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Last Time: Block Ciphers

● Encryption: input a k-bit key and n-bit plaintext, receive n-bit ciphertext 
● Decryption: input a k-bit key and n-bit ciphertext, receive n-bit plaintext 

● Correctness: when the key is fixed, EK(M) should be bijective 
● Security 

○ Without the key, EK(m) is computationally indistinguishable from a random permutation 
○ Brute-force attacks take astronomically long and are not possible 

● Efficiency: algorithms use XORs and bit-shifting (very fast) 

● Implementation: AES is the modern standard 
● Issues 

○ Not IND-CPA secure because they’re deterministic 
○ Can only encrypt n-bit messages 2



Block Cipher Modes of Operation: Summary

● ECB mode: Deterministic, so not IND-CPA secure 
● ECB stands for Electronic Code Book
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Recall: CBC Mode

● Cipher Block Chaining (CBC) mode 
● Ci = EK(Mi ⊕ Ci-1); C0 = IV 
● Enc(K, M):  

○ Split M in m plaintext blocks P1 … Pm each of size n  
○ Choose a random IV 
○ Compute and output (IV, C1, …, Cm) as the overall ciphertext
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Block Cipher Modes of Operation: Summary

● ECB mode: Deterministic, so not IND-CPA secure 

● CBC mode 
○ IND-CPA secure, assuming no IV reuse 
○ Encryption is not parallelizable 
○ Decryption is parallelizable 
○ Must pad plaintext to a multiple of the block size 
○ IV reuse leads to leaking the existence of identical blocks at the start of the message
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CTR Mode Scratchpad: Let’s design it together
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One-time pads are secure if we 
never reuse the key.

Key



CTR Mode Scratchpad: Let’s design it together
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If the attacker doesn’t know the key, the 
block cipher output looks random.

New idea: Can we use block ciphers to 
simulate a one-time pad?



CTR Mode Scratchpad: Let’s design it together
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If the attacker doesn’t 
know the key, all of these 

outputs look random.



CTR Mode Scratchpad: Let’s design it together
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Idea: Use this 
random-looking 

output as a one-time 
pad!

Remember one-time pads: 
XOR the pad with plaintext 

to get ciphertext



CTR Mode Scratchpad: Let’s design it together
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What do we use as input 
to the block cipher?



CTR Mode Scratchpad: Let’s design it together
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IND-CPA schemes 
need randomness, 

so let’s put a random 
nonce here!



CTR Mode Scratchpad: Let’s design it together
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The counter 
increments per block 
to ensure each block 

cipher output is 
different.



CTR (Counter) Mode

● Note: the random value is named the nonce here, but the idea is the same as 
the IV in CBC mode 

● Overall ciphertext is (Nonce, C1, …, Cm)
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CTR Mode

● Enc(K, M): 
○ Split M in plaintext blocks P1...Pm  (each of block size n) 

○ Choose random nonce 
○ Compute and output (Nonce, C1, …, Cm)
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How do you decrypt?



CTR Mode: Decryption

● Recall one-time pad: XOR with ciphertext to get plaintext 
● Note: we are only using block cipher encryption, not decryption
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CTR Mode: Decryption

● Dec(K, C): 
○ Parse C into (nonce, C1, …, Cm) 
○ Compute Pi by XORing Ci with output of Ek on nonce and counter 
○ Concatenate resulting plaintexts and output M = P1 … Pm
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CTR Mode: Efficiency

● Can encryption be parallelized? 
○ Yes 

● Can decryption be parallelized? 
○ Yes
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CTR Mode: Padding

● Do we need to pad messages? 
○ No! We can just cut off the parts of the XOR that are longer than the message.
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CTR Mode: Security

● AES-CTR is IND-CPA secure. With what assumption? 

● The nonce should never be reused (random generation helps here) 
○ And in general less than 2n/2 blocks are encrypted 

● What happens if you reuse the nonce? 

● Equivalent to reusing a key in a one-time pad 
○ Recall: Key reuse in a one-time pad is catastrophic: usually leaks enough information for an 

attacker to deduce the entire plaintext
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CTR Mode: Penguin
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CTR Mode: Penguin
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Encrypted with CTR, with random nonces



IVs and Nonces

● Initialization vector (IV): A random, but public, one-use value to introduce 
randomness into the algorithm 
○ For CTR mode, we say that you use a nonce (number used once), since the value has to be 

unique 

● Never reuse IVs 
○ In some algorithms, IV/nonce reuse leaks limited information (e.g. CBC) 
○ In some algorithms, IV/nonce reuse leads to catastrophic failure (e.g. CTR) 

● What if the IV/nonce is not reused, but the attacker can predict future values? 
● Solution: Randomly generate a new IV/nonce for every encryption
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Comparing Modes of Operation

● If you need high performance, which mode is better? 
○ CTR mode, because you can parallelize both encryption and decryption 

● If you’re paranoid about security, which mode is better? 
○ CBC mode is better 

● Theoretically, CBC and CTR mode are equally secure if used properly 
○ However, if used improperly (IV/nonce reuse), CBC only leaks partial information, and CTR 

fails catastrophically 
■ Consider human factors: Systems should be as secure as possible even when 

implemented incorrectly 
○ IV failures on CTR mode have resulted in multiple real-world security incidents!
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Other Modes of Operation

● Other modes exist besides CBC and CTR 
● Trade-offs: 

○ Do we need to pad messages? 
○ How robust is the scheme if we use it incorrectly? 
○ Can we parallelize encryption/decryption?
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CFB Mode

● Also IND-CPA 
● Try to analyze the trade-offs yourself: 

○ Do we need to pad messages? 
○ How robust is the scheme if we use it incorrectly? 
○ Can we parallelize encryption/decryption?
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CFB Mode

● Try to analyze the trade-offs yourself: 
○ Do we need to pad messages? 

■ No 
○ How robust is the scheme if we use it incorrectly? 

■ Similar effects as CBC mode, but a bit worse if you reuse the IV 
○ Can we parallelize encryption/decryption? 

■ Only decryption is parallelizable

26



Lack of Integrity and Authenticity

● Block ciphers are designed for confidentiality (IND-CPA) 
● If an attacker tampers with the ciphertext, we are not guaranteed to detect it 
● Remember Mallory: An active manipulator who wants to tamper with the 

message
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Lack of Integrity and Authenticity

● Consider CTR mode 
● What if Mallory tampers with the ciphertext using XOR?
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P a y M a l $ 1 0 0

0x50 0x61 0x79 0x20 0x4d 0x61 0x6c 0x20 0x24 0x31 0x30 0x30

0x8a 0xe3 0x5e 0xcf 0x3b 0x40 0x46 0x57 0xb8 0x69 0xd2 0x96

⊕

=

0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x58 0xe2 0xa6

M

EK(i)

C



Lack of Integrity and Authenticity

● Suppose Mallory knows the message M 
● How can Mallory change the M to say Pay Mal $900? 

● Change 0x31 to 0x39
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P a y M a l $ 1 0 0

0x50 0x61 0x79 0x20 0x4d 0x61 0x6c 0x20 0x24 0x31 0x30 0x30

0x8a 0xe3 0x5e 0xcf 0x3b 0x40 0x46 0x57 0xb8 0x69 0xd2 0x96

⊕

=

0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x58 0xe2 0xa6

M

EK(i)

C



Lack of Integrity and Authenticity
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Ci = Mi ⊕ Padi  0x58 = 0x31 ⊕ Padi Definition of CTR

Padi = Mi ⊕ Ci  Padi = 0x58 ⊕ 0x31 Solve for the ith byte of the pad

= 0x69

C'i = M'i ⊕ Padi  C'i = 0x39 ⊕ 0x69 Compute the changed ith byte

= 0x50

0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x58 0xe2 0xa6

0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x50 0xe2 0xa6

C

C’



● What happens when we decrypt C'? 
○ The message looks like “Pay Mal $900” now! 
○ Note: Mallory didn’t have to know the key; no integrity or authenticity for CTR mode!

Lack of Integrity and Authenticity
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0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x50 0xe2 0xa6

0x8a 0xe3 0x5e 0xcf 0x3b 0x40 0x46 0x57 0xb8 0x69 0xd2 0x96

⊕

=

C'

P' 0x50 0x61 0x79 0x20 0x4d 0x61 0x6c 0x20 0x24 0x39 0x30 0x30

P a y M a l $ 9 0 0

EK(i)



● What about CBC? 
○ Altering a bit of the ciphertext causes some blocks to become random gibberish 
○ However, Bob doesn’t know that Alice did not send random gibberish, so it still does not 

provide integrity or authenticity

Lack of Integrity and Authenticity
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Today: Cryptography Hashes and MACs

● Hashing 
○ Definition 
○ Security: one-way, second preimage 

resistant, collision resistant 
○ Examples 
○ Length extension attacks 
○ Application: Lowest-hash scheme 
○ Do hashes provide integrity? 

● MACs 
○ Definition 
○ Security: unforgeability 
○ Example: HMAC 
○ Do MACs provide integrity?
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● Authenticated Encryption 
○ Definition 
○ Key Reuse 
○ MAC-then-Encrypt or Encrypt-then-

MAC? 
○ AEAD Encryption Modes



Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads 
● Block ciphers with chaining 

modes (e.g. AES-CBC)

● RSA encryption 
● ElGamal encryption

Integrity, 
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA 
signatures)

● Hash functions 
● Pseudorandom number generators 
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates) 
● Password management
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Cryptographic Hash Function: Definition

● Hash function: H(M) 
○ Input: Arbitrary length message M 
○ Output: Fixed length, n-bit hash 
○ Sometimes written as {0, 1}* → {0, 1}n
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Cryptographic Hash Function: Properties

○ Correctness: Deterministic 
■ Hashing the same input always produces the same output 

○ Efficiency: Efficient to compute 

○ Security: One-way-ness (“preimage resistance”) 
○ Security: Collision-resistance 
○ Security: Random/unpredictability, no predictable patterns for how changing the input affects the 

output 
■ Changing 1 bit in the input causes the output to be completely different 
■ Also called “random oracle” assumption

36



Hash Function: Intuition

● A hash function provides a fixed-length “fingerprint” over a sequence of bits 

● Example: Document comparison 
○ If Alice and Bob both have a 1 GB document, they can both compute a hash over the 

document and (securely) communicate the hashes to each other 
○ If the hashes are the same, the files must be the same, since they have the same “fingerprint” 
○ If the hashes are different, the files must be different
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● Informal: Given an output y, it is infeasible to find any input x such that H(x) = y 

● Intuition: Here’s an output. Can you find an input that hashes to this output? 
○ Note: The adversary just needs to find any input, not necessarily the input that was actually used 

to generate the hash

Hash Function: One-way-ness or Preimage Resistance
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Hash Function: Collision Resistance

● Collision: Two different inputs with the same output 

● Collision resistance: It is infeasible to (i.e. no polynomial time attacker can) 
find any pair of inputs x' ≠ x such that H(x) = H(x') 

● Intuition: Can you find any two inputs that collide with the same hash output 
for any output?
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Hash Function: Examples

● MD5 
○ Output: 128 bits 
○ Security: Completely broken 

● SHA-1 
○ Output: 160 bits 
○ Security: Completely broken in 2017 
○ Was known to be weak before 2017, but still used sometimes 

● SHA-2 
○ Output: 256, 384, or 512 bits (sometimes labeled SHA-256, SHA-384, SHA-512) 
○ Not currently broken, but some variants are vulnerable to a length extension attack  
○ Current standard 

● SHA-3 (Keccak) 
○ Output: 256, 384, or 512 bits 
○ Current standard (not meant to replace SHA-2, just a different construction)
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Length Extension Attacks

● Length extension attack: Given H(x) and the length of x, but not x, an 
attacker can create H(x || m) for any m of the attacker’s choosing 
○ Note: This doesn’t violate any property of hash functions but is undesirable in some 

circumstances 
● SHA-256 (256-bit version of SHA-2) is vulnerable 
● SHA-3 is not vulnerable
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Do hashes provide integrity?

● It depends on your threat model 
● Scenario 

○ Mozilla publishes a new version of Firefox on some download servers 
○ Alice downloads the program binary 

● Idea: use cryptographic hashes 

● Threat model: We assume the attacker cannot modify the hash on the 
website 
○ We have integrity, as long as we can communicate the hash securely
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Do hashes provide integrity?

● It depends on your threat model 
● Scenario 

○ Alice and Bob want to communicate over an insecure channel 
○ Mallory might tamper with messages 

● Idea: Use cryptographic hashes 
○ Alice sends her message with a cryptographic hash over the channel 

● Threat model: Mallory can modify the message and the hash 
○ No integrity!
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Do hashes provide integrity?

● It depends on your threat model 
● If the attacker can modify the hash, hashes don’t provide integrity 
● Main issue: Hashes are unkeyed functions 

○ There is no secret key being used as input, so any attacker can compute a hash on any value 
● Next: Use hashes to design schemes that provide integrity
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Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads 
● Block ciphers with chaining 

modes (e.g. AES-CBC)

● RSA encryption 
● ElGamal encryption

Integrity, 
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA 
signatures)

● Hash functions 
● Pseudorandom number generators 
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates) 
● Password management
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How to Provide Integrity

● Reminder: We’re still in the symmetric-key setting 
○ Assume that Alice and Bob share a secret key, and attackers don’t know the key 

● We want to attach some piece of information to prove that someone with the 
key sent this message 
○ This piece of information can only be generated by someone with the key
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Message Authentication Codes (MACs)

● Alice wants to send M to Bob, but doesn’t want Mallory to tamper with it 
● Alice sends M and T = MAC(K, M) to Bob 
● Bob recomputes MAC(K, M) and checks that it matches T 
● If the MACs match, Bob is confident the message has not been tampered 

with (integrity)
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Message

Key

MAC Message

Key

Verify Yes/No

Alice BobInsecure Channel

T



MACs: Definition

● Two parts: 
○ KeyGen() → K: Generate a key K 
○ MAC(K, M) → T: Generate a tag T for the message M using key K 

■ Inputs: A secret key and an arbitrary-length message 
■ Output: A fixed-length tag on the message 

● Properties 
○ Correctness: Determinism 

■ Note: Some more complicated MAC schemes have an additional Verify(K, M, T) function 
that don’t require determinism, but this is out of scope 

○ Efficiency: Computing a MAC should be efficient 
○ Security: EU-CPA (existentially unforgeable under chosen plaintext attack)
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Defining Integrity: EU-CPA

● A secure MAC is existentially unforgeable: without the key, an attacker 
cannot create a valid tag on a message 
○ Mallory cannot generate MAC(K, M') without K 
○ Mallory cannot find any M' ≠ M such that MAC(K, M') = MAC(K, M) 

● Formally defined by a security game: existential unforgeability under chosen-
plaintext attack, or EU-CPA 

● MACs should be unforgeable under chosen plaintext attack 
○ Intuition: Like IND-CPA, but for integrity and authenticity 
○ Even if Mallory can trick Alice into creating MACs for messages that Mallory chooses, Mallory 

cannot create a valid MAC on a message that she hasn't seen before
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Defining Integrity: EU-CPA

1. Mallory may send messages to Alice and 
receive their tags 

2. Eventually, Mallory creates a message-tag 
pair (M', T') 
○ M' cannot be a message that Mallory requested 

earlier 
○ If T' is a valid tag for M', then Mallory wins. 

Otherwise, she loses. 
3. A scheme is EU-CPA secure if for all 

polynomial time adversaries, the probability 
of winning is 0 or negligible

M

MAC(K, M)
(repeat)

Alice (challenger)Mallory (adversary)

Output (M', T')

Keygen(): 
K


