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DIFFIE HELLMAN KEY EXCHANGE
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HIGH-LEVEL REVIEW OF MODULAR ARITHMETIC
x mod N

Given x and g, it is efficient to compute 
gx mod N

Given g and gx, it is efficient to compute x 
(simply take logg gx)

Given g and gx mod N it is infeasible to compute x 
Discrete log problem

g is a generator of mod N if 
{1, 2, …, N-1} = {g0 mod N, g1 mod N, …, gN-2 mod N}

N=5, g=3 
30 mod 5 = 1     31 mod 5 = 3     32 mod 5 = 4     33 mod 5 = 2
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DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

ga mod N

a
ga mod N

ga mod N

Pick random bgb mod N

b
gb mod N

gb mod N

Compute (gb mod N)a = gab mod N Compute (ga mod N)b = gab mod N

Shared secret: This is the key 5



DIFFIE-HELLMAN KEY EXCHANGE
g N
ga mod N
gb mod N

Given g and gx mod N it is infeasible to compute x 
Discrete log problem

gab mod N

ga mod N gb mod N* = ga+b mod N
Note that just multiplying ga and gb won’t suffice:

Key property: 
An eavesdropper cannot infer the shared secret (gab). 

But what about active intermediaries?
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MAN-IN-THE-MIDDLE (MITM) ATTACKS

ga mod N
Pick random b

gb mod N

The attacker can interpose between the two communicating parties 
and insert, delete, and modify messages.

gx mod N
Pick random a Pick random x

thinks he is talking to

thinks he is talking to

gx mod N

gbx mod N

thinks this is his 
    shared key with

gax mod N

thinks this is his 
    shared key with

The attacker can now eavesdrop on the conversation. 
Key property: Diffie-Hellman is not resilient to a MITM attack 7



PUBLIC KEY CRYPTOGRAPHY

TO FIX THIS PROBLEM WE NEED…
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Shortcomings of symmetric key

K K

One-to-many: 
O(N) key 

exchanges

All-to-all: 
O(N2) key 

exchanges

Establishing a pairwise key 
requires a key exchange, 
which requires both parties  
to be online

File downloads Email / chat

Issue #1: Requires pairwise key exchanges
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Shortcomings of symmetric key

K K

One-to-many: 
O(N) key 

exchanges

Establishing a pairwise key 
requires a key exchange, 
which requires both parties  
to be online

File downloads

Issue #2: Parties must be online

Blue user uploads a 
document, then goes 
offline (e.g., forever)

Later, a yellow user wants 
to get a copy; how can 
it know the copy is really 
from the blue user? 10



Shortcomings of symmetric key

K K

Establishing a pairwise key 
requires a key exchange, 
which requires both parties  
to be online

Issue #3: How do you know to whom you’re talking?

Diffie-Hellman is resilient to eavesdropping, 
but not tampering

K K K1 K1 K2K2

vs
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A protocol that solves this with trust
Trent: A trusted third party

Alice Bob

KAT

KAT KBT

KBT

1. Everybody establishes a pairwise key with Trent 
Good: O(N) key exchanges

2. Trent validates each user’s identity; includes in message 
Good: Authenticated communication

E(KAT, msg || to:Bob) E(KBT, msg || from:Alice)

Bad: All messages get sent through Trent 12



What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

E(KAT, msg || to:Bob) E(KBT, msg || from:Alice)

Just as “secure” meant nothing without an attack model, 
“trusted” means nothing without a trust model

(Oh wow, “msg”!)

1. Do not read messages
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What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

E(KAT, msg || to:Bob) E(KBT, msg’ || from:Alice)

Just as “secure” meant nothing without an attack model, 
“trusted” means nothing without a trust model

1. Do not read messages
2. Do not alter messages
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What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

E(KBT, msg’ || from:Alice)

Just as “secure” meant nothing without an attack model, 
“trusted” means nothing without a trust model

1. Do not read messages
2. Do not alter messages
3. Do not forge messages

…nothing…
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What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

Just as “secure” meant nothing without an attack model, 
“trusted” means nothing without a trust model

1. Do not read messages
2. Do not alter messages
3. Do not forge messages

4. Do not go offline

E(KAT, msg || to:Bob) ….
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Public key encryption

Key generation G
• Inputs 

• Source of randomness 
• Maximum key length L 

• Outputs: a key pair 
• PK = public key 
• SK = secret key

A public key encryption scheme comprises three algorithms

This is a randomized algorithm
(nondeterministic output)

PK and SK are intrinsically bound together: 
for a given PK, there is a single corresponding SK 

Difficult to infer SK from PK
Only one person should know SK; 

PK should be public to all

Example: RSA’s public keys are a pair: (exponent, modulus) 17



Public key encryption

Encryption E(PK, msg)
• Inputs 

• Public key PK 
• Message msg of 

fixed size 
• Outputs: a cipher text c 

same size as msg

A public key encryption scheme comprises three algorithms

This is a randomized algorithm
(vanilla RSA is deterministic; 

in practice, RSA-PKCS is used 
instead, which adds a nonce 

to the message)

Anyone who knows Alice’s PK can encrypt a message to her…

PK a.k.a. “Encryption key”
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Public key encryption

Decryption D(SK, c)
• Inputs 

• Secret key SK 
• Cipher text c 

• Outputs: original msg 

A public key encryption scheme comprises three algorithms

This is a deterministic algorithm 
Should always return the 

original message

…but only Alice can decrypt that message
19



Public key encryption

Decryption D(SK, c)
→ original msg

A public key encryption scheme comprises three algorithms

Key generation G
→ PK = public key 
→ SK = secret key

Encryption E(PK, m)
→ cipher text c

Correctness
D(SK, E(PK, m)) = m

Security
E(PK, m) should appear random 
(small change to (PK,m) leads 

to large changes to c)

E() should approximate a one-way 
trapdoor function: cannot invert 

without access to SK
20



Protocols with public key encryption

Symmetric key Generate public/private 
key pair (PK,SK)

Annouce PK publicly 
(on website, in newspaper, …)

Decrypt D(SK, c) = msg

Obtain PK

Send c = E(PK, msg)

All-to-all: 
O(N2) key 

exchanges

Email / chat

O(N) keys in total

Goal: deliver a confidential message
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Overcoming fixed message sizes

Encryption E(PK, msg)
• Inputs 

• Public key PK 
• Message msg of 

fixed size 
• Outputs: a cipher text c 

same size as msg

Like block ciphers,  
but there are not 
“modes” of public 
key encryption

Public key operations are slooooow!

Symmetric key operations are fast
22



Hybrid encryption
Generate public/private key 
pair (PK,SK); publicize PK

Decrypt D(SK, cK) = K
Decrypt d(K, cmsg) = msg

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

Now throw away K

Symm key

Public key

Symm key

Public key

23



Hybrid encryption

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

The easy key distribution of public key

The speed and arbitrary message length of symmetric key
24



Protocols with public key cryptography

One-to-many: 
O(N) key 

exchanges

File downloads

Symmetric key

Goal: determine from whom a message came

Ideally, a user (blue) could post a 
message (e.g., sensitive documents 

or a kernel update), and then 
go offline

And downloaders (yellow) could 
subsequently infer the message’s 
authenticity without having to have 

already established a pairwise 
key with the publisher
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Digital signatures

Signing function Sgn(SK, m)
• Inputs 

• Secret key SK 
• Fixed-length message 

• Outputs: a signature s

A digital signature scheme comprises two algorithms

This is a randomized algorithm
(nondeterministic output)

SK a.k.a. “Signing key”

Verification function Vfy(PK, m, s)
• Inputs 

• Public key PK 
• Message and signature 

• Outputs: Yes/No if valid (m,s)

Deterministic algorithm

Only one person can sign with 
a given (PK,SK) pair

Anyone with the PK  
can verify
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Digital signatures

Signing Sgn(SK, m)
 → a signature s

A digital signature scheme comprises two algorithms

Correctness
Vfy(PK, m, Sgn(SK, m)) = Yes

Verification Vfy(PK, m, s)
→ Yes/No if valid (m,s)

Security
Same as with MACs: even after 
a chosen plaintext attack, the 

attacker cannot demonstrate an 
existential forgery
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Protocols with digital signatures

One-to-many: 
O(N) key 

exchanges

File downloads

Symmetric key Generate public/private 
key pair (PK,SK)

Annouce PK publicly 
(on website, in newspaper, …)

Goal: determine from whom a message came

Compute sig = Sgn(SK, msg)

Publish msg || sig

Obtain PK, msg || sig
Vfy(PK, msg, sig)

can now go offline!
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Digital signature properties

Authenticity Bob can prove that a message 
signed by Alice is truly from Alice 
(even without a pairwise key)

Integrity Bob can prove that no one has 
tampered with a signed message

Non-repudiation
Once Alice signs a message, she 
cannot subsequently claim she 
did not sign that message
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Do handwritten signatures at the end of a 
letter have these properties?

Authenticity Bob can prove that a message 
signed by Alice is truly from Alice 
(even without a pairwise key)

Integrity Bob can prove that no one has 
tampered with a signed message

Non-repudiation
Once Alice signs a message, she 
cannot subsequently claim she 
did not sign that message

Would require unforgeable  
handwritten signatures. This is the  
one property they sort of get

Would require having a signature  
that depended on each part in 
the body of the letter

Would require both of the above  
(unforgeable signature that 
depends on each part of letter)
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PUBLIC KEY INFRASTRUCTURE
PUTTING IT ALL TOGETHER:

31



Public Key Infrastructures (PKIs)

WebsiteBrowser

Certificate

Certificate

 
is indeed BoA

The owner of      
Certificate Authority

Vetting

Certificate

How can users truly know with whom they are communicating?

32



Public Key Infrastructures (PKIs)

Browser

Certificate Authority

Website

Certificate

How can users truly know with whom they are communicating?

Certificate

33



Browser

Verifying certificates

Certificate
“I’m because says so”

Certificate
“I’m because says so”

“I’m because I say so!”
Certificate✓

✓

✓

Root key store
Every device has one 

 
Must not contain 

malicious certificates

34



Public Key Infrastructures (PKIs)

Browser

Certificate Authority

Website

Certificate

How can users truly know with whom they are communicating?

Certificate

✓

35



TLS
PUTTING IT ALL TOGETHER:

36



TLS/SSL
• TLS (Transport Layer Security) 

• A suite of protocols to provide secure communication 
- Confidentiality by applying block & stream ciphers 
- Integrity with MACs 
- Authenticity with certificates 

• Predecessor: SSL (secure sockets layer) 
- TLS was proposed as an upgrade 
- All versions of SSL are considered insecure (recently, the POODLE

—padding oracle—attack)

Host A Host B
TCP/IP

TLS or SSL

TCP/IP: Host A and B can 
send packets to one another

TLS/SSL: operate “over” TCP/IP to 
ensure security/authenticity 37



TLS/SSL protocol (high level)
Browser 

(initiates connection)
Server 

(authenticates itself)

~~~~~~~Switch to negotiated cipher~~~~~~~
Data transmission

Version, crypto options, nonce
Client hello

Version, crypto options, nonce, 
Signed certificate containing 
the server’s public key PKs

Server hello + server cert (PKs)

Server key exchange (when using DH)

PreMaster secret encrypted with server’s PKs
Client key exchangeCompute 

K based 
on nonces & 
PreMaster

Compute 
K based 

on nonces & 
PreMaster
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(Credit: CloudFlare)

Only the server with the 
private key should be able 
to decrypt
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(Credit: CloudFlare)

Only the server with the 
private key should be able 
to sign
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AUTHENTICATED DIFFIE-HELLMAN

Both of these serve as a “challenge/response” protocol: 

The client is “challenging” the server to prove that it knows the secret key 
corresponding to the public key in the certificate

The server is providing a “zero-knowledge proof”: 

The server proves that it knows the secret key 
without having to reveal the secret key itself

The key property that makes this work: 
The only person who knows the secret key is the entity in the certificate 41



Certificate revocation

Browser

Certificate

Certificate Authority

Website

Certificate

Certificate✗ Certificate✗
Certificate✗ Certificate✗

Certificate✗
Certificate✗

What happens when a certificate is no longer valid?

Certificate✗

Attacker

Certificate

Certificate

Please 
revoke

Certificate 
Revocation

Periodically
pull / query
   (CRL)        (OCSP)

✗
✗
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Certificate revocation 
is a critical part of any PKI

Administrators must revoke and reissue 
as quickly as possible

Browsers/OSes should obtain revocations 
as quickly as possible
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STORING PASSWORDS
HASH FUNCTION APPLICATION
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THREAT MODEL

• Attacker can eventually gain access to the hard drive where 
(some version of) the passwords are stored long-term 

• But attacker does not gain access to memory (where raw 
passwords might be stored while processing) 

• Attacker gets as much prep time as they want, but not 
unlimited amounts of storage 

• Goal of the attacker: recover passwords within some window 
of time
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FAILED IDEA #1: STORE THE PASSWORDS
username : password

• Attacker can eventually gain access to the hard drive where 
(some version of) the passwords are stored long-term

The attacker trivially gains access to the passwords
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FAILED IDEA #2: STORE ENCRYPTED PASSWORDS

username : E(K, IV, password), IV

• Attacker can eventually gain access to the hard drive where 
(some version of) the passwords are stored long-term

This can work if the key is not stored on the hard drive 

But if the key is stored on the hard drive, then it is trivial for 
the attacker to recover
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FAILED IDEA #3: STORE HASHED PASSWORDS
username : H(password)

• Attacker can eventually gain access to the hard drive where 
(some version of) the passwords are stored long-term

Problem 1: many users use 
the same password 

Most common H(password) = 
most common password

Problem 2: attacker gets prep 
time 

They can precompute hashes 

(H(123456), 
H(password), ...)

More compact representation 
of this is a rainbow table
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RAINBOW TABLES
username : H(password)

• Goal: compact storage of hashes of many passwords

Hash "Reduction"

A "reduction" function is simply a function that takes a hash's output as its 
input and outputs a potential input (in this case, a 6-letter password)

Only store the beginning of this chain (aaaaaa) and the end (kiebgt)

kiegbt = R(H(R(H(aaaaaa))))
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RAINBOW TABLES
username : H(password)

Only store the beginning of this chain (aaaaaa) and the end (kiebgt)

Given H(password)

x = R(H(password)) 

Is x one of the end values (e.g., kiebgt)? 

If so, then the password must have been one of the passwords in the chain 

If not, then y = H(x); x = R(y) and try again 

Give up after some maximum number of tries

Do this for many initial seed inputs (bbbbbb, password, 123456, etc.)
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FAILED IDEA #4: STORE SALTED HASHED PASSWORDS
username : H(salt | password), salt

• Remember: small changes to the input leads to large, 
unpredictable changes in the output

Good news: Rainbow tables don't work anymore 

Bad news: Can still try a dictionary attack against a given user because hash 
functions are very efficient to compute

Ideally we would have a very slow hash function 

How can we create a slow hash function out of a fast hash function?
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HOW PASSWORDS ARE STORED
username : Hk(salt | password), salt

• Hk = H(H(H(...H(x)...))) 
• Compute the hash of the hash of the hash of the...

H is a fast hash function; Hk is a slow one!

This is how passwords are stored in Linux today

Recall: Given H(password), it is infeasible to recover password, 

So what does it mean if a website can email you your password?
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