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Recall the IND-CPA security definition

M

Enc(K, M)
(repeat)

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

M

Enc(K, M)

Guess b = 0 or b = 1

(repeat)

pick b

2

1. Eve may choose plaintexts to send to Alice and receives their 
ciphertexts 

2. Eve issues a pair of plaintexts M0 and M1 to Alice 
3. Alice randomly chooses either M0 or M1 to encrypt and sends 

the encryption back 
○ Alice does not tell Eve which one was encrypted! 

4. Eve may again choose plaintexts to send to Alice and 
receives their ciphertexts 

5. Eventually, Eve outputs a guess as to whether Alice 
encrypted M0 or M1 

An encryption scheme is IND-CPA secure if for all polynomial time 
attackers Eve: 

● Eve can win with probability ≤ 1/2 + Ɛ, where Ɛ is negligible.

Keygen()



Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads 
● Block ciphers with chaining 

modes (e.g. AES-CBC) 
● Stream ciphers

● RSA encryption 
● ElGamal encryption

Integrity, 
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA 
signatures)

● Hash functions 
● Pseudorandom number generators 
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates) 
● Password management
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Review: XOR
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0 ⊕ 0 = 0

0 ⊕ 1 = 1

1 ⊕ 0 = 1

1 ⊕ 1 = 0

The XOR operator takes two 
bits and outputs one bit: Useful properties of XOR:

 x ⊕ 0 = x

 x ⊕ x = 0

x ⊕ y = y ⊕ x

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

 (x ⊕ y) ⊕ x = y



Review: XOR Algebra

● Algebra works on XOR too
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 y ⊕ 1 = 0 Goal: Solve for y

y ⊕ 1 ⊕ 1 = 0 ⊕ 1 XOR both sides by 1

 y = 1 Simplify with identities



One-Time Pads: Key Generation
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

The key K is a randomly-chosen 
bitstring.Recall: We are in the symmetric-key setting, so 

we’ll assume Alice and Bob both know this key.



One-Time Pads: Encryption
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

1 0 0 1 1 0 0 1 0 1 0 0M

The plaintext M is the bitstring 
that Alice wants to encrypt.

Idea: Use XOR to scramble 
up M with the bits of K.



One-Time Pads: Encryption
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

1 0 0 1 1 0 0 1 0 1 0 0M

1 1 1 1 1 1 0 0 0 0 1 1C

Encryption algorithm: XOR each bit 
of K with the matching bit in M.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The ciphertext C is the encrypted 
bitstring that Alice sends to Bob 
over the insecure channel.



One-Time Pads: Decryption
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Bob

0 1 1 0 0 1 0 1 0 1 1 1K

1 1 1 1 1 1 0 0 0 0 1 1C

Bob receives the ciphertext C. Bob knows 
the key K. How does Bob recover M?



One-Time Pads: Decryption
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Bob

0 1 1 0 0 1 0 1 0 1 1 1K

1 1 1 1 1 1 0 0 0 0 1 1C

1 0 0 1 1 0 0 1 0 1 0 0M

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Decryption algorithm: XOR each bit 
of K with the matching bit in C.



One-Time Pad

● KeyGen() 
○ Randomly generate an n-bit key, where n is the length of your message 

■ Recall: For today, we assume that Alice and Bob can securely share this key 
■ For one-time pads, we generate a new key for every message 

● Enc(K, M) = K ⊕ M 
○ Bitwise XOR M and K to produce C 

■ In other words: XOR the ith bit of the plaintext with the ith bit of the key. 
■ Ci = Ki ⊕ Mi 

○ Alice and Bob use a different key for each encryption (this is the “one-time” in one-time pad). 
● Dec(K, C) = K ⊕ C 

○ Bitwise XOR C and K to produce M 
■ Mi = Ki ⊕ Ci
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One-Time Pad: Correctness

● Correctness: If we encrypt and then decrypt, we should get the original 
message back
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Enc(K, M) = K ⊕ M Definition of encryption

Dec(K, Enc(K, M)) = Dec(K, K ⊕ M) Decrypting the ciphertext
= K ⊕ (K ⊕ M) Definition of decryption
= M XOR property



One-Time Pad: Security

● Recall our definition of confidentiality: The ciphertext should not give the 
attacker any additional information about the plaintext 

● Recall our preliminary experiment (before IND-CPA) to test confidentiality 
from earlier:  
○ If the probability that Eve correctly guesses  

which message was sent is 1/2, then the  
encryption scheme is confidential
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Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

Guess b = 0 or b = 1

pick b
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KeyGen():K



One-Time Pad: Security
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Possibility 0: Alice sends Enc(K, M0) Possibility 1: Alice sends Enc(K, M1)

The ciphertext is C = K ⊕ M0 

Therefore, K = C ⊕ M0

The ciphertext is C = K ⊕ M1 

Therefore, K = C ⊕ M1

K was chosen randomly, so both 
possibilities are equally possible

Eve has learned no new information, 
so the scheme is perfectly secure

By “perfectly” we mean that any 
attacker has chance of winning 
the security game exactly ½ (not 
½+epsilon) 



Two-Time Pads?
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M0

K

OTP Enc K ⊕ M0

Alice Insecure 
Channel

M1

K

OTP Enc K ⊕ M1

What if we use the same key K to encrypt two different messages?

Eve sees two 
ciphertexts over the 
insecure channel.



Two-Time Pads?

16

M0

K

OTP Enc K ⊕ M0

Alice Insecure 
Channel

M1

K

OTP Enc K ⊕ M1

⊕
(K ⊕ M0) ⊕ (K ⊕ M1) 

= M0 ⊕ M1

Eve

If Eve XORs the two ciphertexts, she learns M0 ⊕ M1!



Two-Time Pads?

● What if we use the same key twice? 
○ Alice encrypts M0 and M1 with the same key 
○ Eve observes K ⊕ M0 and K ⊕ M1  
○ Eve computes (K ⊕ M0) ⊕ (K ⊕ M1) = M0 ⊕ M1 

■ Recall the XOR property: the K's cancel out 
● Eve has learned M0 ⊕ M1. This is partial information about the messages! 

○ In other words, Eve knows which bits in M0 match bits in M1 
○ If Eve knows M0, she can deduce M1 (and vice-versa) 
○ Eve can also guess M0 and check that M1 matches her guess for M0 

● Result: One-time pads are not secure if the key is reused 
○ Alice and Bob must use a different key for every message!
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One-Time Pad with Key Reuse does not offer IND-CPA

M

Enc(K, M)
(repeat)

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

M

Enc(K, M)

Guess b = 0 or b = 1

(repeat)

pick b

18

● What is an attack strategy? 
● Many possible, e.g. 

○ In the trial phase and the challenge phase, ask for 
“00” and “11”, it is deterministic.  

Keygen()



Impracticality of One-Time Pads

● Problem #1: Key generation 
○ For security to hold, keys must be randomly generated for every message, and never reused 
○ Randomness is expensive, as we’ll see later 

● Problem #2: Key distribution 
○ To communicate an n-bit message, we need to securely communicate an n-bit key first 
○ But if we have a way to securely communicate an n-bit key, we could have communicated the 

message directly! 
● Communicate keys in advance 

○ You have a secure channel now, but you won’t have it later 
○ Use the secure channel now to communicate keys in advance 
○ Use one-time pad later to communicate over the insecure channel 
○ And people can compute this by hand without computers!
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One-Time Pads in Practice: Spies

● At home base, the spy obtains a large amount of key material (e.g. a book of 
random bits) 

● In the field, the spy listens for secret messages from their home country 
○ There are shortwave and terrestrial radio “number stations” 
○ At a regular time, a voice gets on the air and reads a series of numbers 
○ If you don’t know the key, this looks like a meaningless sequence of random numbers 
○ If you know the key, you can decrypt the spy message! 

● What if you don’t want to send anything to any spies? 
○ Read out a list of random numbers anyway 
○ Because one-time pad leaks no information, an eavesdropper can’t distinguish between an 

encrypted message and random numbers!
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Two-Time Pads in Practice: VENONA

● Soviet spies used one-time pads for communication from their spies in the US 
● During WWII, the Soviets started reusing key material 

○ Uncertain whether it was just the cost of generating pads or what… 
● VENONA was a US cryptanalysis project designed to break these messages 

○ Included confirming/identifying the spies targeting the US Manhattan project 
○ Project continued until 1980! 

● Not declassified until 1995! 
○ So secret even President Truman wasn’t informed about it 
○ The Soviets found out about it in 1949 through their spy Ken Philby, but their one-time pad 

reuse was fixed after 1948 anyway 
● Takeaway: Otherwise-secure cryptographic systems can fail very badly if 

used improperly!
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Summary for one-time pads

● Symmetric encryption scheme: Alice and Bob share a secret key. 
● Encryption and decryption: Bitwise XOR with the key. 
● No information leakage if the key is never reused. 
● Information leaks if the key is reused. 
● Impractical for real-world usage, unless you’re a spy.
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Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads 
● Block ciphers with chaining 

modes (e.g. AES-CBC) 
● Stream ciphers

● RSA encryption 
● ElGamal encryption

Integrity, 
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA 
signatures)

● Hash functions 
● Pseudorandom number generators 
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates) 
● Password management



Block Ciphers: Definition

● Block cipher: A cryptographic scheme consisting 
of encode/decode algorithms for a fixed-sized 
block of bits: 

● EK(M) → C: Encode 
○ Inputs: k-bit key K and an n-bit plaintext M 
○ Output: An n-bit ciphertext C 
○ Sometimes written as: {0, 1}k × {0, 1}n → {0, 1}n 

● DK(C) → M: Decode 
○ Inputs: a k-bit key, and an n-bit ciphertext C 
○ Output: An n-bit plaintext 
○ Sometimes written as: {0, 1}k × {0, 1}n → {0, 1}n 
○ The inverse of the encryption function 

● Properties 
○ Correctness: EK is a permutation, DK  is its inverse  
○ Efficiency: Encode/decode should be fast 
○ Security: E behaves like a random permutation

EK k bits

n bits
plaintext

n bits

ciphertext

DK k bits

n bits
ciphertext

n bits

plaintext 24



Block Ciphers: Correctness

● EK(M) must be a permutation (bijective function) on n-bit strings 
○ Each input must correspond to exactly one unique output 

● Intuition 
○ Suppose EK(M) is not bijective 
○ Then two inputs might correspond to the same output: E(K, x1) = E(K, x2) = y 
○ Given ciphertext y, you can’t uniquely decode. D(K, y) = x1? D(K, y) = x2?

00 
01 
10 
11

00 
01 
10 
11

00 
01 
10 
11

00 
01 
10 
11
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Not bijective: Two 
inputs encode to the 

same output

Bijective: Each input 
maps to exactly one 

unique output



Block Ciphers: Security

● A secure block cipher behaves like a randomly chosen permutation permutation from 
the set of all permutations on n-bit strings 
○ A random permutation: Each n-bit input is mapped to one randomly-chosen n-bit output 

● Defined by a distinguishing game 
○ Eve gets two boxes: One is a randomly chosen permutation, and one is EK with a randomly chosen key K 
○ Eve should not be able to tell which is which with probability > ½+negl
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00 
01 
10 
11

00 
01 
10 
11

00 
01 
10 
11

00 
01 
10 
11

One of these is EK with a randomly chosen K, and the other one is a randomly chosen 
permutation. Eve can’t distinguish them.

??



Block ciphers: Brute-force attacks?

● How hard is it to run a brute-force attack on a 128-bit key? 
○ We have to try 2128 possibilities. How big is 2128? 

● Handy approximation: 210 ≈ 103 

○ 2128 = 210*12.8 ≈ (103)12.8 ≈ (103)13 = 1039 
● Suppose we have massive hardware that can try 109 (1 billion) keys in 1 

nanosecond (a billionth of a second). That’s 1018 keys per second 
○ We’ll need 1039 / 1018 = 1021 seconds. How long is that? 
○ One year ≈ 3×107 seconds 
○ 1021 seconds / 3×107 ≈ 3×1013 years ≈ 30 trillion years 

● Takeaway: Brute-forcing a 128-bit key takes astronomically long. 
Don’t even try.
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Block ciphers: Brute-force attacks?

● How hard is it to run a brute-force attack on a 256-bit key in the same time? 
○ We need 1052 of the brute-force devices from before 
○ If each brute-force device from before is 1 cubic millimeter, this would take 1043 cubic meters 

of space 
○ That’s the volume of 7×1015 suns! 
○ For reference, the Milky Way galaxy has just 1011 stars 

● Takeaway: Brute-force attacks on modern block ciphers are not possible, 
assuming the key is random and secret 
○ 128-bit key? Definitely not happening. 
○ 256-bit key? Lol no.
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Block Ciphers: Efficiency

● Encryption and decryption should be computable in microseconds 
○ Formally: KeyGen(), Enc(), and Dec(), should not take exponential time 

● Block cipher algorithms typically use operations like XOR, bit-shifting, and 
small table lookups 
○ Very fast on modern processors 

● Modern CPUs provide dedicated hardware support for block ciphers
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AES (Advanced Encryption Standard)

● 1997–2000: NIST (National Institute of Standards and Technology) in the US 
held a competition to pick a new block cipher standard 
○ One of the finalists, Twofish, was designed by Berkeley professor and occasional CS 161 

instructor David Wagner! 
● Out of the 5 finalists: 

○ Rijndael, Twofish, and Serpent had really good performance 
○ RC6 had okay performance 
○ Mars had bad performance 

● On any given computing platform, Rijndael was never the fastest 
● But on every computing platform, Rijndael was always the second-fastest 

○ Twofish and Serpent each had at least one compute platform they were bad at 
● Rijndael was selected as the new block cipher standard
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Are Block Ciphers IND-CPA Secure?

● Consider the following adversary: 
○ Eve sends two different messages M0 and M1 
○ Eve receives either EK(M0) or EK(M1) 
○ Eve requests the encryption of M0 again 
○ Strategy: If the encryption of M0 matches what she 

received, guess b = 0. Else, guess b = 1. 
● Eve can win the IND-CPA game with 

probability 1! 
○ Block ciphers are not IND-CPA secure because 

they are deterministic

31

M

Enc(K, M)
(repeat)

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

M

Enc(K, M)

Guess b = 0 or b = 1

(repeat)

pick b



AES (Advanced Encryption Standard)

● Key size 128, 192, or 256 bits (k = 128, 192, or 256) 
○ Use key size 256 these days 

● Block size 128 bits (n = 128) 
○ Note: The block size is still always 128 bits, regardless of key size 

● You don’t need to know how AES works, but you do need to know its 
parameters 
○ here’s a comic
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http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


● Different key sizes use different 
numbers of rounds 
○ 10 rounds for 128-bit keys 
○ 12 rounds for 192-bit keys 
○ 14 rounds for 256-bit keys 

● Each round uses its own “round key” 
derived from the cipher key 

● Each round: 
○ SubBytes() 
○ ShiftRows() 
○ MixColumns() (if not last round) 
○ AddRoundKey()

AES Algorithm

33



● Replace each byte in the block with another byte using an 8-bit substitution 
box

AES Algorithm: SubBytes()
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● Cyclically shifts the bytes in each row by a certain offset 
● The number of places each byte is shifted differs for each row

AES Algorithm: ShiftRows()
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● Treats the 16-byte block as a 4 × 4 matrix and multiply it by by another matrix

AES Algorithm: MixColumns()

36



● XOR the 16-byte block with the 16-byte round key

AES Algorithm: AddRoundKey()
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AES (Advanced Encryption Standard)

● There is no formal proof that AES is secure (indistinguishable from a random 
permutation) 

● However, in 20 years, nobody has been able to break it, so it is assumed to 
be secure 
○ The NSA uses AES-256 for secrets they want to keep secure for the 40 years (even in the 

face of unknown breakthroughs in research) 
● Takeaway: AES is the modern standard block cipher algorithm 

○ The standard key size (128 bits) is large enough to prevent brute-force attacks
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Issues with Block Ciphers

● Block ciphers are not IND-CPA secure, because they’re deterministic 
○ A scheme is deterministic if the same input always produces the same output 
○ No deterministic scheme can be IND-CPA secure because the adversary can always tell if the 

same message was encrypted twice 
● Block ciphers can only encrypt messages of a fixed size 

○ For example, AES can only encrypt-decrypt 128-bit messages 
○ What if we want to encrypt something longer than 128 bits? 

● To address these problems, we’ll add modes of operation that use block 
ciphers as a building block!
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Scratchpad: Let’s design it together

40

Here’s an AES block. Remember that it can 
only encrypt 128-bit messages.

How can we use AES to encrypt a longer 
message (say, 256 bits?)



Scratchpad: Let’s design it together
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Idea: Let’s use AES twice!

First 128 bits of message Second 128 bits of message



Scratchpad: Let’s design it together
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Note that we are using the same key twice. We 
want to avoid a situation like one-time pads 

where we need very long keys.



ECB Mode

● We’ve just designed electronic code book (ECB) mode 
○ Enc(K, M) = C1 || C2 || … || Cm 

○ Assume m is the number of blocks of plaintext in M, each of size n 
● AES-ECB is not IND-CPA secure. Why? 

○ Because ECB is deterministic
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ECB Mode: Penguin

44
Original image



ECB Mode: Penguin

45
Encrypted with ECB



Scratchpad: Let’s design it together
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Here’s ECB mode. It’s not IND-CPA secure 
because it’s deterministic.

Let’s fix that by adding some randomness.



Scratchpad: Let’s design it together
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The Initialization Vector (IV) is different for 
every encryption. Now the first ciphertext 
block will be different for every encryption!

Okay, but the other blocks are still deterministic...



Scratchpad: Let’s design it together
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Idea: The first ciphertext block was computed 
with some randomness. Let’s use it to add 

randomness to the second block.



Scratchpad: Let’s design it together
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Now the second ciphertext block has some 
randomness in it. Let’s use it to add 

randomness to the third block.



CBC Mode

● We’ve just designed cipher block chaining (CBC) mode 
● Ci = EK(Mi ⊕ Ci-1); C0 = IV 
● Enc(K, M):  

○ Split M in m plaintext blocks P1 … Pm each of size n  
○ Choose a random IV 
○ Compute and output (IV, C1, …, Cm) as the overall ciphertext 

● How do we decrypt?

50

P1 P2 Pm



CBC Mode: Decryption

● How do we decrypt CBC mode? 
○ Parse ciphertext as (IV, C1, …, Cm)  
○ Decrypt each ciphertext and then XOR with IV or previous ciphertext
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CBC Mode: Decryption
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Ci = EK(Mi ⊕ Ci-1) Definition of encryption

DK(Ci) = DK(EK(Mi ⊕ Ci-1)) Decrypting both sides

DK(Ci) = Mi ⊕ Ci-1 Decryption and encryption cancel

DK(Ci) ⊕ Ci-1 = Mi ⊕ Ci-1 ⊕ Ci-1 XOR both sides with Ci-1

DK(Ci) ⊕ Ci-1 = Mi XOR property



CBC Mode: Efficiency & Parallelism

● Can encryption be parallelized? 
○ No, we have to wait for block i to finish before encrypting block i+1 

● Can decryption be parallelized? 
○ Yes, decryption only requires ciphertext as input
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CBC Mode: Padding

● What if you want to encrypt a message that isn’t a multiple of the block size? 
○ AES-CBC is only defined if the plaintext length is a multiple of the block size 

● Solution: Pad the message until it’s a multiple of the block size 
○ Padding: Adding dummy bytes at the end of the message until it’s the proper length
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CBC Mode: Padding
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● What padding scheme should we use? 
○ Padding with 0’s? 

■ Doesn’t work: What if our message already ends with 0’s? 
○ Padding with 1’s? 

■ Same problem 
● We need a scheme that can be unpadded without ambiguity 

○ One scheme that works: Append a 1, then pad with 0’s 
■ If plaintext is multiple of n, you still need to pad with an entire block 

○ Another scheme: Pad with the number of padding bytes 
■ So if you need 1 byte, pad with 01; if you need 3 bytes, pad with 03 03 03 
■ If you need 0 padding bytes, pad an entire dummy block 
■ This is called PKCS #7



CBC Mode: Security

● AES-CBC is IND-CPA secure. With what assumption? 
○ The IV must be randomly generated and never reused 

● What happens if you reuse the IV? 
○ The scheme becomes deterministic: No more IND-CPA security
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CBC Mode: IV Reuse

● Consider two three-block messages: P1P2P3 and P1P2P4 
○ The first two blocks are the same for both messages, but the last block is different 
○ What if we encrypt them with the same IV? 

● When the IV is reused, CBC mode reveals when two messages start with the 
same plaintext blocks, up to the first different plaintext block
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CBC Mode is IND-CPA (when used correctly)

● Enc(K, M):  
○ Split M in m plaintext blocks P1 … Pm each of size n  
○ Choose random IV, compute and output (IV, C1, …, Cm) as the overall ciphertext 

● Why IND-CPA? 
○ If there exists an attacker that wins in the IND-CPA game, then there exists an attacker that 

breaks the block cipher security. Proof is out of scope.

58

P1 P2 Pm



CBC Mode: Penguin
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Original image



CBC Mode: Penguin

60
Encrypted with CBC, with random IVs


