CMSC414 Computer and
Network Security

How Crypto Falls in Practice

Yizheng Chen | University of Maryland

Apr 9, 2024

Credits: original slides from Dave Levin

Announcement

Project 3 Deadline extended to Thursday, April 11

Submission: both source code and executable (See Piazza and
ELMS announcement for details)

Needs to work inside the VM
All tasks will be graded

Transaction types to stdout; other content in *.out

RELATED PAPERS

Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice

David Adrian® Karthikeyan Bhargavan+ Zakir Durumeric? Pierrick Gaudry’ Matthew Green®
J. Alex Halderman® Nadia Heninger: Drew Springall' Emmanuel Thomé’® Luke Valenta:
Benjamin VanderSloot™ Eric Wustrow® Santiago Zanella-Béguelin' Paul Zimmermannt

*INRIA Paris-Rocquencourt TINRIA Nancy-Grand Est, CNRS, and Université de Lorraine
I'Microsoft Research #University of Pennsylvania $ Johns Hopkins “University of Michigan

For additional materials and contact information, visit WeakDH.org.

ABSTRACT

We investigate the security of Diffie-Hellman key exchange as
used in popular Internet protocols and find it to be less secure
than widely believed. First, we present Logjam, a novel flaw
in TLS that lets a man-in-the-middle downgrade connections
to “export-grade” Diffie-Hellman. To carry out this attack,
we implement the number field sieve discrete log algorithm.
After a week-long precomputation for a specified 512-bit
group, we can compute arbitrary discrete logs in that group
in about a minute. We find that 82% of vulnerable servers use
a single 512-bit group, allowing us to compromise connections
to 7% of Alexa Top Million HT'TPS sites. In response, major
browsers are being changed to reject short groups.

We go on to consider Diffie-Hellman with 768- and 1024-bit
groups. We estimate that even in the 1024-bit case, the com-
putations are plausible given nation-state resources. A small
number of fixed or standardized groups are used by millions
of servers; performing precomputation for a single 1024-bit
group would allow passive eavesdropping on 18% of popular
HTTPS sites, and a second group would allow decryption
of traffic to 66% of IPsec VPNs and 26% of SSH servers. A
close reading of published NSA leaks shows that the agency’s
attacks on VPNs are consistent with having achieved such
a break. We conclude that moving to stronger key exchange
methods should be a priority for the Internet community.

1. INTRODUCTION

Diffie-Hellman key exchange is widely used to establish
session keys in Internet protocols. It is the main key exchange
mechanism in SSH and IPsec and a popular option in TLS.
We examine how Diffie-Hellman is commonly implemented
and deployed with these protocols and find that, in practice,
it frequently offers less security than widely believed.

There are two reasons for this. First, a surprising number
of servers use weak Diffie-Hellman parameters or maintain
support for obsolete 1990s-era export-grade crypto. More
critically, the common practice of using standardized, hard-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).

CCS’15, October 12-16, 2015, Denver, Colorado, USA.

ACM 978-1-4503-3832-5/15/10.

DOI: http://dx.doi.org/10.1145/2810103.2813707.

coded, or widely shared Diffie-Hellman parameters has the
effect of dramatically reducing the cost of large-scale attacks,
bringing some within range of feasibility today.

The current best technique for attacking Diffie-Hellman
relies on compromising one of the private exponents (a, b)
by computing the discrete log of the corresponding public
value (g° mod p, g° mod p). With state-of-the-art number
field sieve algorithms, computing a single discrete log is more
difficult than factoring an RSA modulus of the same size.
However, an adversary who performs a large precomputation
for a prime p can then quickly calculate arbitrary discrete logs
in that group, amortizing the cost over all targets that share
this parameter. Although this fact is well known among
mathematical cryptographers, it seems to have been lost
among practitioners deploying cryptosystems. We exploit it
to obtain the following results:

Active attacks on export ciphers in TLS. We introduce
Logjam, a new attack on TLS by which a man-in-the-middle
attacker can downgrade a connection to export-grade cryp-
tography. This attack is reminiscent of the FREAK attack [7]
but applies to the ephemeral Diffie-Hellman ciphersuites and
is a TLS protocol flaw rather than an implementation vulner-
ability. We present measurements that show that this attack
applies to 8.4% of Alexa Top Million HTTPS sites and 3.4%
of all HT'TPS servers that have browser-trusted certificates.

To exploit this attack, we implemented the number field
sieve discrete log algorithm and carried out precomputation
for two 512-bit Diffie-Hellman groups used by more than
92% of the vulnerable servers. This allows us to compute
individual discrete logs in about a minute. Using our discrete
log oracle, we can compromise connections to over 7% of Top
Million HTTPS sites. Discrete logs over larger groups have
been computed before [8], but, as far as we are aware, this
is the first time they have been exploited to expose concrete
vulnerabilities in real-world systems.

We were also able to compromise Diffie-Hellman for many
other servers because of design and implementation flaws and
configuration mistakes. These include use of composite-order
subgroups in combination with short exponents, which is
vulnerable to a known attack of van Oorschot and Wiener [51],
and the inability of clients to properly validate Diffie-Hellman
parameters without knowing the subgroup order, which TLS
has no provision to communicate. We implement these
attacks too and discover several vulnerable implementations.

Risks from common 1024-bit groups. We explore the im-
plications of precomputation attacks for 768- and 1024-bit
groups, which are widely used in practice and still considered

The Most Dangerous Code in the World:
Validating SSL Certificates in Non-Browser Software

Martin Georgiev Subodh lyengar Suman Jana
The University of Texas Stanford University The University of Texas
at Austin at Austin
Rishita Anubhai Dan Boneh Vitaly Shmatikov
Stanford University Stanford University The University of Texas

at Austin

ABSTRACT

SSL (Secure Sockets Layer) is the de facto standard for secure In-
ternet communications. Security of SSL connections against an
active network attacker depends on correctly validating public-key
certificates presented when the connection is established.

We demonstrate that SSL certificate validation is completely bro-
ken in many security-critical applications and libraries. Vulnerable
software includes Amazon’s EC2 Java library and all cloud clients
based on it; Amazon’s and PayPal’s merchant SDKs responsible
for transmitting payment details from e-commerce sites to payment
gateways; integrated shopping carts such as osCommerce, ZenCart,
Ubercart, and PrestaShop; AdMob code used by mobile websites;
Chase mobile banking and several other Android apps and libraries;
Java Web-services middleware—including Apache Axis, Axis 2,
Codehaus XFire, and Pusher library for Android—and all applica-
tions employing this middleware. Any SSL connection from any of
these programs is insecure against a man-in-the-middle attack.

The root causes of these vulnerabilities are badly designed APIs
of SSL implementations (such as JSSE, OpenSSL, and GnuTLS)
and data-transport libraries (such as cURL) which present devel-
opers with a confusing array of settings and options. We analyze
perils and pitfalls of SSL certificate validation in software based on
these APIs and present our recommendations.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; K.4.4 [Computers and Society]: Electronic
Commerce—Security

Keywords

SSL, TLS, HTTPS, public-key infrastructure, public-key certifi-
cates, security vulnerabilities

1. INTRODUCTION

Originally deployed in Web browsers, SSL (Secure Sockets Lay-
er) has become the de facto standard for secure Internet communi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’12, October 16-18, 2012, Raleigh, North Carolina, USA.

Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

cations. The main purpose of SSL is to provide end-to-end security
against an active, man-in-the-middle attacker. Even if the network
is completely compromised—DNS is poisoned, access points and
routers are controlled by the adversary, etc.—SSL is intended to
guarantee confidentiality, authenticity, and integrity for communi-
cations between the client and the server.

Authenticating the server is a critical part of SSL connection es-
tablishment.' This authentication takes place during the SSL hand-
shake, when the server presents its public-key certificate. In order
for the SSL connection to be secure, the client must carefully verify
that the certificate has been issued by a valid certificate authority,
has not expired (or been revoked), the name(s) listed in the certifi-
cate match(es) the name of the domain that the client is connecting
to, and perform several other checks [14, 15].

SSL implementations in Web browsers are constantly evolving
through “penetrate-and-patch” testing, and many SSL-related vul-
nerabilities in browsers have been repaired over the years. SSL,
however, is also widely used in non-browser software whenever
secure Internet connections are needed. For example, SSL is used
for (1) remotely administering cloud-based virtual infrastructure
and sending local data to cloud-based storage, (2) transmitting cus-
tomers’ payment details from e-commerce servers to payment pro-
cessors such as PayPal and Amazon, (3) logging instant messenger
clients into online services, and (4) authenticating servers to mobile
applications on Android and iOS.

These programs usually do not implement SSL themselves. In-
stead, they rely on SSL libraries such as OpenSSL, GnuTLS, JSSE,
CryptoAPI, etc., as well as higher-level data-transport libraries,
such as cURL, Apache HttpClient, and urllib, that act as wrappers
around SSL libraries. In software based on Web services, there is
an additional layer of abstraction introduced by Web-services mid-
dleware such as Apache Axis, Axis 2, or Codehaus XFire.

Our contributions. We present an in-depth study of SSL connec-
tion authentication in non-browser software, focusing on how di-
verse applications and libraries on Linux, Windows, Android, and
iOS validate SSL server certificates. We use both white- and black-
box techniques to discover vulnerabilities in validation logic. Our
main conclusion is that SSL certificate validation is completely bro-
ken in many critical software applications and libraries. When
presented with self-signed and third-party certificates—including
a certificate issued by a legitimate authority to a domain called
AllYourSSLAreBelongTo.us —they establish SSL connec-
tions and send their secrets to a man-in-the-middle attacker.

!SSL also supports client authentication, but we do not analyze it
in this paper.

POOR PROGRAMING

An Empirical Study of Cryptographic Misuse
in Android Applications

Manuel Egele, David Brumley
Carnegie Mellon University
{megele,dbrumley}@cmu.edu

ABSTRACT

Developers use cryptographic APIs in Android with the intent
of securing data such as passwords and personal information
on mobile devices. In this paper, we ask whether developers
use the cryptographic APIs in a fashion that provides typical
cryptographic notions of security, e.g., IND-CPA security. We
develop program analysis techniques to automatically check
programs on the Google Play marketplace, and find that
10,327 out of 11,748 applications that use cryptographic APIs
— 88% overall — make at least one mistake. These numbers
show that applications do not use cryptographic APIs in a
fashion that maximizes overall security. We then suggest
specific remediations based on our analysis towards improving
overall cryptographic security in Android applications.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement— Restructuring, reverse engineering, and
reengineering

General Terms

Android program slicing, Misuse of cryptographic primitives

Keywords

Software Security, Program Analysis

1 Introduction

Developers use cryptographic primitives like block ciphers
and message authenticate codes (MACs) to secure data and
communications. Cryptographers know there is a right way
and a wrong way to use these primitives, where the right
way provides strong security guarantees and the wrong way
invariably leads to trouble.

In this paper, we ask whether developers know how to use
cryptographic APIs in a cryptographically correct fashion.
In particular, given code that type-checks and compiles, does
the implemented code use cryptographic primitives correctly
to achieve typical definitions of security? We assume that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

CCS’13, November 04 - 08 2013, Berlin, Germany

Copyright 2013 ACM 978-1-4503-2477-9/13/11 $15.00
http://dx.doi.org/10.1145/2508859.2516693.

Yanick Fratantonio, Christopher Kruegel
University of California, Santa Barbara
{yanick,chris}@cs.ucsb.edu

developers who use cryptography in their applications make
this choice consciously. After all, a developer would not likely
try to encrypt or authenticate data that they did not believe
needed securing.

We focus on two well-known security standards: security
against chosen plaintext attacks (IND-CPA) and cracking
resistance. For each definition of security, there is a generally
accepted right and wrong way to do things. For example,
electronic code book (ECB) mode should only be used by
cryptographic experts. This is because identical plaintext
blocks encrypt to identical ciphertext blocks, thus rendering
ECB non-IND-CPA secure. When creating a password hash,
a unique salt should be chosen to make password cracking
more computationally expensive.

We focus on the Android platform, which is attractive
for three reasons. First, Android applications run on smart
phones, and smart phones manage a tremendous amount of
personal information such as passwords, location, and social
network data. Second, Android is closely related to Java, and
Java’s cryptographic API is stable. For example, the Cipher
API which provides access to various encryption schemes has
been unmodified since Java 1.4 was released in 2002. Third,
the large number of available Android applications allows
us to perform our analysis on a large dataset, thus gaining
insight into how application developers use cryptographic
primitives.

One approach for checking cryptographic implementations
would be to adapt verification-based tools like the Microsoft
Crypto Verification Kit [7], Mury [22], and others. The
main advantage of verification-based approaches is that they
provide strong guarantees. However, they are also heavy-
weight, require significant expertise, and require manual
effort. The sum of these three limitations make the tools
inappropriate for large-scale experiments, or for use by day-
to-day developers who are not cryptographers.

Instead, we adopt a light-weight static analysis approach
that checks for common flaws. Our tool, called CRYPTOLINT,
is based upon the Androguard Android program analysis
framework [12]. The main new idea in CRYPTOLINT is to
use static program slicing to identify flows between crypto-
graphic keys, initialization vectors, and similar cryptographic
material and the cryptographic operations themselves. CRYP-
TOLINT takes a raw Android binary, disassembles it, and
checks for typical cryptographic misuses quickly and accu-
rately. These characteristics make CRYPTOLINT appropriate
for use by developers, app store operators, and security-
conscious users.

Using CRYPTOLINT, we performed a study on crypto-

Rule 1: Do not use ECB mode for encryption. [6]

Rule 2: Do not use a non-random IV for CBC encryption. 6,
23

Rule 3: Do not use constant encryption keys.
Rule 4: Do not use constant salts for PBE. 2, 5]

Rule 5: Do not use fewer than 1,000 iterations for PBE. (2,

Rule 6: Do not use static seeds to seed SecureRandom(-).

CryptoLint tool to perform static
analysis on Android apps to detect
how they are using crypto libraries

CRYPTO MISUSE IN ANDROID APPS

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

apps | violated rule

48%| 5,656 | Uses ECB (BouncyCastle default) (R1)
31%| 3,644 | Uses constant symmetric key (R3)

17%| 2,000 Uses ECB (Explicit use) (R1)

16%| 1,932 Uses constant 1V (R2)

1,636 Used iteration count < 1,000 for PBE(R5)
14%| 1,629 Seeds SecureRandom with static (R6)
1,674 Uses static salt for PBE (R4)

12%| 1,421 No violation

Original image Encrypted using ECB mode

NEVER use ECB
(but over 50% of Android apps do)

BOUNCYCASTLE DEFAULIS

» BouncyCastle is a library that conforms to Java'’s
Clpher' mterface

Clpher C c =
| Cipher.getInstance(“AES/CBC/PKCS5Padding™);

// Ultlmately end up wrapping a ByteArrayOutputStream

* Java documentatlon spemﬂes

If no mode or paddmg 18 spemﬁed pr0V1der-spe01flc default Values for the mode and |

paddmg scheme are used. For example the SUNJCE prov1der uses EiCB as the
{ default mode, and PKCS5Padding as the default padding scheme for DES,
; D*'.“S—:_.D_. and Blowflsh 01phers o :

#(QOccurences

Symmetric encryption scheme

o878
4803
1151
741
001

473
468

443
235
221
220
205
155
104

AES/CBC/PKCS5Padding
AES *
DES/ECB/NoPadding
DES *

DESede *
DESede/ECB/PKCS5Padding
AES/CBC/NoPadding
AES/ECB/PKCS5Padding
AES/CBC/PKCS7Padding
DES/ECB/PKCS5Padding
AES/ECB/NoPadding
DES/CBC/PKCS5Padding
AES/ECB/PKCS7Padding
AES/CFB8/NoPadding

Table 4: Distribution of frequently used symmetric

encryption schemes. Schemes marked with * are
used in ECB mode by default.

CRYPTO MISUSE IN ANDROID APPS

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

apps | violated rule 10000

48%| 5,656 | Uses ECB (BouncyCastle default) (R1)
31%| 3,644 Uses constant symmetric key (R3)

Number of distinct applications

1000
17%| 2,000 Uses ECB (Explicit use) (R1) |
16%| 1,932 Uses constant 1V (R2) z
1,636 Used iteration count < 1,000 for PBE(R5) ol
14%| 1,629 Seeds SecureRandom with static (R6) I
1,574 Uses static salt for PBE (R4) |

12%| 1,421 No violation

Number of distinct violated rules

A failure of the programmers to know the tools they use

A failure of library writers to provide safe defaults

MISUSING CRYPTO

Avoid shooting yourself in the foot:

* Do not roll your own cryptographic mechanisms
+ Takes peer review

+ Apply Kerkhoft's principle
* Do not misuse existing crypto

* Do not even implement the underlying crypto

10

WHY NOT IMPLEMENT AES/RSA YOURSELF?

» Not talking about creating a brand new crypto scheme,
just implementing one that's already widely accepted and
used.

» Kerkhoft’s principle: these are all open standards; shoula
be implementable.

» Potentially buggy/incorrect code, but so might be others’
implementations (viz. OpenSSL bugs, poor defaults in
Bouncy castles, etc.)

* So why not implement it yourself?

11

SIDE-CHANNEL ATTACKS

» Cryptography concerns the theoretical difficulty in
breaking a cipher

Leaked information
- Power consumption

- Electromagnetic radiation
- Other (Timing, errors, etc.)

Input . Cryptographic processing Output

message (Encrypt/decrypt/sign/etc.) message

» But what about the information that a particular
implementation could leak?

» Attacks based on these are “side-channel attacks”

12

SIMPLE POWER ANALYSIS (SPA)

* Interpret power traces taken during a cryptographic
operation

» Simple power analysis can reveal the sequence of
instructions executed

13

SPA ON DES

§4jj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
.,53.75-j 1 1 e w
§3ZZZ5WW}}/%Jﬂ/ﬁfﬂ/ﬂ/ﬂ%/JH/NW”/U/U}‘NJM}]MP

3.2 4.0 4.8
Time (mS)

Figure 1: SPA trace showing an entire DES operation.

Overall operation clearly visible:
Can identify the 16 rounds of DES

14

SPA ON DES

Jump taken

ARSI

y 5 3 4 5 6 7
Time (in 3.5714MHz clock cycles) N o ju mp ta ken

Figure 3: SPA trace showing individual clock cycles.

Specitic instructions are also discernible

HIGH-LEVEL IDEA

HypotheticalEncrypt(msg, key) {
for(int 1=0; 1 < key.len(); 1++) {

1f(key[1] == 0) .
// branch 0 What it branch O had,. e?"
el se a Jmp that brand 1 didn't?

// branch 1 \What if branch 0
} - took longer? (timing attacks)
1 - gave off more heat?

- made more noise?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys 16

DIFFERENTIAL POWER ANALYSIS (DPA)

» SPA just visually inspects a single run

* DPA runs iteratively and reactively

+ Get multiple samples

+ Based on these, construct new plaintext messages as
inputs, and repeat

17

MITIGATING SUCH ATTACKS

» Hide information by making the execution paths
depend on the inputs as little as possible

Have to give up some optimizations that depend on
particular bit values in keys

Some Chinese Remainder Theorem (CRT) optimizations permitted
remote timing attacks on SSL servers

* The crypto community should seek to design
cryptosystems under the assumption that some
information is going to leak

18

POOR POLICIES

Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice

David Adrian® Karthikeyan Bhargavan+ Zakir Durumeric? Pierrick Gaudry’ Matthew Green:®

J. Alex Halderman' Nadia Heninger* Drew Springall Emmanuel Thomé' Luke Valentat
Benjamin VanderSloot® Eric Wustrow? Santiago Zanella-Béguelin' Paul Zimmermannt

*INRIA Paris-Rocquencourt TINRIA Nancy-Grand Est, CNRS, and Université de Lorraine
I'Microsoft Research *University of Pennsylvania $ Johns Hopkins TUniversity of Michigan

For additional materials and contact information, visit WeakDH.org.

ABSTRACT

We investigate the security of Diffie-Hellman key exchange as
used in popular Internet protocols and find it to be less secure
than widely believed. First, we present Logjam, a novel flaw
in TLS that lets a man-in-the-middle downgrade connections
to “export-grade” Diffie-Hellman. To carry out this attack,
we implement the number field sieve discrete log algorithm.
After a week-long precomputation for a specified 512-bit
group, we can compute arbitrary discrete logs in that group
in about a minute. We find that 82% of vulnerable servers use
a single 512-bit group, allowing us to compromise connections
to 7% of Alexa Top Million HT'TPS sites. In response, major
browsers are being changed to reject short groups.

We go on to consider Diffie-Hellman with 768- and 1024-bit
groups. We estimate that even in the 1024-bit case, the com-
putations are plausible given nation-state resources. A small
number of fixed or standardized groups are used by millions
of servers; performing precomputation for a single 1024-bit
group would allow passive eavesdropping on 18% of popular
HTTPS sites, and a second group would allow decryption
of traffic to 66% of IPsec VPNs and 26% of SSH servers. A
close reading of published NSA leaks shows that the agency’s
attacks on VPNs are consistent with having achieved such
a break. We conclude that moving to stronger key exchange
methods should be a priority for the Internet community.

1. INTRODUCTION

Diffie-Hellman key exchange is widely used to establish
session keys in Internet protocols. It is the main key exchange
mechanism in SSH and IPsec and a popular option in TLS.
We examine how Diffie-Hellman is commonly implemented
and deployed with these protocols and find that, in practice,
it frequently offers less security than widely believed.

There are two reasons for this. First, a surprising number
of servers use weak Diffie-Hellman parameters or maintain
support for obsolete 1990s-era export-grade crypto. More
critically, the common practice of using standardized, hard-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).

CCS’15, October 12-16, 2015, Denver, Colorado, USA.

ACM 978-1-4503-3832-5/15/10.

DOI: http://dx.doi.org/10.1145/2810103.2813707.

coded, or widely shared Diffie-Hellman parameters has the
effect of dramatically reducing the cost of large-scale attacks,
bringing some within range of feasibility today.

The current best technique for attacking Diffie-Hellman
relies on compromising one of the private exponents (a, b)
by computing the discrete log of the corresponding public
value (g° mod p, g° mod p). With state-of-the-art number
field sieve algorithms, computing a single discrete log is more
difficult than factoring an RSA modulus of the same size.
However, an adversary who performs a large precomputation
for a prime p can then quickly calculate arbitrary discrete logs
in that group, amortizing the cost over all targets that share
this parameter. Although this fact is well known among
mathematical cryptographers, it seems to have been lost
among practitioners deploying cryptosystems. We exploit it
to obtain the following results:

Active attacks on export ciphers in TLS. We introduce
Logjam, a new attack on TLS by which a man-in-the-middle
attacker can downgrade a connection to export-grade cryp-
tography. This attack is reminiscent of the FREAK attack [7]
but applies to the ephemeral Diffie-Hellman ciphersuites and
is a TLS protocol flaw rather than an implementation vulner-
ability. We present measurements that show that this attack
applies to 8.4% of Alexa Top Million HT'TPS sites and 3.4%
of all HT'TPS servers that have browser-trusted certificates.

To exploit this attack, we implemented the number field
sieve discrete log algorithm and carried out precomputation
for two 512-bit Diffie-Hellman groups used by more than
92% of the vulnerable servers. This allows us to compute
individual discrete logs in about a minute. Using our discrete
log oracle, we can compromise connections to over 7% of Top
Million HTTPS sites. Discrete logs over larger groups have
been computed before [8], but, as far as we are aware, this
is the first time they have been exploited to expose concrete
vulnerabilities in real-world systems.

We were also able to compromise Diffie-Hellman for many
other servers because of design and implementation flaws and
configuration mistakes. These include use of composite-order
subgroups in combination with short exponents, which is
vulnerable to a known attack of van Oorschot and Wiener [51],
and the inability of clients to properly validate Diffie-Hellman
parameters without knowing the subgroup order, which TLS
has no provision to communicate. We implement these
attacks too and discover several vulnerable implementations.

Risks from common 1024-bit groups. We explore the im-
plications of precomputation attacks for 768- and 1024-bit
groups, which are widely used in practice and still considered

Source Popularity Prime

Apache 82% 9fdb8b8a004544£0045£1737d0ba2e0b
274cdf1a9f588218fb435316a16e3741
71£d19d8d8£37c39bf863£fd60e3e3006
80a3030c6e4c3757d08f70e6aa871033

d4bcd52406£69b35994b88de5db89682
c8157£62d8£33633eeb5772f11f05ab22
dé6b5145b9f241ebacc31f£f090adbc711
48976f76795094e71e7903529f5a824b

(463 distinct primes)

mod ssl 10%

(others) 8%

Table 1: Top 512-bit DH primes for TLS. 8.4% of Alexa
Top 1M HTTPS domains allow DHE_EXPORT, of which
92.3% use one of the two most popular primes, shown here.

“After a week-long precomputation for a specified
512-bit group, we can compute arbitrary discrete logs
in that group in about a minute. We find that 82% of
vulnerable servers use a single 512-bit group,

allowing us to compromise connections to 7% of Alexa
Top Million HTTPS sites.”

19

USEFUL TOOL: ZMAP

This paper appeared in Proceedings of the 22nd USENIX Security Symposium, August 2013.
ZMap source code and documentation are available for download at https://zmap.io/.

ZMap: Fast Internet-Wide Scanning and its Security Applications

Zakir Durumeric Eric Wustrow J. Alex Halderman
University of Michigan University of Michigan University of Michigan
zakir@umich.edu ewust@umich.edu Jhalderm@umich.edu
Abstract mid-range machine running ZMap is capable of scanning

Internet-wide network scanning has numerous security
applications, including exposing new vulnerabilities and
tracking the adoption of defensive mechanisms, but prob-
ing the entire public address space with existing tools is
both difficult and slow. We introduce ZMap, a modular,
open-source network scanner specifically architected to
perform Internet-wide scans and capable of surveying
the entire IPv4 address space in under 45 minutes from
user space on a single machine, approaching the theo-
retical maximum speed of gigabit Ethernet. We present
the scanner architecture, experimentally characterize its
performance and accuracy, and explore the security impli-
cations of high speed Internet-scale network surveys, both
offensive and defensive. We also discuss best practices for
good Internet citizenship when performing Internet-wide
surveys, informed by our own experiences conducting a
long-term research survey over the past year.

1 Introduction and Roadmap

Internet-scale network surveys collect data by probing
large subsets of the public IP address space. While such
scanning behavior is often associated with botnets and
worms, it also has proved to be a valuable methodol-
ogy for security research. Recent studies have demon-
strated that Internet-wide scanning can help reveal new
kinds of vulnerabilities, monitor deployment of mitiga-
tions, and shed light on previously opaque distributed
ecosystems [10, 12, 14, 15, 25, 27]. Unfortunately, this
methodology has been more accessible to attackers than to
legitimate researchers, who cannot employ stolen network
access or spread self-replicating code. Comprehensively
scanning the public address space with off-the-shelf tools
like Nmap [23] requires weeks of time or many machines.

In this paper, we introduce ZMap, a modular and open-
source network scanner specifically designed for perform-
ing comprehensive Internet-wide research scans. A single

for a given open port across the entire public IPv4 address
space in under 45 minutes—over 97% of the theoreti-
cal maximum speed of gigabit Ethernet—without requir-
ing specialized hardware [11] or kernel modules [8, 28].
ZMap’s modular architecture can support many types of
single-packet probes, including TCP SYN scans, ICMP
echo request scans, and application-specific UDP scans,
and it can interface easily with user-provided code to
perform follow-up actions on discovered hosts, such as
completing a protocol handshake.

Compared to Nmap—an excellent general-purpose net-
work mapping tool, which was utilized in recent Internet-
wide survey research [10, 14]—ZMap achieves much
higher performance for Internet-scale scans. Experimen-
tally, we find that ZMap is capable of scanning the IPv4
public address space over 1300 times faster than the most
aggressive Nmap default settings, with equivalent accu-
racy. These performance gains are due to architectural
choices that are specifically optimized for this application:

Optimized probing While Nmap adapts its transmis-
sion rate to avoid saturating the source or target networks,
we assume that the source network is well provisioned
(unable to be saturated by the source host), and that the
targets are randomly ordered and widely dispersed (so
no distant network or path is likely to be saturated by
the scan). Consequently, we attempt to send probes as
quickly as the source’s NIC can support, skipping the
TCP/IP stack and generating Ethernet frames directly. We
show that ZMap can send probes at gigabit line speed
from commodity hardware and entirely in user space.

No per-connection state While Nmap maintains
state for each connection to track which hosts have
been scanned and to handle timeouts and retransmis-
sions, ZMap forgoes any per-connection state. Since
it is intended to target random samples of the address
space, ZMap can avoid storing the addresses it has already
scanned or needs to scan and instead selects addresses
according to a random permutation generated by a cyclic

Goal: port-scan the entire Internet
in less than an hour

Approaches:

Non-blocking, stateless
= Highly parallelizable

Randomize addresses

= Avoid takedown notices

Datasets: Rapid7, censys.io

20

http://censys.io

FORWARD SECRECY

e Compromising a long-term key should not
compromise past session keys

21

UNSAFE OPTIMIZATIONS

Measuring the Security Harm of TLS Crypto Shortcuts

Drew Springall® Zakir Durumeric™ J. Alex Halderman®

TUniversity of Michigan * International Computer Science Institute
{aaspring, zakir, jhalderm}@umich.edu

ABSTRACT

TLS has the potential to provide strong protection against
network-based attackers and mass surveillance, but many im-
plementations take security shortcuts in order to reduce the
costs of cryptographic computations and network round trips.
We report the results of a nine-week study that measures
the use and security impact of these shortcuts for HTTPS
sites among Alexa Top Million domains. We find widespread
deployment of DHE and ECDHE private value reuse, TLS
session resumption, and TLS session tickets. These practices
greatly reduce the protection afforded by forward secrecy:
connections to 38% of Top Million HTTPS sites are vulnera-
ble to decryption if the server is compromised up to 24 hours
later, and 10% up to 30 days later, regardless of the selected
cipher suite. We also investigate the practice of TLS secrets
and session state being shared across domains, finding that in
some cases, the theft of a single secret value can compromise
connections to tens of thousands of sites. These results sug-
gest that site operators need to better understand the tradeoffs
between optimizing TLS performance and providing strong
security, particularly when faced with nation-state attackers
with a history of aggressive, large-scale surveillance.

1. INTRODUCTION

TLS is designed with support for perfect forward secrecy
(PFS) in order to provide resistance against future compro-
mises of endpoints [15]. A TLS connection that uses a non-
PFS cipher suite can be recorded and later decrypted if the
attacker eventually gains access to the server’s long-term pri-
vate key. In contrast, a forward-secret cipher suite prevents
this by conducting an ephemeral finite field Diffie-Hellman
(DHE) or ephemeral elliptic curve Diffie-Hellman (ECDHE)
key exchange. These key exchange methods use the server’s
long-term private key only for authentication, so obtaining

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

IMC 2016 November 14—16, 2016, Santa Monica, CA, USA
© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4526-2/16/11.

DOI: http://dx.doi.org/10.1145/2987443.2987480

it after the TLS session has ended will not help the attacker
recover the session key. For this reason, the security com-
munity strongly recommends configuring TLS servers to
use forward-secret ciphers [27,50]. PES deployment has in-
creased substantially in the wake of the OpenSSL Heartbleed
vulnerability— which potentially exposed the private keys
for 24-55% of popular websites [19]—and of Edward Snow-
den’s disclosures about mass surveillance of the Internet by
intelligence agencies [36, 38].

Despite the recognized importance of forward secrecy,
many TLS implementations that use it also take various cryp-
tographic shortcuts that weaken its intended benefits in ex-
change for better performance. Ephemeral value reuse, ses-
sion ID resumption [13], and session ticket resumption [52]
are all commonly deployed performance enhancements that
work by maintaining secret cryptographic state for periods
longer than the lifetime of a connection. While these mech-
anisms reduce computational overhead for the server and
latency for clients, they also create important caveats to the
security of forward-secret ciphers.

TLS performance enhancements’ reduction of forward se-
crecy guarantees has been pointed out before [33, 54], but
their real-world security impact has never been systemati-
cally measured. To address this, we conducted a nine-week
study of the Alexa Top Million domains. We report on the
prevalence of each performance enhancement and attempt
to characterize each domain’s vulnerability window—the
length of time surrounding a forward-secret connection dur-
ing which an adversary can trivially decrypt the content if they
obtain the server’s secret cryptographic state. Alarmingly, we
find that this window is over 24 hours for 38% of Top Mil-
lion domains and over 30 days for 10%, including prominent
Internet companies such as Yahoo, Netflix, and Yandex.

In addition to these protocol-level shortcuts, many providers
employ SSL terminators for load balancing or other op-
erational reasons [39]. SSL terminators perform crypto-
graphic operations on behalf of a destination server, trans-
lating clients’ HTTPS connections into unencrypted HTTP
requests to an internal server. We find that many SSL termi-
nators share cryptographic state between multiple domains.
Sibling domains’ ability to affect the security of each other’s
connections also adds caveats to forward secrecy. We ob-
served widespread state sharing across thousands of groups

TLS session ticket resumption

Session ticket: session keys and
other data to resume the session

Server sends an “opaque” ticket
(encrypted with the Session Ticket
Encryption Key, STEK)

Client sends the encrypted session
ticket during handshake; server uses
the STEK to recover it and pick up
in one round-trip of communication

22

UNSAFE OPTIMIZATIONS

1 ~ 100% Gays = |
2aanaRRall °or \ =1 E——
\ 1 < days = 7 o
a TR oSO OSRSR SRRSO \ 7 < days < 30 =xXxxx13
E s 80% [§ k days > 30
3 N R R R N X
2 60% | \
E : : : z : :
R — — — — — — - 40% |
L
S 02k 20%
0 A;Iexa1M H(i)sts —-— 0%
R R R R R
o 0 N7 D 0 % 7 S % % % 0%
% 7 4 4 %
Max span of a STEK (in days) a
Figure 3: STEK Lifetime—TLS connections cannot Figure 4: STEK Lifetime by Alexa Rank— We found 12
achieve forward secrecy until the STEK (the key used by Alexa Top 100 sites that persisted STEKSs for at least 30 days.

the server to encrypt the session ticket) is discarded.
]

Incentive to hold onto STEKs (lower RTTs) -

0.98

0.975 -

CDF of HTTPS sites

0.97

But they’re holding onto them long enough

0'965 s Alexa1MDHE(DHECIpherS) -

Alpxa iM EQDHE (Gollang ciphqrs) —
¢ ‘0 N2 @ % P %

for nation-states to recover them

0.96

Max span of a server KEX(in days)

Figure 5: Ephemeral Exchange Value Reuse— We mea-
sured how long Alexa Top Million websites served identical
DHE and ECDHE values (note vertical scale is cropped).

POOR CERTIFICATE MANAGEMENT

Analysis of SSL Certificate Reissues and Revocations
in the Wake of Heartbleed

Liang Zhang David Choffnes

Dave Levin Tudor Dumitrag

Northeastern University Northeastern University University of Maryland University of Maryland

liang@ccs.neu.edu choffnes@ccs.neu.edu

dml@cs.umd.edu tdumitra@umiacs.umd.edu

Alan Mislove Aaron Schulman Christo Wilson
Northeastern University Stanford University Northeastern University
amislove@ccs.neu.edu aschulm@stanford.edu cbw@ccs.neu.edu

ABSTRACT

Central to the secure operation of a public key infrastruc-
ture (PKI) is the ability to revoke certificates. While much
of users’ security rests on this process taking place quickly,
in practice, revocation typically requires a human to decide
to reissue a new certificate and revoke the old one. Thus,
having a proper understanding of how often systems admin-
istrators reissue and revoke certificates is crucial to under-
standing the integrity of a PKI. Unfortunately, this is typi-
cally difficult to measure: while it is relatively easy to deter-
mine when a certificate is revoked, it is difficult to determine
whether and when an administrator should have revoked.

In this paper, we use a recent widespread security vul-
nerability as a natural experiment. Publicly announced in
April 2014, the Heartbleed OpenSSL bug, potentially (and
undetectably) revealed servers’ private keys. Administrators
of servers that were susceptible to Heartbleed should have
revoked their certificates and reissued new ones, ideally as
soon as the vulnerability was publicly announced.

Using a set of all certificates advertised by the Alexa Top 1
Million domains over a period of six months, we explore the
patterns of reissuing and revoking certificates in the wake of
Heartbleed. We find that over 73% of vulnerable certificates
had yet to be reissued and over 87% had yet to be revoked
three weeks after Heartbleed was disclosed. Moreover, our
results show a drastic decline in revocations on the weekends,
even immediately following the Heartbleed announcement.
These results are an important step in understanding the
manual processes on which users rely for secure, authenti-
cated communication.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMC’14, November 5-7, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3213-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663716.2663758.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks|: Net-
work Protocols; C.2.3 [Computer-Communication Net-
works]: Network Operations; E.3 [Data Encryption]:
Public Key Cryptosystems, Standards

Keywords

Heartbleed; SSL; TLS; HTTPS; X.509; Certificates; Reissue;
Revocation; Extended validation

1. INTRODUCTION

Secure Sockets Layer (SSL) and Transport Layer Secu-
rity (TLS)" are the de-facto standards for securing Internet
transactions such as banking, e-mail and e-commerce. Along
with a public key infrastructure (PKI), SSL provides trusted
identities via certificate chains and private communication
via encryption. Central to these guarantees is that private
keys used in SSL are not compromised by third parties; if
so, certificates based on those private keys must be reissued
and revoked to ensure that malicious third parties cannot
masquerade as a trusted entity.

Importantly, the PKI uses a default-valid model where
potentially compromised certificates remain valid until their
expiration date or until they are revoked. Revocation, how-
ever, is a process that requires manual intervention from cer-
tificate owners and cooperation from clients that use these
certificates. As a result, the practical security of the PKI is
dependent on the speed with which certificate owners and
SSL clients update their revocation lists, operations that oc-
cur at human timescales (hours or days) instead of computer
ones (seconds or minutes). An important open question is:
when private keys are compromised, how long are SSL clients
exposed to potential attacks?

In this paper, we address this question using a re-
cent widespread security vulnerability as a natural exper-
iment. In mid-April 2014, an OpenSSL security vulnera-
bility, Heartbleed, made it possible for attackers to inspect
servers’ memory contents, thereby potentially (and unde-
tectably) revealing servers’ private keys. Administrators of

'TLS is the successor of SSL, but both use the same X.509
certificates. Throughout the paper, we refer to “SSL clients”
and “SSL certificates,” but our findings apply equally to
servers using both protocols.

Measurement and Analysis of
Private Key Sharing in the HTTPS Ecosystem

Frank Cangialosi- Taejoong Chung' David Choffnes’ Dave Levin*
Bruce M. Maggs: Alan Mislovet Christo Wilson?

*University of Maryland "Northeastern University

ABSTRACT

The semantics of online authentication in the web are rather
straightforward: if Alice has a certificate binding Bob’s
name to a public key, and if a remote entity can prove knowl-
edge of Bob’s private key, then (barring key compromise)
that remote entity must be Bob. However, in reality, many
websites—and the majority of the most popular ones—are
hosted at least in part by third parties such as Content Deliv-
ery Networks (CDNs) or web hosting providers. Put simply:
administrators of websites who deal with (extremely) sensi-
tive user data are giving their private keys to third parties.
Importantly, this sharing of keys is undetectable by most
users, and widely unknown even among researchers.

In this paper, we perform a large-scale measurement study
of key sharing in today’s web. We analyze the prevalence
with which websites trust third-party hosting providers with
their secret keys, as well as the impact that this trust has on
responsible key management practices, such as revocation.
Our results reveal that key sharing is extremely common,
with a small handful of hosting providers having keys from
the majority of the most popular websites. We also find that
hosting providers often manage their customers’ keys, and
that they tend to react more slowly yet more thoroughly to
compromised or potentially compromised keys.

1. INTRODUCTION

Online, end-to-end authentication is a fundamental first
step to secure communication. On the web, Secure Sock-
ets Layer (SSL) and Transport Layer Security (TLS)! are
responsible for authentication for HT'TPS traffic. Coupled
with a Public Key Infrastructure (PKI), SSL/TLS provides
verifiable identities via certificate chains and private com-
munication via encryption. Owing to the pervasiveness and
success of SSL/TLS, users have developed a natural expec-
tation that, if their browser shows that they are connected to
a website with a “secure” lock icon, then they have a secure

ITLS is the successor of SSL, but both use the same certificates.
We refer to “SSL certificates,” but our findings apply equally to both.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CCS’16, October 24 — 28, 2016, Vienna, Austria

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4139-4/16/10...$15.00

DOL http://dx.doi.org/10.1145/2976749.2978301

*Duke University and Akamai Technologies

end-to-end link with a server that is under that website’s
sole control.

However, the economics and performance demands of the
Internet complicate this simplified model. Web services ben-
efit from not only deploying content on servers they control,
but also employing third-party hosting providers like Aka-
mai, CloudFlare, and Amazon’s EC2 service to assist in de-
livering their content. Many of the world’s most popular
websites are hosted at least in part on Content Delivery Net-
works (CDNs) so as to benefit from worldwide deployment
and low-latency connectivity to users. Less popular web-
sites are also often served by third-party hosting providers,
in part to avoid having to set up and maintain a server and
the associated infrastructure on their own. These hosting
arrangements are often non-obvious to users, and yet, with
HTTPS, they can have profound security implications.

Consider what happens when a user visits an HT'TPS web-
site, example.com, served by a third party such as a CDN:
the user’s TCP connection terminates at one of the CDN’s
servers, but the SSL/TLS handshake results in an authen-
ticated connection, convincing the user’s browser that it is
speaking directly to example.com. The only way the server
could have authenticated itself as example.con is if it had
one of example.com’s private keys. This is precisely what
happens today: website administrators share their private
keys with third-party hosting providers, even though this vi-
olates one of the fundamental assumptions underlying end-
to-end authentication and security—that all private keys
should be kept private.

Such sharing of keys with CDNs has been pointed out
by prior work, notably by Liang et al. [23]. However, the
prevalence of key sharing, and its implications on the se-
curity of the HT'TPS ecosystem, have remained unstudied
and difficult to quantify. Moreover, websites share their pri-
vate keys with a much broader class of third-party host-
ing providers than just CDNs, including cloud providers
like Amazon AWS and web hosting services like Rackspace.
The extent to which hosting providers play an active role
in managing or accessing their customers’ keys varies across
provider and type of service—as we will see, for instance,
some CDNs go so far as to manage their customers’ cer-
tificates on their behalf. Whatever the role, merely having
physical access to a website’s private key can have severe se-
curity implications. We therefore consider a domain to have
“shared” its private key if we infer that the private key is
hosted at an IP address belonging to a different organiza-
tion than the one that owns the domain (see §2.3).

In this paper, we quantify private key sharing within the
HTTPS ecosystem at an Internet-wide scale, with two high-

24

Public Key Cryptography

Vo
Encrypts Decrypts
Messages encrypted Cannot decrypt
with without /
e 8
al s Ve

Encrypt the data in a way that only the

Confidentiality owner of a given public key can decrypt

25

Public Key Cryptography

o
Verifies Signs
Messages signed Cannot sign
with without /
aall Ve v

Sign the data in a way that only the

Authentication . .
owner of a given public key can

26

Public Key Infrastructures (PKls)

How can users truly know with whom they are communicating!?

Website

@ Certificate Authority ““"

s

Certificate

27

Public Key Infrastructures (PKls)

How can users truly know with whom they are communicating!?

Website

Gertdfrcale

@ Certificate Authority

s

28

Verifying certificates

“'m @ because | say so!”

“'m &) because (¥) says so”

“'m <> because (¥) says so”

29

Verifying certificates

Keychain Access

" Click to unlock the System Roots keychain.

Keychains
@ login = Symantec Class 1 Public Primary Certification Authority - G4

iCloud Root certificate authority
" Expires: Monday, January 18, 2038 at 6:59:59 PM Eastern Standard Time

System
& This certificate is valid

| System Roots

P
)
3
®

Keychain

Starfield Clasg System Roots

Starfield Root

Root key store

System Roots

Category
All ltems
Passwords
Secure Notes
My Certificates

Starfield Servi
StartCom Cer
StartCom Cer
StartCom Cer
Swisscom Rox¢
Swisscom Ro(
Swisscom Rox¢
SwissSign CA
SwissSign Go
SwissSign Pl

Must not contain
malicious certificates

Every device has one

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Keys SwissSign Silver CA - G2 certificate
Symantec Class 1 Public Primary Certification Authority - G4 certificate

Symantec Class 1 Public Primary Certification Authority - G6 certificate

Oct 25, 2036, 4:32:46 AM System Roots
Jan 18, 2038, 6:59:59 PM System Roots
Dec 1, 2037, 6:59:59 PM System Roots
Jan 18, 2038, 6:59:59 PM System Roots
Dec 1, 2037, 6:59:59 PM System Roots
Dec 1, 2037, 6:59:59 PM System Roots
Dec 1, 2037, 6:59:59 PM System Roots
Dec 6, 2031, 6:10:57 AM System Roots
Oct 1, 2033, 7:59:59 PM System Roots
Oct 1, 2033, 7:59:59 PM System Roots
Dec 31, 2025, 5:59:59 PM System Roots
Dec 31, 2025, 5:59:59 PM System Roots
Dec 31, 2025, 5:59:59 PM System Roots
Dec 31, 2025, 5:59:59 PM System Roots

Dec 31, 2030, 5:59:59 PM System Roots
Ner 21 2N2Q0 A-RQ-5Q PM Qvetem Rnnte

Certificates

Symantec Class 2 Public Primary Certification Authority - G4 certificate
Symantec Class 2 Public Primary Certification Authority - G6 certificate
Symantec Class 3 Public Primary Certification Authority - G4 certificate
Symantec Class 3 Public Primary Certification Authority - G6 certificate
SZAFIR ROOT CA certificate
T-TeleSec GlobalRoot Class 2 certificate
T-TeleSec GlobalRoot Class 3 certificate
TC TrustCenter Class 2 CA |l certificate
TC TrustCenter Class 3 CA |l certificate
TC TrustCenter Class 4 CA | certificate
TC TrustCenter Universal CA | certificate

TC TrustCenter Universal CA I certificate
TC TriietCanter | Inivereal CA |l rartificate
i Copy 210 items

35

Public Key Infrastructures (PKls)

How can users truly know with whom they are communicating!?

- Website

Gertdfrcale

@ Certificate Authority

s

31

Certificate revocation

What happens when a certificate is no longer valid?

4

Attacker

Perlodlcally
pull / query .

(CRL) (OCSP)

Certificate
Revocation

32

Certificate revocation

e Certificate Revocation List
e Pull

* Online Certificate Status Protocol
OCSP
* Query

CRL

33

N

9

Certificate revocation
is a critical part of any PKI

Administrators must revoke and reissue
as quickly as possible

Browsers/OSes should obtain revocations
as quickly as possible

34

Administrators must revoke and reissue
as quickly as possible

Analysis of SSL certificate reissues and revocations in the wake of Heartbleed

Liang Zhang, David Choffnes, Tudor Dumitras, Dave Levin,
Alan Mislove, Aaron Schulman, Christo Wilson

ACM IMC 2014

35

Heartbleed

uhi" 2

uhi"

36

Heartbleed

uhi"

uhi"

< lé6

Potentially reveals user data and private keys

Heartbleed exploits were undetectable

37

Why study Heartbleed!?
Publicly announced

@ Patched @ Revoked @ Reissued

How quickly and thoroughly do administrators act?

38

Rapid/
data

22M certs
(~1/wk for 6mos)

Dataset

2.8M certs

Alexa
Top-1M

filter validate

CAs

9k certs

* Download CRLs
* Detect vulnerability

lll
*

:» ldentify Heartbleed-induced
. reissues & revocations

lll

Leaf Set

628k certs
| 65k domains

39

Fraction of Domains
Vulnerable to Heartbleed

Prevalence and patch rates

0.6 -

0.5
0.4

0.3 -
0.2 -

0.1

Was ever vulnerable
- Still vulnerable after 3 weeks

\’\N\‘V—W'WV T —ANTN NS

0 2{0[0] ¢ 400k 600k 800k 1M
Alexa Site Rank (bins of 1000)

Patching rates are mostly positive

Only ~7% had not patched within 3 weeks

40

How quickly were certs revoked!?

0

a
S 1000 -
=
8 800 -
5
2 600 -
© 400 -
2
€ 200 -
-
2

/\4 Weekends

III

03/01 03/08 03/15 03/22 03/29 04/05 04/12 04/19 04/26

Date

Reaction ramps up quickly

Security takes the weekends off

41

Frac. of Vulnerable Certs

not Revoked/Reissued

Certificate update rates

3 wks

1 -
0.95 -
0.9

Not revoked

0.85 -
0.8 -
0.75 -
0.7 -
0.65 -
0.6 —

Similar pattern to patches:

Date

04/07 04/21 05/05 0519 06/02 06/16 06/30 07/14 07/28

Exponential drop-off, then levels out

After 3 weeks:

Revoked

Reissued

42

Fraction of New Certificates
Reissued with the Same Key

Reissue = New key?

0.6 - g
0.5 - :
0.4 -
0.3 -
0.2 -

0.1 - All reissues ———
5 Heartbleed-induced reissues —«—

11/2013 12/2013 01/2014 02/2014 03/2014 04/2014 05/2014
Date of Birth

Reissuing the same key is common practice
4.1% Heartbleed-induced

CDF

0.8 -

0.6

0.4 -

0.2 -

Can we wait for expiration!?

Vulnerable but not revoked

~ ~8% of vulnerable
~ certs still unexpired

~40% did not
expire after
~_one year

0 1 2 3 4 5 6

Years of Remaining Validity

We may be dealing with Heartbleed for years

44

N

9

Certificate revocation
is a critical part of any PKI

Administrators must revoke and reissue
as quickly as possible

Browsers/OSes should obtain revocations
as quickly as possible

45

An End-to-End Measurement of
Certificate Revocation in the Web’s PKI

Yabing L|u Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,
g ABrowkesshddesishioal dloistaivvikewocations

as quickly as possible

ACM IMC 2015

46

Security is an economic concern

6 Browser

Revoke d‘?\‘

@ Certificate Authority

Browsers face tension between security and page load times

CAs face tension between security and bandwidth costs

47

OCSP Stapling

e Browser e« Website

O e/‘gyfcaf@/

A0

@ Certificate Authority

P4 P4 FAFRS P9
P4 P4 FAPS F.S

But OCSP Stapling rarely activated by admins:
Our scan: 3% of normal certs; 2% of EV certs

48

Testing browser behavior

Revocation
protocols
Availability of
revocation info
Chain
lengths

* Browsers should support all major protocols

* CRLs, OCSP, OCSP stapling

* Browsers should reject certs they cannot check
* E.g.,because the OCSP server is down

* Browsers should reject a cert if any on the chain fail
* Leaf, intermediate(s), root

gy

a" V"
Intermediate | ... | Intermediate |- \

®

Leaf

49

Test harness

Implemented 192 tests using fake root certificate + Javascript
* Unique DNS name, cert chain, CRL/OCSP responder, ...

L] 2 @ O ssl-research.ccs.neu.edu/test.htm

Needham line MIT Coeus Login... NEUVPN HR Concur News v United Airli...erTalk Forums

SSL Research at Northeastern, University of Maryland, and Stanford

OCSP Stapling Revocations
EV Certificates

EV certificate, O intermediates, leaf revoked (test285)
EV certificate, O intermediates, none revoked (test284)
EV certificate, 1 intermediate, leaf revoked (test287)
EV certificate, 1 intermediate, none revoked (test286)
EV certificate, 2 intermediates, leaf revoked (test289)
EV certificate, 2 intermediates, none revoked (test288)
EV certificate, 3 intermediates, leaf revoked (test291)
EV certificate, 3 intermediates, none revoked (test290)

X
v
X
v
X
v
X
v

50

EV Certificates

More thorough vetting process of CAs and clients

Website
Vel &
A

. Vetting

® Certificate Authority ‘x’

The owner of
is indeed BoA ®)

51

Results across all browsers

()

é,% € Mobile Browsers

o7

——

CRL
Revoked
Unavailable

Revoked
Unavailable

Revoked
Unavailable

OCSP
Revoked

Unavailable

Revoked
Int. 2+ Unavailable

Leaf Revoked
Unavailable

Int. 1

OCSP Stapling
Request OCSP Staple
Respect Revoked Staple

v/ Passes test EV Passes for EV certs A Pops up alert to user
Fails test I Ignores OCSP Staple L/W Passes on Linux/Win.

Results across all browsers

CRL
Revoked
Unavailable

Revoked
Unavailable

Revoked
Unavailable

OCSP
Revoked
Unavailable

Revoked
Unavailable

Revoked
Unavailable

Int. 1
Int. 2+
Leaf

OCSP Stapling
Request OCSP Staple
Respect Revoked Staple

v/ Passes test
Fails test

Desktop Browsers

Chrome 42 Firefox Opera
OS X Win. Linux 35-37 12.17 28.0

v
v

X

x N XN NS

x N XN S

<

Safari
68

N XN NS

N XN XN

Mobile Browsers
IE 10S Andr. 4.1-5.1 1E

7-9 10-11 68 Stock Chrome 8.0

x N XN NS
;X WX WX X
;X W, X WX X
W ;X W X W X
;X WX WX X

x N XN NS
X WX WX X
I WX WX X
WX WX WX X
I WX WX X

ANAN

Browser developers are not
doing what the PKI needs them to do

EV Passes for EV certs

|

lgnores OCSP Staple

A Pops up alert to user
L/ W Passes on Linux/Win.

53

P N

9

Certificate revocation
is a critical part of any PKI

Administrators must revoke and reissue
as quickly as possible

Browsers/OSes should obtain revocations
as quickly as possible

54

Certificate revocation
is a critical part of any PKI

Administrators must revoke and reissue
as quickly as possible

Browsers/OSes should obtain revocations
as quickly as possible

8% CDNs should... what are they doing here?

55

“ CDNs should... what are they doing here?

Measurement and Analysis of
Private Key Sharing in the HT TPS Ecosystem

Frank Cangialosi, Taejoong Chung, David Choffnes,
Dave Levin, Bruce M. Maggs, Alan Mislove, Christo Wilson

CCS 2016

56

Public Key Infrastructures (PKls)

How can users truly know with whom they are communicating!?

The only one who knows Alice’s private key is Alice

6 Browser | | Website
Verification
Revocation .
. Vetting
checking
@ Certificate Authority

s

57

The PKI Iin today’s web

58

The PKI Iin today’s web

59

Third-party Hosting Providers

» Content delivery networks
» Web hosting services

» Cloud providers
Varying levels of involvement

But all trusted to deliver content

60

The PKI Iin today’s web

61

Third-party hosting providers
know their customers’ private keys

62

How are keys shared?

Delegate

&) JAZZERCISE —_

/G
Vel &

63

Subject Alternate Name (SAN) Lists

Lol GeoTrust Global CA
L [Z] Google Internet Authority G2
& B *google.com

. Multiple names for the
same organization

Subject Alternative Name (2.5.29.17)
NO

* google.com

* android.com

* appengine.google.com
* cloud.google.com

* google-analytics.com
* google.ca

* google.cl

* google.co.in

* google.co.jp
*.google.co.uk

* google.com.ar

* google.com.au
*.google.com.br

* google.com.co

* google.com.mx

* google.com.tr

* google.com.vn

* google.de

* google.es

* google.fr

* google.hu

* google.it

* google.n|

* google.pl

* google.pt

* googleadapis.com

* googleapis.cn

[PP [P, ——

64

Subject Alternate Name (SAN) Lists

L. GlobalSign Root CA
5 [GlobalSign CloudSSL CA - SHA256 - G3

- Multiple names for the
same organization

Subject Alternative Name (2.5.29.17)
NO

incapsula.com

* anticagelateriadelcorso.at

* au.apac.boservices.dolce-gusto.com
*avena.de

*awcwire.com

* baciperugina.com ° Diff.erent Organizations
Practice:
.berlitzvirtualclassroom.com.co I u m P e d togeth e r

* bestforpets.net.au

* bitflyer.jp

*.ciniminis-lickorbite.com

* cybertechisrael.com

* dianesbeachwear.com

* dolce-gusto.kz

* eibtrade.com
*fb-special-offers.atlantisbahamasappcms.com

*fseaonline.org

* giftedmovement.com.ph
*.goarch.org C . I ° C t'f‘ t
* quiabolso.com.br rUIse- Iner er I ICa e

* jyibeslenmutluyasa.com

* jazzercise.com o

Who gets the private key?
* jumia.com.gh

* kashi.com

*kwé4rent.com

etz Who manages it?

65

CDF

How prevalent is key sharing?

1 S—

Who? —

0.8 76.5%
. share

. at least
04 1 key
0.2 ‘=

23.5% Self-hosted Organizations
0
0 1 10 10° 10° 10° 10°

Number of Third-Party Hosting Providers Used

60

Fraction of Domains Hosted

on Third-party Providers

Who shares?

At least one key shared

0.8 43.2% (of Top 10k) All keys shared

share at least one
0.6 /

WAL

0o «— 22.4% share all

0
0 200k Z10]0] 4 600k 800k

Alexa Site Rank (bins of 10,000)

Key sharing iIs common across the Internet

1™

6/

Does key sharing make enticing attack targets?

1

O
oY
_s 3 0.8
e
E " 06 EEEssEEsEEEEEEEEEEEE 600/0 of Top 1K, same provider
b E. =
=3 0.4 1S
Sp
E-E 0. Alexa Top 1K —
== - Alexa Top 1m
& 8 All Domains

0

10" 10 10° 10° 10 10° 10°

Number of Hosting Providers Compromised

Popular hosting services are prime targets for attack

68

POOR CERTIFICATE MANAGEMENT

Websites aren’t properly revoking their certificates
Browsers aren’t properly checking for revocations

Websites aren’t keeping their secret keys secret

Why?

CAs have incentive to introduce disincentives (bandwidth costs)
Websites have disincentive to do the right thing (CAs charge; key management hard)

Browsers have a disincentive to do the right thing (page load times)

69

