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What is cryptography?

● Older definition: The study of secure communication over insecure channels 

● Newer definition: Provide rigorous guarantees about the data and 
computation in the presence of an attacker 
○ Not just confidentiality but also integrity and authenticity
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Don’t try this at home!

● We will teach you the basic building blocks 
of cryptography, but you should never try to 
write your own cryptographic algorithms 

● It’s very easy to make a mistake that makes 
your code insecure 

● Instead, use existing well-vetted 
cryptographic libraries 
○ This portion of the class is as much about making 

you a good consumer of cryptography
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Link

February 15, 2017

Cryptography is nightmare magic 
math that cares what kind of pen 
you use.

https://twitter.com/SwiftOnSecurity/status/832055497251487744


Definitions
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Meet Alice, Bob, Eve, and Mallory

● Alice and Bob: The main characters trying to send messages to each other over an 
insecure communication channel 

● Eve: An eavesdropper who can read any data sent over the channel 

● Mallory: A manipulator who can read and modify any data sent over the channel
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Meet Alice, Bob, Eve, and Mallory

● We often describe cryptographic problems using a common cast of 
characters 

● One scenario: 
○ Alice wants to send a message to Bob. 
○ However, Eve is going to eavesdrop on the communication channel. 
○ How does Alice send the message to Bob without Eve learning about the message? 

● Another scenario: 
○ Bob wants to send a message to Alice. 
○ However, Mallory is going to tamper with the communication channel. 
○ How does Bob send the message to Alice without Mallory changing the message?
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Three Main Goals of Cryptography

● In cryptography, there are three common properties that we want on our data 

● Confidentiality: An adversary cannot read our messages. 

● Integrity: An adversary cannot change our messages without being detected. 

● Authenticity: I can prove that this message came from the person who claims 
to have written it. 
○ Integrity and authenticity are closely related properties… 

■ Before I can prove that a message came from a certain person, I have to prove that the 
message wasn’t changed! 

○ … but they’re not identical properties 
■ Later we’ll see some edge cases 7
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Keys

● The most basic building block of any 
cryptographic scheme: The key 

● Properly chosen and guarded keys “power” 
the security of our cryptographic algorithms 

● Two models of keys: 
○ Symmetric key model: Alice and Bob both know 

the value of the same secret key. 
○ Asymmetric key model: A user has two keys, a 

secret key and a public key. 
■ Example: RSA encryption
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● This principle is closely related to Shannon’s Maxim 
○ Don’t use security through obscurity. Assume the attacker knows the system. 

● Kerckhoff’s principle says: 
○ Cryptosystems should remain secure even when the attacker knows all internal details of the 

system 
○ The key should be the only thing that must be kept secret 
○ The system should be designed to make it easy to change keys that are leaked (or suspected 

to be leaked) 

● Our assumption: The attacker knows all the algorithms we use. The only 
information the attacker is missing is the secret key(s).

Security Principle: Kerckhoff’s Principle
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Confidentiality

● Confidentiality: An adversary cannot read our messages. 

● Analogy: Locking and unlocking the message
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Confidentiality

● Schemes provide confidentiality by encrypting messages
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Confidentiality

● Plaintext: The original message 

● Ciphertext: The encrypted message
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Integrity (and Authenticity)

● Integrity: An adversary cannot change our messages without being detected. 

● Analogy: Adding a seal on the message
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Integrity (and Authenticity)

● Schemes provide integrity by adding a tag or signature on messages 

● More on integrity in a future lecture
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Threat Models

● What if Eve can do more than eavesdrop? 

● Some threat models for analyzing confidentiality:
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Can Eve trick Alice into encrypting 
messages of Eve’s choosing?

Can Eve trick Bob into decrypting 
messages of Eve’s choosing?

Ciphertext-only No No

Chosen-plaintext Yes No

Chosen-ciphertext No Yes

Chosen plaintext-ciphertext Yes Yes



Threat Models

● In this class, we’ll explain the chosen plaintext attack model 
● In practice, cryptographers use the chosen plaintext-ciphertext model 

○ It’s the most powerful 
○ It can actually be defended against
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Can Eve trick Bob into decrypting 
messages of Eve’s choosing?

Ciphertext-only No No
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Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads 
● Block ciphers with chaining 

modes (e.g. AES-CBC) 
● Stream ciphers

● RSA encryption 
● ElGamal encryption

Integrity, 
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA 
signatures)

● Hash functions 
● Pseudorandom number generators 
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates) 
● Password management
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Symmetric-Key Encryption
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Symmetric-Key Encryption

● The next few schemes are symmetric-key encryption schemes 
○ Encryption schemes aim to provide confidentiality 
○ Symmetric-key means Alice and Bob share the same secret key that the attacker doesn’t 

know 

● For modern schemes, we’re going to assume that messages are bitstrings 
○ Bitstring: A sequence of bits (0 or 1), e.g. 11010101001001010 
○ Text, images, etc. can be converted into bitstrings before encryption, so bitstrings are a useful 

abstraction. After all, everything in a computer is just a sequence of bits!
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Symmetric-Key Encryption: Definition

● A symmetric-key encryption scheme has three algorithms: 
○ KeyGen() → K: Generate a key K 
○ Enc(K, M) → C: Encrypt a plaintext M using the key K to produce ciphertext C 
○ Dec(K, C) → M: Decrypt a ciphertext C using the key K
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Symmetric-Key Encryption: Definition

● What properties do we want from a symmetric encryption scheme? 
○ Correctness: Decrypting a ciphertext should result in the message that was originally 

encrypted 
■ Dec(K, Enc(K, M)) = M for all K ← KeyGen() and M 

○ Efficiency: Encryption/decryption algorithms should be fast: >1 Gbps on a standard computer 
○ Security: Confidentiality
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Defining Confidentiality

● Recall our definition of confidentiality from earlier: “An adversary cannot read 
our messages” 
○ This definition isn’t very specific 

■ What if Eve can read the first half of Alice’s message, but not the second half? 
■ What if Eve figures out that Alice’s message starts with “Dear Bob”? 

○ This definition doesn’t account for prior knowledge 
■ What if Eve already knew that Alice’s message ends in “Sincerely, Alice”? 
■ What if Eve knows that Alice’s message is “BUY!” or “SELL” but doesn't know which?
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Q: How would you define confidentiality?



Defining Confidentiality

● A better definition of confidentiality: The ciphertext should not give the 
attacker any additional information about the plaintext. 

● Let's design an experiment/security game to test our definition

25



Security game: first attempt at confidentiality

1. Eve issues a pair of plaintexts M0 and M1 to 
Alice of the same length 

2. Alice randomly chooses either M0 or M1 to 
encrypt and sends the encryption back 

a. Alice does not tell Eve which one was encrypted! 

3. Eventually, Eve outputs a guess as to 
whether Alice encrypted M0 or M1

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

Guess b = 0 or b = 1

pick b
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Q: If the scheme provides confidentiality, what chance does 
the attacker have to guess b?

KeyGen(): 
K



Security game: intuition

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

Guess b = 0 or b = 1

pick b
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● If the scheme is secure Eve can only guess with 
probability 1/2, which is no different than if Eve 
hadn’t sent the ciphertext at all 

● In other words: the ciphertext gave Eve no additional 
information about which plaintext was sent!

KeyGen(): 
K



Defining Confidentiality: IND-CPA

● Recall our threat model: Eve can also perform a chosen plaintext attack 
○ Eve can trick Alice into encrypting arbitrary messages of Eve's choice 
○ We can adapt our experiment to account for this threat model 

● A better definition of confidentiality: Even if Eve is able to trick Alice into 
encrypting messages, Eve can still only guess what message Alice sent with 
probability 1/2. 
○ This definition is called IND-CPA (indistinguishability under chosen plaintext attack) 

● Cryptographic properties are often defined in terms of “games” that an 
adversary can either “win” or “lose” 
○ We will use one to define confidentiality precisely
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Defining Confidentiality: IND-CPA

1. Eve may choose plaintexts to send to Alice 
and receives their ciphertexts M

Enc(K, M)
(repeat)

Alice (challenger)Eve (adversary)
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Defining Confidentiality: IND-CPA

● If Eve correctly guesses which message Alice encrypted, then Eve wins. Otherwise, 
she loses. 

● How does Eve guess whether M0 or M1 was encrypted? What strategy does she use? 
○ We don’t assume she uses a particular strategy; Eve represents all possible strategies 

● Proving insecurity: There exists at least one strategy that can win the IND-CPA game 
with probability > 1/2  
○ 1/2 is the probability of winning by random guessing 
○ If you can be better than random, then the ciphertext has leaked information, and Eve is able to learn it 

and use it to gain an advantage! 

● Proving security: For all (polynomial-time) attackers/Eve-s, the probability of winning 
the IND-CPA game is at most ½+negl 34



Edge Cases: Length

● Cryptographic schemes are (usually) allowed to leak the length of the 
message 
○ To hide length: All messages must always be the same length 
○ Applications can choose to hide length by padding their own messages to the maximum 

possible length before encrypting 

● In the IND-CPA game: M0 and M1  must be the same length 
○ To break IND-CPA, Eve must learn something other than message length
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Edge Cases: Attacker Runtime

● Some schemes are theoretically vulnerable, but secure in any real-world 
setting 
○ If an attack takes longer than the life of the solar system to complete, it probably won’t 

happen! 

● In the IND-CPA game: Eve is limited to a practical runtime 
○ One common practical limit: Eve is limited to polynomial runtime algorithms (no exponential-

time algorithms)

36



Edge Cases: Negligible Advantage

● Sometimes it’s possible for Eve to win with probability 1/2 + 1/2128 

○ This probability is greater than 1/2, but it's so close to 1/2 that it's as good as 1/2. 
○ Eve's advantage is so small that she can't use it for any practical attacks 
○ 2128   is larger than the total number of atoms in the universe 

● In the IND-CPA game: The scheme is secure even if Eve can win with 
probability ≤ 1/2 + Ɛ, where Ɛ is negligible 
○ The actual mathematical definition of negligible is out of scope 
○ Example: 1/2 + 1/2128: Negligible advantage 
○ Example: 2/3: Non-negligible advantage
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Edge Cases: Negligible Advantage

● Defining negligibility mathematically: 
○ Advantage of the adversary should be exponentially small, based on the security parameters 

of the algorithm 
○ Example: For an encryption scheme with a k-bit key, the advantage should be O(1/2k) 

● Defining negligibility practically: 
○ A 1/2128 probability is currently unlikely 
○ A 1/220 probability is fairly likely 

■ “One in a million events happen every day in New York City” 
○ In between these extremes, it can be messy 

■ Different algorithms run faster or slower and have their own security parameters 
■ Computers get more powerful over time 
■ Recall: Know your threat model! 

● Takeaway: For now, 280 is a reasonable threshold, but this will change over 
time!
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IND-CPA: Putting it together 

M

Enc(K, M)
(repeat)

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

M

Enc(K, M)

Guess b = 0 or b = 1

(repeat)

pick b
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1. Eve may choose plaintexts to send to Alice and 
receives their ciphertexts 

2. Eve issues a pair of plaintexts M0 and M1 to Alice 
3. Alice randomly chooses either M0 or M1 to encrypt 

and sends the encryption back 
○ Alice does not tell Eve which one was encrypted! 

4. Eve may again choose plaintexts to send to Alice and 
receives their ciphertexts 

5. Eventually, Eve outputs a guess as to whether Alice 
encrypted M0 or M1 

● An encryption scheme is IND-CPA secure if for all 
polynomial time attackers Eve: 
○ Eve can win with probability ≤ 1/2 + Ɛ, where Ɛ is negligible.

KeyGen(): K



A Brief History of Cryptography
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K = 3

M C M C

A D N Q
B E O R
C F P S
D G Q T
E H R U
F I S V
G J T W
H K U X
I L V Y
J M W Z
K N X A
L O Y B
M P Z C

Cryptography by Hand: Caesar Cipher

● One of the earliest cryptographic schemes was 
the Caesar cipher 
○ Used by Julius Caesar over 2,000 years ago 

● KeyGen(): 
○ Choose a key K randomly between 0 and 25 

● Enc(K, M): 
○ Replace each letter in M with the letter K positions later 

in the alphabet 
○ If K = 3, plaintext DOG becomes GRJ 

● Dec(K, C): 
○ Replace each letter in C with the letter K positions 

earlier in the alphabet 
○ If K = 3, ciphertext GRJ becomes DOG
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Cryptography by Hand: Attacks on the Caesar Cipher

● Eve sees the ciphertext JCKN ECGUCT, but doesn’t know the key K 
● If you were Eve, how would you try to break this algorithm? 
● Brute-force attack: Try all 26 possible keys! 
● Use existing knowledge: Assume that the message is in English
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+1   IBJM DBFTBS 
+2   HAIL CAESAR 
+3   GZHK BZDRZQ 
+4   FYGJ AYCQYP 
+5   EXFI ZXBPXO 
+6   DWEH YWAOWN 
+7   CVDG XVZNVM 
+8   BUCF WUYMUL

+9    ATBE VTXLTK 
+10   ZSAD USWKSJ 
+11   YRZC TRVJRI 
+12   XQYB SQUIQH 
+13   WPXA RPTHPG 
+14   VOWZ QOSGOF 
+15   UNVY PNRFNE 
+16   TMUX OMQEMD

+17   SLTW NLPDLC 
+18   RKSV MKOCKB 
+19   QJRU LJNBJA 
+20   PIQT KIMAIZ 
+21   OHPS JHLZHY 
+22   NGOR IGKYGX 
+23   MFNQ HFJXFW 
+24   LEMP GEIWEV 
+25   KDLO FDHVDU



Cryptography by Hand: Attacks on the Caesar Cipher

● Eve sees the ciphertext JCKN ECGUCT, but doesn’t know the key K 
● Chosen-plaintext attack: Eve tricks Alice into encrypting plaintext of her 

choice 
○ Eve sends a message M = AAA and receives C = CCC 
○ Eve can deduce the key: C is 2 letters after A, so K = 2 
○ Eve has the key, so she can decrypt the ciphertext
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Cryptography by Hand: Substitution Cipher

● A better cipher: create a mapping of each 
character to another character. 
○ Example: A = N, B = Q, C = L, D = Z, etc. 
○ Unlike the Caesar cipher, the shift is no longer 

constant! 
● KeyGen(): 

○ Generate a random, one-to-one mapping of 
characters 

● Enc(K, M): 
○ Map each letter in M to the output according to the 

mapping K 
● Dec(K, C): 

○ Map each letter in C to the output according to the 
reverse of the mapping K
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K

M C M C

A N N G
B Q O P
C L P T
D Z Q A
E K R J
F R S O
G V T D
H U U I
I E V C
J S W F
K B X M
L W Y X
M Y Z H



Cryptography by Hand: Attacks on Substitution Ciphers

● Does the brute-force attack still work? 
○ There are 26! ≈ 288 possible mappings to try 

■ Too much for most modern computers… for 
now 

● How about the chosen-plaintext attack? 
○ Trick Alice into encrypting 

ABCDEFGHIJKLMNOPQRSTUVWXYZ, and you’ll 
get the whole mapping! 

● Another strategy: cryptanalysis 
○ The most common english letters in text are 

E, T, A, O, I, N
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M C M C

A N N G
B Q O P
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M Y Z H



Takeaways

● Cryptography started with paper-and-pencil algorithms (Caesar cipher) 
● Then cryptography moved to machines (Enigma) 
● Finally, cryptography moved to computers (which we’re about to study) 
● Hopefully you gained some intuition for some of the cryptographic definitions
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Cryptography by Machines: Enigma

● A mechanical encryption machine used by the Germans in WWII
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Plugboard

Rotors



Enigma Operating Principle: Rotor Machine
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● The encryption core was composed of 3 or 4 rotors 
○ Each rotor was a fixed permutation (e.g. A maps to F, B maps to Q...) 
○ And the end was a "reflector", a rotor that sent things backwards 
○ Plus a fixed-permutation plugboard 

● A series of rotors were arranged in a sequence 
○ Each keypress would generate a current from the input to one light for the output 
○ Each keypress also advanced the first rotor 

■ When the first rotor makes a full rotation, the second rotor advances one step 
■ When the second rotor makes a full rotation, the third rotor advances once step



Cryptography by Machines: Enigma

● KeyGen(): 
○ Choose rotors, rotor orders, rotor positions, and 

plugboard settings 
○ 158,962,555,217,826,360,000 possible keys 

● Enc(K, M) and Dec(K, C): 
○ Input the rotor settings K into the Enigma machine 
○ Press each letter in the input, and the lampboard 

will light up the corresponding output letter 
○ Encryption and decryption are the same algorithm! 

● Germans believed that Enigma was an 
“unbreakable code”
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Cryptography by Machines: Enigma

50

● Enigma has a significant weakness: a letter 
never maps to itself! 
○ No rotor maps a letter to itself 
○ The reflector never maps a letter to itself 
○ This property is necessary for Enigma’s 

mechanical system to work

M

Enc(K, M)
(repeat)

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

M

Enc(K, M)

Guess b = 0 or b = 1

(repeat)

pick b

KeyGen(): K

● What pair of messages should Eve send to 
Alice in the challenge phase? 
○ Send M0 = Ak, M1 = Bk 

○ M0 is a string of k 'A' characters, M1 is a string of k 'B' 
characters 

● How can Eve probably know which message 
Alice encrypted? 
○ If there are no 'A' characters, it was M0 

○ If there are no 'B' characters, it was M1



Cryptography by Machines: Attack on Enigma

● Polish and British cryptographers built BOMBE, a 
machine to brute-force Enigma keys 

● Why was Enigma breakable? 
○ Kerckhoff’s principle: The Allies stole Enigma machines, so 

they knew the algorithm 
○ Known plaintext attacks: the Germans often sent predictable 

messages (e.g. the weather report every morning) 
○ Chosen plaintext attacks: the Allies could trick the Germans 

into sending a message (e.g. “newly deployed minefield”) 
○ Brute-force: BOMBE would try many keys until the correct one 

was found 
■ Plus a weakness: You'd be able to try multiple keys with 

the same hardware configuration

51BOMBE machine



Cryptography by Machines: Legacy of Enigma

● Alan Turing, one of the cryptographers who broke 
Enigma, would go on to become one of the founding 
fathers of computer science 

● Most experts agree that the Allies breaking Enigma 
shortened the war in Europe by about a year
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Alan Turing



Cryptography by Computers

● The modern era of cryptography started after WWII, with the work of Claude 
Shannon 

● “New Directions in Cryptography” (1976) showed how number theory can be 
used in cryptography 
○ Its authors, Whitfield Diffie and Martin Hellman, won the Turing Award in 2015 for this paper 

● This is the era of cryptography we’ll be focusing on
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One of these is Diffie, and 
the other one is Hellman.


