly from Alice
(even without a pairwise key)

Bob can prove that no one has
tampered with a signed message

Once Alice signs a message, she
cannot subsequently claim she
did not sign that message

42

HOW PASSWORDS ARE STORED

username : Hk(salt | password), salt

o Hk=H(H(H(...H(x)...)
e Compute the hash of the hash of the hash of the...

H is a fast hash function; Hkis a slow one!

This is how passwords are stored in Linux today

43

POOR PROGRAMING

An Empirical Study of Cryptographic Misuse
in Android Applications

Manuel Egele, David Brumley
Carnegie Mellon University
{megele,dbrumley}@cmu.edu

ABSTRACT

Developers use cryptographic APIs in Android with the intent
of securing data such as passwords and personal information
on mobile devices. In this paper, we ask whether developers
use the cryptographic APIs in a fashion that provides typical
cryptographic notions of security, e.g., IND-CPA security. We
develop program analysis techniques to automatically check
programs on the Google Play marketplace, and find that
10,327 out of 11,748 applications that use cryptographic APIs
— 88% overall — make at least one mistake. These numbers
show that applications do not use cryptographic APIs in a
fashion that maximizes overall security. We then suggest
specific remediations based on our analysis towards improving
overall cryptographic security in Android applications.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement— Restructuring, reverse engineering, and
reengineering

General Terms

Android program slicing, Misuse of cryptographic primitives

Keywords

Software Security, Program Analysis

1 Introduction

Developers use cryptographic primitives like block ciphers
and message authenticate codes (MACs) to secure data and
communications. Cryptographers know there is a right way
and a wrong way to use these primitives, where the right
way provides strong security guarantees and the wrong way
invariably leads to trouble.

In this paper, we ask whether developers know how to use
cryptographic APIs in a cryptographically correct fashion.
In particular, given code that type-checks and compiles, does
the implemented code use cryptographic primitives correctly
to achieve typical definitions of security? We assume that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

CCS’13, November 04 - 08 2013, Berlin, Germany

Copyright 2013 ACM 978-1-4503-2477-9/13/11 $15.00
http://dx.doi.org/10.1145/2508859.2516693.

Yanick Fratantonio, Christopher Kruegel
University of California, Santa Barbara
{yanick,chris}@cs.ucsb.edu

developers who use cryptography in their applications make
this choice consciously. After all, a developer would not likely
try to encrypt or authenticate data that they did not believe
needed securing.

We focus on two well-known security standards: security
against chosen plaintext attacks (IND-CPA) and cracking
resistance. For each definition of security, there is a generally
accepted right and wrong way to do things. For example,
electronic code book (ECB) mode should only be used by
cryptographic experts. This is because identical plaintext
blocks encrypt to identical ciphertext blocks, thus rendering
ECB non-IND-CPA secure. When creating a password hash,
a unique salt should be chosen to make password cracking
more computationally expensive.

We focus on the Android platform, which is attractive
for three reasons. First, Android applications run on smart
phones, and smart phones manage a tremendous amount of
personal information such as passwords, location, and social
network data. Second, Android is closely related to Java, and
Java’s cryptographic API is stable. For example, the Cipher
API which provides access to various encryption schemes has
been unmodified since Java 1.4 was released in 2002. Third,
the large number of available Android applications allows
us to perform our analysis on a large dataset, thus gaining
insight into how application developers use cryptographic
primitives.

One approach for checking cryptographic implementations
would be to adapt verification-based tools like the Microsoft
Crypto Verification Kit [7], Mury [22], and others. The
main advantage of verification-based approaches is that they
provide strong guarantees. However, they are also heavy-
weight, require significant expertise, and require manual
effort. The sum of these three limitations make the tools
inappropriate for large-scale experiments, or for use by day-
to-day developers who are not cryptographers.

Instead, we adopt a light-weight static analysis approach
that checks for common flaws. Our tool, called CRYPTOLINT,
is based upon the Androguard Android program analysis
framework [12]. The main new idea in CRYPTOLINT is to
use static program slicing to identify flows between crypto-
graphic keys, initialization vectors, and similar cryptographic
material and the cryptographic operations themselves. CRYP-
TOLINT takes a raw Android binary, disassembles it, and
checks for typical cryptographic misuses quickly and accu-
rately. These characteristics make CRYPTOLINT appropriate
for use by developers, app store operators, and security-
conscious users.

Using CRYPTOLINT, we performed a study on crypto-

Rule 1: Do not use ECB mode for encryption. [6]

Rule 2: Do not use a non-random IV for CBC encryption. 6,
23

Rule 3: Do not use constant encryption keys.
Rule 4: Do not use constant salts for PBE. 2, 5]

Rule 5: Do not use fewer than 1,000 iterations for PBE. (2,

Rule 6: Do not use static seeds to seed SecureRandom(-).

CryptoLint tool to perform static
analysis on Android apps to detect
how they are using crypto libraries

L4

CRYPTO MISUSE IN ANDROID APPS

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

apps | violated rule

48%| 5,656 | Uses ECB (BouncyCastle default) (R1)
31%| 3,644 | Uses constant symmetric key (R3)

17%| 2,000 Uses ECB (Explicit use) (R1)

16%| 1,932 Uses constant 1V (R2)

1,636 Used iteration count < 1,000 for PBE(R5)
14%| 1,629 Seeds SecureRandom with static (R6)
1,674 Uses static salt for PBE (R4)

12%| 1,421 No violation

HIGH-LEVEL IDEA OF SIDE-CHANNEL ATTACKS

HypotheticalEncrypt(msg, key) {
for(int 1=0; 1 < key.len(); 1++) {

1f(key[1] == 0) .
// branch 0 What if branch O had,. e.glg,,
el se a Jmp that brand 1 didn't?

// branch 1 |What if branch 0

} - took longer? (timing attacks)
1 - gave off more heat?

- made more noise?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

46

Verifying certificates

“'m @ because | say so!”

“'m &) because (¥) says so”

“'m <> because (¥) says so”

47

Verifying certificates

Keychain Access

“ Click to unlock the System Roots keychain.

Keychains
@ login = Symantec Class 1 Public Primary Certification Authority - G4

iCloud ‘ Root certificate authority
" Expires: Monday, January 18, 2038 at 6:59:59 PM Eastern Standard Time

System
& This certificate is valid

| System Roots

P
)
3
o

Keychain

Starfield Clasg RO Ot I(ey Sto re System Roots

Starfield Root System Roots
Starfield Servi System Roots
StartCom Cer : System Roots
StartCom Cer Eve ry d ev' C e h a‘s O n e System Roots
StartCom Cer System Roots
Swisscom Ro¢ System Roots

Swisscom Ro¢ M u St n Ot CO ntai n System Roots

Swisscom Ro¢ . o 3 System Roots
SwissSign CA malicious certificates
SwissSign Go System Roots
SwissSign Pl System Roots
SwissSign Silver CA - G2 certificate Oct 25, 2036, 4:32:46 AM System Roots
Symantec Class 1 Public Primary Certification Authority - G4 certificate Jan 18, 2038, 6:59:59 PM System Roots
Symantec Class 1 Public Primary Certification Authority - G6 certificate Dec 1, 2037, 6:59:59 PM System Roots
Symantec Class 2 Public Primary Certification Authority - G4 certificate Jan 18, 2038, 6:59:59 PM System Roots
Symantec Class 2 Public Primary Certification Authority - G6 certificate Dec 1, 2037, 6:59:59 PM System Roots
Symantec Class 3 Public Primary Certification Authority - G4 certificate Dec 1, 2037, 6:59:59 PM System Roots
Symantec Class 3 Public Primary Certification Authority - G6 certificate Dec 1, 2037, 6:59:59 PM System Roots
SZAFIR ROOT CA certificate Dec 6, 2031, 6:10:57 AM System Roots
T-TeleSec GlobalRoot Class 2 certificate Oct 1, 2033, 7:59:59 PM System Roots
T-TeleSec GlobalRoot Class 3 certificate Oct 1, 2033, 7:59:59 PM System Roots
TC TrustCenter Class 2 CA |l certificate Dec 31, 2025, 5:59:59 PM System Roots
TC TrustCenter Class 3 CA Il certificate Dec 31, 2025, 5:59:59 PM System Roots
TC TrustCenter Class 4 CA |l certificate Dec 31, 2025, 5:59:59 PM System Roots
TC TrustCenter Universal CA | certificate Dec 31, 2025, 5:59:59 PM System Roots

TC TrustCenter Universal CA |l certificate Dec 31, 2030, 5:59:59 PM System Roots
TC: TrietCanter | Inivarcal CA |l rartificate Nec R1 2N20Q A-RQ-5Q PM Qvetem Rnnte
i Copy 210 items

Category
All ltems
Passwords
Secure Notes
My Certificates
Keys
Certificates

3

P N

9

Certificate revocation
is a critical part of any PKI

Administrators must revoke and reissue
as quickly as possible

Browsers/OSes should obtain revocations
as quickly as possible

49

POOR CERTIFICATE MANAGEMENT

Websites aren’t properly revoking their certificates
Browsers aren’t properly checking for revocations

Websites aren’t keeping their secret keys secret

Why?

CAs have incentive to introduce disincentives (bandwidth costs)
Websites have disincentive to do the right thing (CAs charge; key management hard)

Browsers have a disincentive to do the right thing (page load times)

50

DISASTER OF KEY REUSE

* \When new certificates are issued
e Short-lived keys were re-used tor a long time
e Same key or weak keys re-used in ditferent servers

* |In the same server (third-party hosting server), different
businesses share the same key

* Do not re-use the key!

51

