
Midterm 1 Recap

CMSC414 Computer and
Network Security

Mar 7, 2024

Yizheng Chen | University of Maryland

surrealyz.github.io

What does it mean to be secure?

2

• Too difficult for attackers

• Too expensive

• Lower ROI than the next target

• …

• We raise the bar for attackers to succeed

Security Principle: Security is Economics

• Security is often a cost-benefit analysis where someone needs to
make a decision regarding how much security is worth

• The expected benefit of your defense should be proportional to the expected

cost of the attack

• Focus your energy on securing the weakest links

• A system is only as secure as the weakest link

3

Security Principle: Kerkhoff’s Principle

• Kerckhoffs' principle is a fundamental concept in cryptography. It
states that the security of a cryptographic system shouldn't rely on
the secrecy of the algorithm.

• Don’t rely on security through obscurity.

4

Exercise: What’s wrong with this code?

void vulnerable() {
 size_t len;
 char *buf;

 len = read_int_from_network();
 buf = malloc(len+5);
 read(fd, buf, len);
 ...
}

5

size_t is a special unsigned integer type defined in the standard library of C and C++ languages.

Return to libc

Non-Executable Pages

7

• Idea: Most programs don’t need memory that is both written to
and executed, so make portions of memory either executable or
writable but not both

• Stack, heap, and static data: Writable but not executable

• Code: Executable but not writable

• Also known as

• W^X (write XOR execute)

• DEP (Data Execution Prevention, name used by Windows)

• No-execute bit

How to subvert non-executable pages?

8

Idea: return to existing code in memory

👩💻

Stack Frame of a Function

Saved frame pointer of caller (old ebp)
Return address of the caller (old eip)

Arguments

Local variables

High

Low

Stack Growth

9

Stack Frame of a Function

Saved frame pointer of caller (old ebp)
Return address of the caller (old eip)

Arguments

Local variables

High

Low

Stack Growth

10

• Per the x86 calling convention, each program expects arguments to
be placed directly above the RIP (Return Instruction Pointer, old eip)

• Callee saves ebp, push local vars

Return into libc: a real call
Goal: use buffer overflow to fake call

system(“rm -rf /”)
High

address of “rm - rf /”

Return instruction
pointer (old eip)

Low

caller()’s stack
frame

11

esp

ebp

eipCode for system()

Code for caller()

Code section is
executable

- eip is in the
beginning address
of system

Return into libc: a real call
Goal: use buffer overflow to fake call

system(“rm -rf /”)
High

address of “rm - rf /”

Return instruction
pointer (old eip)

Low

caller()’s stack
frame

12

esp

ebp

eipCode for system()

Code for caller()

Assume buffer
allows us to

overwrite enough
bytes

Exercise: Go through leave return

Check that we can call
system(“rm -rf /”)

after executing leave ret

High

address of “rm - rf /”

????

eip in the beginning
of system()

????

????

????

Low

caller()’s stack
frame

13

esp

ebp

eip

Code for system()

Code for caller()

• leave
• mov %ebp %esp
• pop %ebp

• ret: pop %eip

Attack: set up the
stack like this

Exercise: Go through leave return

restore stack pointer

(mov %ebp %esp)

High

address of “rm - rf /”

????

eip in the beginning
of system()

????

????

????

Low

caller()’s stack
frame

14

esp
ebp

eip

Code for system()

Code for caller()

• leave
• mov %ebp %esp
• pop %ebp

• ret: pop %eip

Exercise: Go through leave return

restore the base pointer

(pop %ebp)

High

address of “rm - rf /”

????

eip in the beginning
of system()

????

????

????

Low

caller()’s stack
frame

15

esp

ebp

eip

Code for system()

Code for caller()

• leave
• mov %ebp %esp
• pop %ebp

• ret: pop %eip

Somewhere

Exercise: Go through leave return

restore the base pointer

(pop %ebp)

High

address of “rm - rf /”

????

eip in the beginning
of system()

????

????

????

Low

caller()’s stack
frame

16

esp

ebp

eipCode for system()

Code for caller()

• leave
• mov %ebp %esp
• pop %ebp

• ret: pop %eip

Somewhere

Exercise: Go through leave return
High

address of “rm - rf /”

????

eip in the beginning
of system()

????

????

????

Low

caller()’s stack
frame

17

esp

ebp

eipCode for system()

Code for caller()

Somewhere
High

address of “rm - rf /”

Return instruction
pointer (old eip)

Low

caller()’s stack
frame

esp

ebp

Exercise: Go through leave return
High

address of “rm - rf /”

???? = saved eip as
if it is a real call

eip in the beginning
of system()

????

????

????

Low

caller()’s stack
frame

18

esp

ebp

eipCode for system()

Code for caller()

Somewhere
High

address of “rm - rf /”

Return instruction
pointer (old eip)

Low

caller()’s stack
frame

esp

ebp

- AFTER calling
system(): ???? saved
eip does not matter

NOP Slide / NOP Sled

19

• Putting the shell code in the end of the payload buffer can maximize the
number of NOPs

• Good guess of somewhere in NOP: jumping anywhere inside the NOP
will make the attack successful.

• This improves our chances of guessing by a factor of # of NOPs.

Exceptions to the Same-Origin Policy

20

• Exception: JavaScript runs with the origin of the page that loads it

• Example: If example.com fetches JavaScript from evil.com, the JavaScript has the

origin of example.com

• Intuition: example.com has “copy-pasted” JavaScript onto its webpage

• Exception: Websites can fetch and display images from other origins

• However, the website only knows about the image’s size and dimensions (cannot

actually manipulate the image)

• Exception: Websites can agree to allow some limited sharing

• Cross-origin resource sharing (CORS)

• The postMessage function in JavaScript

How to exploit this?
• Attacker goal: access information on the legitimate website
• Idea: the attacker adds malicious JS to a legitimate website
• JS will run with the origin of the legitimate website

Cross-Site Scripting (XSS)

21

• Cross-site scripting (XSS): Injecting JavaScript into websites that
are viewed by other users

• Cross-site scripting subverts the same-origin policy

• Two main types of XSS

• Stored XSS

• Reflected XSS

Stored XSS

22

• Stored XSS (persistent XSS): The attacker’s JavaScript is stored
on the legitimate server and sent to browsers

• Classic example: Facebook pages

• An attacker puts some JavaScript on their Facebook page

• Anybody who loads the attacker’s page will see JavaScript (with the origin of
Facebook)

• Stored XSS requires the victim to load the page with injected
JavaScript

• Remember: Stored XSS is a server-side vulnerability!

Stored XSS

23

Exploit server-side vulnerability

Stored XSS

24

Stored XSS

25

Reflected XSS

26

• Reflected XSS: The attacker causes the victim to input JavaScript
into a request, and the content is reflected (copied) in the
response from the server

• Classic example: Search

• If you make a request to http://google.com/search?q=bot, the response will
say “10,000 results for bot”

• If you make a request to http://google.com/search?q=<script>alert(1)</
script>, the response will say “10,000 results for <script>alert(1)</script>”

• Reflected XSS requires the victim to make a request with injected
JavaScript

Reflected XSS

27

Reflected XSS

28

Reflected XSS: Making a Request

29

• How do we force the victim to make a request to the legitimate
website with injected JavaScript?

• Trick the victim into visiting the attacker’s website, and include an embedded

iframe that makes the request

• Can make the iframe very small (1 pixel x 1 pixel), so the victim doesn’t
notice it:

<iframe height=1 width=1 src="http://google.com/search?
q=<script>alert(1)</script>">

• clicking a link (e.g. posting on social media, sending a text, etc.)

• visiting the attacker’s website, which redirects to the reflected XSS link

• …

Reflected XSS is not CSRF

30

• Reflected XSS and CSRF both require the victim to make a request
to a link

• Reflected XSS: An HTTP response contains maliciously inserted
JavaScript, executed on the client side

• CSRF: A malicious HTTP request is made (containing the user’s
cookies), executing an effect on the server side

Steps of a CSRF Attack

31

User Client Web Server

1. User authenticates to the server, receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the server

3. The victim makes the malicious request, attaching the cookie, server accepts it

Attacker
1. Login

2. Tricks the victim to
make some malicious request

3. The victim makes the malicious
request with session cookie

Clickjacking: Download Buttons

32

• Which is the real download
button?

• What if the user clicks the
wrong one?

Invisible iframe Variant #1

33

• Frame the legitimate site
invisibly, over visible, enticing
content

• Victims think they are clicking
on the enticing site, but they
click on the legitimate site,
e.g., pay the attacker’s
account

