
MACs, PRNGs and Diffie-Hellman Key Exchange

CMSC414 Computer and
Network Security

Apr 2, 2024

Yizheng Chen | University of Maryland

surrealyz.github.io

Credits: original slides from instructors and staff from CS161 at UC Berkeley. Blue slides will not be tested.

Last Time: Hashes

● Map arbitrary-length input to fixed-length output

● Output is deterministic and unpredictable

● Security properties
○ One way: Given an output y, it is infeasible to find any input x such that H(x) = y.
○ Collision resistant: It is infeasible to find another any pair of inputs x' ≠ x such that H(x) = H(x’).
○ Random/unpredictability, no predictable patterns for how changing the input affects the output

● Some hashes are vulnerable to length extension attacks

● Hashes don’t provide integrity (unless you can publish the hash securely)
2

Length Extension Attacks

● Length extension attack: Given H(x) and the length of x, but not x, an
attacker can create H(x || m) for any m of the attacker’s choosing
○ Note: This doesn’t violate any property of hash functions but is undesirable in some

circumstances
● SHA-256 (256-bit version of SHA-2) is vulnerable
● SHA-3 is not vulnerable

3

Message Authentication Codes (MACs)

4

Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads
● Block ciphers with chaining

modes (e.g. AES-CBC)

● RSA encryption
● ElGamal encryption

Integrity,
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA
signatures)

● Hash functions
● Pseudorandom number generators
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates)
● Password management

5

How to Provide Integrity

● Reminder: We’re still in the symmetric-key setting
○ Assume that Alice and Bob share a secret key, and attackers don’t know the key

● We want to attach some piece of information to convince Bob that Alice sent
this message, even if Mallory is intercepting the message on the network, or
to detect if Mallory tampered with the message
○ This piece of information can only be generated by someone with the key

6

MACs: Usage

● Alice wants to send M to Bob, but doesn’t want Mallory to tamper with it

● Alice sends M and T = MAC(K, M) to Bob

● Bob recomputes MAC(K, M) and checks that it matches T

● If the MACs match, Bob is confident the message has not been tampered with (integrity)

7

Message

Key

MAC Message

Key

Verify Yes/No

Alice BobInsecure Channel

T

MACs: Definition

● Two parts:
○ KeyGen() → K: Generate a key K
○ MAC(K, M) → T: Generate a tag T for the message M using key K

■ Inputs: A secret key and an arbitrary-length message
■ Output: A fixed-length tag on the message

● Properties
○ Correctness: Determinism

■ Note: Some more complicated MAC schemes have an additional Verify(K, M, T) function
that don’t require determinism, but this is out of scope

○ Efficiency: Computing a MAC should be efficient
○ Security: EU-CPA (existentially unforgeable under chosen plaintext attack)

8

Defining Integrity: EU-CPA

● A secure MAC is existentially unforgeable: without the key, an attacker
cannot create a valid tag on a message
○ Mallory cannot generate MAC(K, M') without K
○ Mallory cannot find any M' ≠ M such that MAC(K, M') = MAC(K, M)

● Formally defined by a security game: existential unforgeability under chosen-
plaintext attack, or EU-CPA

● MACs should be unforgeable under chosen plaintext attack
○ Intuition: Like IND-CPA, but for integrity and authenticity
○ Even if Mallory can trick Alice into creating MACs for messages that Mallory chooses, Mallory

cannot create a valid MAC on a message that she hasn't seen before

9

10

Defining Integrity: EU-CPA

1. Mallory may send messages to Alice and
receive their tags

2. Eventually, Mallory creates a message-tag
pair (M', T')
○ M' cannot be a message that Mallory requested

earlier
○ If T' is a valid tag for M', then Mallory wins.

Otherwise, she loses.
3. A scheme is EU-CPA secure if for all

polynomial time adversaries, the probability
of winning is 0 or negligible

M

MAC(K, M)
(repeat)

Alice (challenger)Mallory (adversary)

Output (M', T')

Keygen():
K

Example: NMAC

● Can we use secure cryptographic hashes to build a secure MAC?
○ Intuition: Hash output is unpredictable and looks random, so let’s hash the key and the

message together
● KeyGen():

○ Output two random, n-bit keys K1 and K2, where n is the length of the hash output
● NMAC(K1, K2, M):

○ Output H(K1 || H(K2 || M))
● NMAC is EU-CPA secure if the two keys are different

○ Provably secure if the underlying hash function is secure
● Intuition: Using two hashes prevents a length extension attack

○ Otherwise, an attacker who sees a tag for M could generate a tag for M || M'

11

Example: HMAC

● Issues with NMAC:
○ Recall: NMAC(K1, K2, M) = H(K1 || H (K2 || M))
○ We need two different keys
○ NMAC requires the keys to be the same length as the hash output (n bits)

● HMAC(K, M):
○ Compute K' as a version of K that is the length of the hash output

■ If K is too short, pad K with 0’s to make it n bits (be careful with keys that are too short
and lack randomness)

■ If K is too long, hash it so it’s n bits
○ Output H((K' ⊕ opad) || H((K' ⊕ ipad) || M))

12

Example: HMAC

● HMAC(K, M):
○ Compute K' as a version of K that is the length of the hash output

■ If K is too short, pad K with 0’s to make it n bits (be careful with keys that are too short
and lack randomness)

■ If K is too long, hash it so it’s n bits
○ Output H((K' ⊕ opad) || H((K' ⊕ ipad) || M))

● Use K' to derive two different keys
○ opad (outer pad) is the hard-coded byte 0x5c repeated until it’s the same length as K'
○ ipad (inner pad) is the hard-coded byte 0x36 repeated until it’s the same length as K'
○ As long as opad and ipad are different, you’ll get two different keys
○ For paranoia, the designers chose two very different bit patterns, even though they

theoretically need only differ in one bit

13

HMAC Properties

● HMAC(K, M) = H((K' ⊕ opad) || H((K' ⊕ ipad) || M))

● HMAC is a hash function, so it has the properties of the underlying hash too
○ It is collision resistant
○ Given HMAC(K, M), an attacker can’t learn M
○ If the underlying hash is secure, HMAC doesn’t reveal M, but it is still deterministic

● You can’t verify a tag T if you don’t have K
○ The attacker can’t brute-force the message M without knowing K

14

Do MACs provide integrity?

● Do MACs provide integrity?
○ Yes. An attacker cannot tamper with the message without being detected

● Do MACs provide authenticity?
○ It depends on your threat model
○ If a message has a valid MAC, you can be sure it came from someone with the secret key, but

you can’t narrow it down to one person
○ If only two people have the secret key, MACs provide authenticity: it has a valid MAC, and it’s

not from me, so it must be from the other person

● Do MACs provide confidentiality?
○ MACs are deterministic ⇒ No IND-CPA security

○ MACs in general have no confidentiality guarantees; they can leak information about the
message 15

MACs: Summary

● Inputs: a secret key and a message

● Output: a tag on the message

● A secure MAC is unforgeable: Even if Mallory can trick Alice into creating
MACs for messages that Mallory chooses, Mallory cannot create a valid MAC
on a message that she hasn't seen before
○ Example: HMAC(K, M) = H((K' ⊕ opad) || H((K' ⊕ ipad) || M))

● MACs do not provide confidentiality

16

Authenticated Encryption

17

Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads
● Block ciphers with chaining

modes (e.g. AES-CBC)

● RSA encryption
● ElGamal encryption

Integrity,
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA
signatures)

● Hash functions
● Pseudorandom number generators
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates)
● Password management

18

Authenticated Encryption: Definition

● Authenticated encryption (AE): A scheme that simultaneously guarantees
confidentiality and integrity (and authenticity, depending on your threat model)
on a message

● Two ways of achieving authenticated encryption:
○ Combine schemes that provide confidentiality with schemes that provide integrity
○ Use a scheme that is designed to provide confidentiality and integrity

19

Combining Schemes: Let’s design it together

● You can use:
○ An IND-CPA encryption scheme (e.g. AES-CBC): Enc(K, M) and Dec(K, M)
○ An unforgeable MAC scheme (e.g. HMAC): MAC(K, M)

● First attempt: Alice sends Enc(K1, M) and MAC(K2, M)
○ Integrity? Yes, attacker can’t tamper with the MAC
○ Confidentiality? No, the MAC is not IND-CPA secure

● Idea: Let’s compute the MAC on the ciphertext instead of the plaintext:
Enc(K1, M) and MAC(k2, Enc(K1, M))
○ Integrity? Yes, attacker can’t tamper with the MAC
○ Confidentiality? Yes, the MAC might leak info about the ciphertext, but that’s okay

● Idea: Let’s encrypt the MAC too: Enc(K1, M || MAC(K2, M))
○ Integrity? Yes, attacker can’t tamper with the MAC
○ Confidentiality? Yes, everything is encrypted 20

Encrypt-then-MAC or MAC-then-Encrypt?

● Encrypt-then-MAC
○ First compute Enc(K1, M)
○ Then MAC the ciphertext: MAC(K2, Enc(K1, M))

● MAC-then-encrypt
○ First compute MAC(K2, M)
○ Then encrypt the message and the MAC together: Enc(K1, M || MAC(K2, M))

● Which is better?
○ In theory, both are IND-CPA and EU-CPA secure if applied properly
○ MAC-then-encrypt has a downside: You don’t know if tampering has occurred until after decrypting

■ Attacker can supply arbitrary tampered input, and you always have to decrypt it
■ Passing attacker-chosen input through the decryption function can cause side-channel leaks

● Always use encrypt-then-MAC because it’s more robust to mistakes
21

Key Reuse

● Key reuse problem: Using the same key in two different use cases
○ Note: Using the same key multiple times for the same use (e.g. computing HMACs on different

messages in the same context with the same key) is not key reuse problem

● Reusing keys can cause the underlying algorithms to interfere with each other
and affect security guarantees
○ Example: If you use a block-cipher-based MAC algorithm and a block cipher chaining mode,

the underlying block ciphers may no longer be secure
○ Thinking about these attacks is hard

22

Key Reuse

● Simplest solution: Do not reuse keys across schemes! One key per scheme
instance.

○ Encrypt a piece of data and MAC a piece of data?
■ Different use; different key

○ MAC one of Alice’s messages to Bob and MAC one of Bob’s messages to Alice?
■ Different use; different key

23

TLS 1.0 “Lucky 13” Attack

● TLS: A protocol for sending encrypted and authenticated messages over the
Internet (we’ll study it more in the networking unit)

● TLS 1.0 uses MAC-then-encrypt: Enc(K1, M || MAC(K2, M))
○ The encryption algorithm is AES-CBC

● The Lucky 13 attack abuses MAC-then-encrypt to read encrypted messages
○ Guess a byte of plaintext and change the ciphertext accordingly
○ The MAC will error, but the time it takes to error is different depending on if the guess is

correct
○ Attacker measures how long it takes to error in order to learn information about plaintext
○ TLS will send the message again if the MAC errors, so the attacker can guess repeatedly

● Takeaways
○ Side channel attack: The algorithm is proved secure, but poor implementation made it

vulnerable
○ Always encrypt-then-MAC

24

AEAD Encryption

● Second method for authenticated encryption: Use a scheme that is designed
to provide confidentiality, integrity, and authenticity

● Authenticated encryption with additional data (AEAD): An algorithm that
provides both confidentiality and integrity over the plaintext and integrity over
additional data
○ Additional data is usually context (e.g. memory address), so you can’t change the context

without breaking the MAC

● Great if used correctly: No more worrying about MAC-then-encrypt
○ If you use AEAD incorrectly, you lose both confidentiality and integrity/authentication
○ Example of correct usage: Using a crypto library with AEAD

25

Authenticated Encryption: Summary

● Authenticated encryption: A scheme that simultaneously guarantees
confidentiality and integrity (and authenticity) on a message

● First approach: Combine schemes that provide confidentiality with schemes
that provide integrity and authenticity
○ MAC-then-encrypt: Enc(K1, M || MAC(K2, M))
○ Encrypt-then-MAC: Enc(K1, M) || MAC(K2, Enc(K1, M))
○ Always use Encrypt-then-MAC because it's more robust to mistakes

● Second approach: Use AEAD encryption modes designed to provide
confidentiality, integrity, and authenticity
○ Drawback: Incorrectly using AEAD modes leads to losing both confidentiality and integrity/

authentication 26

Pseudorandom Number Generators (PRNGs)

27

Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads
● Block ciphers with chaining

modes (e.g. AES-CBC)

● RSA encryption
● ElGamal encryption

Integrity,
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA
signatures)

● Hash functions
● Pseudorandom number generators
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates)
● Password management

28

Randomness

● Randomness is essential for symmetric-key encryption
○ A random key
○ A random IV/nonce
○ …

● If an attacker can predict a random number, things can catastrophically fail

● How do we securely generate random numbers?

29

Entropy

● In cryptography, “random” usually means “random and unpredictable”

● Scenario
○ You want to generate a secret bitstring that the attacker can't guess
○ Toss a fair coin?
○ Find an unpredictable circuit on a CPU?
○ Measure the microsecond you pressed a key?

● Entropy: A measure of uncertainty
○ In other words, a measure of how unpredictable the outcomes are
○ High entropy = unpredictable outcomes = desirable in cryptography
○ The uniform distribution has the highest entropy (every outcome equally likely, e.g. fair coin

toss)
30

Pseudorandom Number Generators (PRNGs)

● True randomness is expensive and biased

● Pseudorandom number generator (PRNGs): An algorithm that uses a little bit of
true randomness to generate a lot of random-looking output
○ Also called deterministic random bit generators (DRBGs)

● Usage
○ Generate some expensive true randomness (e.g. noisy circuit on your CPU)
○ Use the true randomness as input to the PRNG
○ Generate random-looking numbers quickly and cheaply with the PRNG

● PRNGs are deterministic: Output is generated according to a set algorithm
○ However, for an attacker who can’t see the internal state, the output is computationally indistinguishable

from true randomness 31

PRNG: Definition

● A PRNG has two functions:
○ PRNG.Seed(randomness): Initializes the internal state using the entropy

■ Input: Some truly random bits
○ PRNG.Generate(m): Generate m pseudorandom bits

■ Input: A number m
■ Output: m pseudorandom bits
■ Updates the internal state as needed

Properties

○ Correctness: Deterministic
○ Efficiency: Efficient to generate pseudorandom bits
○ Security: Indistinguishability from random

32

PRNG: Security

● Can we design a PRNG that is truly random?

● A PRNG cannot be truly random
○ The output is deterministic given the initial seed
○ If the initial seed is s bits long, there are only 2s possible output sequences

● A secure PRNG is computationally indistinguishable from random to an attacker
○ Game: Present an attacker with a truly random sequence and a sequence outputted from a secure

PRNG
○ An attacker should not be able to determine which is which with probability > ½+negl

● Equivalence: An attacker cannot predict future output of the PRNG

33

Insecure PRNGs: OpenSSL PRNG bug

● What happens if we don’t use enough entropy?
● Debian OpenSSL CVE-2008-0166

○ Debian: A Linux distribution
○ OpenSSL: A cryptographic library
○ In “cleaning up” OpenSSL (Debian “bug” #363516), the author “fixed” how OpenSSL seeds

random numbers
○ The existing code caused Purify and Valgrind to complain about reading uninitialized memory
○ The cleanup caused the PRNG to only be seeded with the process ID
○ There are only 215 (32,768) possible process IDs, so the PRNG only has 15 bits of entropy

● Easy to deduce private keys generated with the PRNG
○ Set the PRNG to every possible starting state and generate a few private/public key pairs
○ See if the matching public key is anywhere on the Internet

34

Example construction of PRNG

● Using block cipher in CTR mode:
● If you want m random bits, and a block cipher with Ek has n bits, apply the

block cipher m/n times and concatenate the result:
● PRNG.Seed(K | IV);
● Generate(m) = Ek(IV|1) | Ek(IV| 2) | Ek(IV|3) … Ek(IV| ceil(m/n)),

○ | is concatenation

Randomness,
PRNG output

35

PRNGs: Summary

● True randomness requires sampling a physical process
○ Slow, expensive, and biased (low entropy)

● PRNG: An algorithm that uses a little bit of true randomness to generate a lot of
random-looking output
○ Seed(entropy): Initialize internal state
○ Generate(n): Generate n bits of pseudorandom output

● Security: computationally indistinguishable from truly random bits

● Example using AES in CTR mode

● Application: UUIDs
36

Stream Ciphers

● Another way to construct symmetric key encryption schemes
● Idea

○ A secure PRNG produces output that looks indistinguishable from random
○ An attacker who can’t see the internal PRNG state can’t learn any output
○ What if we used PRNG output as the key to a one-time pad?

● Stream cipher: A symmetric encryption algorithm that uses pseudorandom
bits as the key to a one-time pad

37

Diffie-Hellman Key Exchange

38

Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads
● Block ciphers with chaining

modes (e.g. AES-CBC)

● RSA encryption
● ElGamal encryption

Integrity,
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA
signatures)

● Hash functions
● Pseudorandom number generators
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates)
● Password management

39

Diffie-Hellman Key Exchange

Alice Mallory Bob

Generate a

Calculate ga mod p

Receive gb mod p

Calculate (gb)a mod p

Generate b

Calculate gb mod p

Receive ga mod p

Calculate (ga)b mod p

ga gb

a, ga, gb ⇒ gab b, ga, gb ⇒ gabga, gb ⇒ gab

Eve

Public: g, p

Shared symmetric key is gab

Secret
key

Public key

40

Discrete Log Problem and Diffie-Hellman Problem

● Assume everyone knows a large prime p (e.g. 2048 bits long) and a
generator g
○ Don’t worry about what a generator is

● Discrete logarithm problem (discrete log problem): Given g, p, ga mod p
for random a, it is computationally hard to find a

● Diffie-Hellman assumption: Given g, p, ga mod p, and gb mod p for random
a, b, no polynomial time attacker can distinguish between a random value R
and gab mod p.
○ Intuition: The best known algorithm is to first calculate a or b, …
○ Note: Multiplying the values doesn’t work, since you get ga+b mod p ≠ gab mod p

41

Discrete Log Problem and Diffie-Hellman Problem

For a random a, b, R:

g, p, ga mod p, gb mod p, gab mod p

~

g, p, ga mod p, gb mod p, R

42

Indistinguishable from the perspective of a polynomial time attacker

