
Block Cipher Chaining Modes (cont’d) & Cryptographic Hashes

CMSC414 Computer and
Network Security

Mar 28, 2024

Yizheng Chen | University of Maryland

surrealyz.github.io

Credits: original slides from instructors and staff from CS161 at UC Berkeley. Blue slides will not be tested.

Last Time: Block Ciphers

● Encryption: input a k-bit key and n-bit plaintext, receive n-bit ciphertext
● Decryption: input a k-bit key and n-bit ciphertext, receive n-bit plaintext

● Correctness: when the key is fixed, EK(M) should be bijective
● Security

○ Without the key, EK(m) is computationally indistinguishable from a random permutation
○ Brute-force attacks take astronomically long and are not possible

● Efficiency: algorithms use XORs and bit-shifting (very fast)

● Implementation: AES is the modern standard
● Issues

○ Not IND-CPA secure because they’re deterministic
○ Can only encrypt n-bit messages 2

Block Cipher Modes of Operation: Summary

● ECB mode: Deterministic, so not IND-CPA secure
● ECB stands for Electronic Code Book

3

Recall: CBC Mode

● Cipher Block Chaining (CBC) mode
● Ci = EK(Mi ⊕ Ci-1); C0 = IV
● Enc(K, M):

○ Split M in m plaintext blocks P1 … Pm each of size n
○ Choose a random IV
○ Compute and output (IV, C1, …, Cm) as the overall ciphertext

4

P1 P2 Pm

Block Cipher Modes of Operation: Summary

● ECB mode: Deterministic, so not IND-CPA secure

● CBC mode
○ IND-CPA secure, assuming no IV reuse
○ Encryption is not parallelizable
○ Decryption is parallelizable
○ Must pad plaintext to a multiple of the block size
○ IV reuse leads to leaking the existence of identical blocks at the start of the message

5

CTR Mode Scratchpad: Let’s design it together

6

One-time pads are secure if we
never reuse the key.

Key

CTR Mode Scratchpad: Let’s design it together

7

If the attacker doesn’t know the key, the
block cipher output looks random.

New idea: Can we use block ciphers to
simulate a one-time pad?

CTR Mode Scratchpad: Let’s design it together

8

If the attacker doesn’t
know the key, all of these

outputs look random.

CTR Mode Scratchpad: Let’s design it together

9

Idea: Use this
random-looking

output as a one-time
pad!

Remember one-time pads:
XOR the pad with plaintext

to get ciphertext

CTR Mode Scratchpad: Let’s design it together

10

What do we use as input
to the block cipher?

CTR Mode Scratchpad: Let’s design it together

11

IND-CPA schemes
need randomness,

so let’s put a random
nonce here!

CTR Mode Scratchpad: Let’s design it together

12

The counter
increments per block
to ensure each block

cipher output is
different.

CTR (Counter) Mode

● Note: the random value is named the nonce here, but the idea is the same as
the IV in CBC mode

● Overall ciphertext is (Nonce, C1, …, Cm)

13

C1 Cm

CTR Mode

● Enc(K, M):
○ Split M in plaintext blocks P1...Pm (each of block size n)

○ Choose random nonce
○ Compute and output (Nonce, C1, …, Cm)

14

C1 Cm

How do you decrypt?

CTR Mode: Decryption

● Recall one-time pad: XOR with ciphertext to get plaintext
● Note: we are only using block cipher encryption, not decryption

15

CTR Mode: Decryption

● Dec(K, C):
○ Parse C into (nonce, C1, …, Cm)
○ Compute Pi by XORing Ci with output of Ek on nonce and counter
○ Concatenate resulting plaintexts and output M = P1 … Pm

16

C1 C2
Cm

CTR Mode: Efficiency

● Can encryption be parallelized?
○ Yes

● Can decryption be parallelized?
○ Yes

17

CTR Mode: Padding

● Do we need to pad messages?
○ No! We can just cut off the parts of the XOR that are longer than the message.

18

CTR Mode: Security

● AES-CTR is IND-CPA secure. With what assumption?

● The nonce should never be reused (random generation helps here)
○ And in general less than 2n/2 blocks are encrypted

● What happens if you reuse the nonce?

● Equivalent to reusing a key in a one-time pad
○ Recall: Key reuse in a one-time pad is catastrophic: usually leaks enough information for an

attacker to deduce the entire plaintext

19

CTR Mode: Penguin

20
Original image

CTR Mode: Penguin

21
Encrypted with CTR, with random nonces

IVs and Nonces

● Initialization vector (IV): A random, but public, one-use value to introduce
randomness into the algorithm
○ For CTR mode, we say that you use a nonce (number used once), since the value has to be

unique

● Never reuse IVs
○ In some algorithms, IV/nonce reuse leaks limited information (e.g. CBC)
○ In some algorithms, IV/nonce reuse leads to catastrophic failure (e.g. CTR)

● What if the IV/nonce is not reused, but the attacker can predict future values?
● Solution: Randomly generate a new IV/nonce for every encryption

22

Comparing Modes of Operation

● If you need high performance, which mode is better?
○ CTR mode, because you can parallelize both encryption and decryption

● If you’re paranoid about security, which mode is better?
○ CBC mode is better

● Theoretically, CBC and CTR mode are equally secure if used properly
○ However, if used improperly (IV/nonce reuse), CBC only leaks partial information, and CTR

fails catastrophically
■ Consider human factors: Systems should be as secure as possible even when

implemented incorrectly
○ IV failures on CTR mode have resulted in multiple real-world security incidents!

23

Other Modes of Operation

● Other modes exist besides CBC and CTR
● Trade-offs:

○ Do we need to pad messages?
○ How robust is the scheme if we use it incorrectly?
○ Can we parallelize encryption/decryption?

24

CFB Mode

● Also IND-CPA
● Try to analyze the trade-offs yourself:

○ Do we need to pad messages?
○ How robust is the scheme if we use it incorrectly?
○ Can we parallelize encryption/decryption?

25

CFB Mode

● Try to analyze the trade-offs yourself:
○ Do we need to pad messages?

■ No
○ How robust is the scheme if we use it incorrectly?

■ Similar effects as CBC mode, but a bit worse if you reuse the IV
○ Can we parallelize encryption/decryption?

■ Only decryption is parallelizable

26

Lack of Integrity and Authenticity

● Block ciphers are designed for confidentiality (IND-CPA)
● If an attacker tampers with the ciphertext, we are not guaranteed to detect it
● Remember Mallory: An active manipulator who wants to tamper with the

message

27

Lack of Integrity and Authenticity

● Consider CTR mode
● What if Mallory tampers with the ciphertext using XOR?

28

P a y M a l $ 1 0 0

0x50 0x61 0x79 0x20 0x4d 0x61 0x6c 0x20 0x24 0x31 0x30 0x30

0x8a 0xe3 0x5e 0xcf 0x3b 0x40 0x46 0x57 0xb8 0x69 0xd2 0x96

⊕

=

0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x58 0xe2 0xa6

M

EK(i)

C

Lack of Integrity and Authenticity

● Suppose Mallory knows the message M
● How can Mallory change the M to say Pay Mal $900?

● Change 0x31 to 0x39

29

P a y M a l $ 1 0 0

0x50 0x61 0x79 0x20 0x4d 0x61 0x6c 0x20 0x24 0x31 0x30 0x30

0x8a 0xe3 0x5e 0xcf 0x3b 0x40 0x46 0x57 0xb8 0x69 0xd2 0x96

⊕

=

0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x58 0xe2 0xa6

M

EK(i)

C

Lack of Integrity and Authenticity

30

Ci = Mi ⊕ Padi 0x58 = 0x31 ⊕ Padi Definition of CTR

Padi = Mi ⊕ Ci Padi = 0x58 ⊕ 0x31 Solve for the ith byte of the pad

= 0x69

C'i = M'i ⊕ Padi C'i = 0x39 ⊕ 0x69 Compute the changed ith byte

= 0x50

0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x58 0xe2 0xa6

0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x50 0xe2 0xa6

C

C’

● What happens when we decrypt C'?
○ The message looks like “Pay Mal $900” now!
○ Note: Mallory didn’t have to know the key; no integrity or authenticity for CTR mode!

Lack of Integrity and Authenticity

31

0xda 0x82 0x27 0xef 0x76 0x21 0x2a 0x77 0x9c 0x50 0xe2 0xa6

0x8a 0xe3 0x5e 0xcf 0x3b 0x40 0x46 0x57 0xb8 0x69 0xd2 0x96

⊕

=

C'

P' 0x50 0x61 0x79 0x20 0x4d 0x61 0x6c 0x20 0x24 0x39 0x30 0x30

P a y M a l $ 9 0 0

EK(i)

● What about CBC?
○ Altering a bit of the ciphertext causes some blocks to become random gibberish
○ However, Bob doesn’t know that Alice did not send random gibberish, so it still does not

provide integrity or authenticity

Lack of Integrity and Authenticity

32

Today: Cryptography Hashes and MACs

● Hashing
○ Definition
○ Security: one-way, second preimage

resistant, collision resistant
○ Examples
○ Length extension attacks
○ Application: Lowest-hash scheme
○ Do hashes provide integrity?

● MACs
○ Definition
○ Security: unforgeability
○ Example: HMAC
○ Do MACs provide integrity?

33

● Authenticated Encryption
○ Definition
○ Key Reuse
○ MAC-then-Encrypt or Encrypt-then-

MAC?
○ AEAD Encryption Modes

Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads
● Block ciphers with chaining

modes (e.g. AES-CBC)

● RSA encryption
● ElGamal encryption

Integrity,
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA
signatures)

● Hash functions
● Pseudorandom number generators
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates)
● Password management

34

Cryptographic Hash Function: Definition

● Hash function: H(M)
○ Input: Arbitrary length message M
○ Output: Fixed length, n-bit hash
○ Sometimes written as {0, 1}* → {0, 1}n

35

Cryptographic Hash Function: Properties

○ Correctness: Deterministic
■ Hashing the same input always produces the same output

○ Efficiency: Efficient to compute

○ Security: One-way-ness (“preimage resistance”)
○ Security: Collision-resistance
○ Security: Random/unpredictability, no predictable patterns for how changing the input affects the

output
■ Changing 1 bit in the input causes the output to be completely different
■ Also called “random oracle” assumption

36

Hash Function: Intuition

● A hash function provides a fixed-length “fingerprint” over a sequence of bits

● Example: Document comparison
○ If Alice and Bob both have a 1 GB document, they can both compute a hash over the

document and (securely) communicate the hashes to each other
○ If the hashes are the same, the files must be the same, since they have the same “fingerprint”
○ If the hashes are different, the files must be different

37

● Informal: Given an output y, it is infeasible to find any input x such that H(x) = y

● Intuition: Here’s an output. Can you find an input that hashes to this output?
○ Note: The adversary just needs to find any input, not necessarily the input that was actually used

to generate the hash

Hash Function: One-way-ness or Preimage Resistance

38

Hash Function: Collision Resistance

● Collision: Two different inputs with the same output

● Collision resistance: It is infeasible to (i.e. no polynomial time attacker can)
find any pair of inputs x' ≠ x such that H(x) = H(x')

● Intuition: Can you find any two inputs that collide with the same hash output
for any output?

39

Hash Function: Examples

● MD5
○ Output: 128 bits
○ Security: Completely broken

● SHA-1
○ Output: 160 bits
○ Security: Completely broken in 2017
○ Was known to be weak before 2017, but still used sometimes

● SHA-2
○ Output: 256, 384, or 512 bits (sometimes labeled SHA-256, SHA-384, SHA-512)
○ Not currently broken, but some variants are vulnerable to a length extension attack
○ Current standard

● SHA-3 (Keccak)
○ Output: 256, 384, or 512 bits
○ Current standard (not meant to replace SHA-2, just a different construction)

40

Length Extension Attacks

● Length extension attack: Given H(x) and the length of x, but not x, an
attacker can create H(x || m) for any m of the attacker’s choosing
○ Note: This doesn’t violate any property of hash functions but is undesirable in some

circumstances
● SHA-256 (256-bit version of SHA-2) is vulnerable
● SHA-3 is not vulnerable

41

Do hashes provide integrity?

● It depends on your threat model
● Scenario

○ Mozilla publishes a new version of Firefox on some download servers
○ Alice downloads the program binary

● Idea: use cryptographic hashes

● Threat model: We assume the attacker cannot modify the hash on the
website
○ We have integrity, as long as we can communicate the hash securely

42

Do hashes provide integrity?

● It depends on your threat model
● Scenario

○ Alice and Bob want to communicate over an insecure channel
○ Mallory might tamper with messages

● Idea: Use cryptographic hashes
○ Alice sends her message with a cryptographic hash over the channel

● Threat model: Mallory can modify the message and the hash
○ No integrity!

43

Do hashes provide integrity?

● It depends on your threat model
● If the attacker can modify the hash, hashes don’t provide integrity
● Main issue: Hashes are unkeyed functions

○ There is no secret key being used as input, so any attacker can compute a hash on any value
● Next: Use hashes to design schemes that provide integrity

44

Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads
● Block ciphers with chaining

modes (e.g. AES-CBC)

● RSA encryption
● ElGamal encryption

Integrity,
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA
signatures)

● Hash functions
● Pseudorandom number generators
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates)
● Password management

45

How to Provide Integrity

● Reminder: We’re still in the symmetric-key setting
○ Assume that Alice and Bob share a secret key, and attackers don’t know the key

● We want to attach some piece of information to prove that someone with the
key sent this message
○ This piece of information can only be generated by someone with the key

46

Message Authentication Codes (MACs)

● Alice wants to send M to Bob, but doesn’t want Mallory to tamper with it
● Alice sends M and T = MAC(K, M) to Bob
● Bob recomputes MAC(K, M) and checks that it matches T
● If the MACs match, Bob is confident the message has not been tampered

with (integrity)

47

Message

Key

MAC Message

Key

Verify Yes/No

Alice BobInsecure Channel

T

MACs: Definition

● Two parts:
○ KeyGen() → K: Generate a key K
○ MAC(K, M) → T: Generate a tag T for the message M using key K

■ Inputs: A secret key and an arbitrary-length message
■ Output: A fixed-length tag on the message

● Properties
○ Correctness: Determinism

■ Note: Some more complicated MAC schemes have an additional Verify(K, M, T) function
that don’t require determinism, but this is out of scope

○ Efficiency: Computing a MAC should be efficient
○ Security: EU-CPA (existentially unforgeable under chosen plaintext attack)

48

Defining Integrity: EU-CPA

● A secure MAC is existentially unforgeable: without the key, an attacker
cannot create a valid tag on a message
○ Mallory cannot generate MAC(K, M') without K
○ Mallory cannot find any M' ≠ M such that MAC(K, M') = MAC(K, M)

● Formally defined by a security game: existential unforgeability under chosen-
plaintext attack, or EU-CPA

● MACs should be unforgeable under chosen plaintext attack
○ Intuition: Like IND-CPA, but for integrity and authenticity
○ Even if Mallory can trick Alice into creating MACs for messages that Mallory chooses, Mallory

cannot create a valid MAC on a message that she hasn't seen before

49

50

Defining Integrity: EU-CPA

1. Mallory may send messages to Alice and
receive their tags

2. Eventually, Mallory creates a message-tag
pair (M', T')
○ M' cannot be a message that Mallory requested

earlier
○ If T' is a valid tag for M', then Mallory wins.

Otherwise, she loses.
3. A scheme is EU-CPA secure if for all

polynomial time adversaries, the probability
of winning is 0 or negligible

M

MAC(K, M)
(repeat)

Alice (challenger)Mallory (adversary)

Output (M', T')

Keygen():
K

