CMSC414 Computer and
Network Security

Program Analysis for Security

Yizheng Chen | University of Maryland

Mar 5, 2024

Software Security is a major problem!

A widely cited 2002 study prepared for NIST reported that even though
50 percent of software development budgets go to testing, flaws in
software still cost the U.S. economy $59.5 billion annually. nov s, 2010

National Instltute of Standards and Technology (.gov)

oS s gov news veris»news 201011 3 BIIGS EVEBYWIIERE

Updated NIST Software Uses Combination Testing to Catch .. —

According to the Consortium for Information and Software Quality, poor

software quality costs US companies upwards of $2.08 trillion annually.
Jul 9, 2023

a- Raygun.io

https://raygun.com > blog > cost-of-software-errors 2

How much could software errors be costing your company?

Not all bugs are equal!

VS.

'/
Security bugs

Benign functional bugs

Why are security bugs more dangerous than other bugs?

Why security bugs are more dangerous?

malicious
input

victim
computer

attacker

Security bugs allow attackers to cause serious damages: take over
machines remotely, steal secrets, etc.

4

How do we deal with security bugs?

 Monitor a system at runtime to detect and prevent exploits of bugs

 Reminder:. ensure complete mediation

* Accept that programs will have bugs and design the system to
minimize damages

 Example: Sandboxes, privilege separation

* Automatically find and fix bugs

SANDBOAES

Execution environment that restricts what
an application running in it can do

Example: Native Client (NaCl)

Native Client (NaCl) is a secure sandbox for running untrusted
native machine code in the Chrome browser

Special restrictions on the generated code

Chrome apps can embed NaCl modules into their pages

Chrome apps examples: meeting, chat, kindle reader, writer,
Microsoft office online, etc.

NaCL module examples: image processing, PDF render

SANDBOAES

Execution environment that restricts what
an application running in it can do

NaCl’s Takes arbitrary x86, runs it in a sandbox in a browser

restrictions Restrict applications to using a narrow API
Data integrity: No reads/writes outside of sandbox
No unsafe instructions
CFI (control flow integrity): insure that all control
transfers in the program text target an instruction

Identified during disassembly

SANDBOAES

Execution environment that restricts what
an application running in it can do

NaCl’s Takes arbitrary x86, runs it in a sandbox in a browser

restrictions Restrict applications to using a narrow API
Data integrity: No reads/writes outside of sandbox

No unsafe instructions

CFI

Chromium’s Runs each webpage’s rendering engine in a sandbox
restrictions Restrict rendering engines to a narrow “kernel” API

Data integrity: No reads/writes outside of sandbox
(incl. the desktop and clipboard)

8

Sandbox mental model

Sandbox
Narrow
Untrusted interface Trusted
ntruste ¢ | code & data

code & data

(OS)

Can access data
Can make syscalls

All data and
syscalls must
be accessed via
the narrow i/t

 Even the untrusted code needs input

and output

» The goal of the sandbox is to

constrain what the untrusted
program can do:

« What it can execute
 What data it can access

- What system calls it can make, etc.

Sandbox mental model

Ensure complete mediation

Sandbox Every access must go Sandbox
through the mediator

Untrusted Untrusted

code & data | ——»| code & data | &—» code & data

Break the system up into Can write to disk

multiple untrusted components

Untrusted
Principle of least privilege code & data

Limit each one to exactly
what it needs; nothing more

Can read from network

Sandbox

How do we deal with security bugs?

 Automatically find and fix bugs

11

Finding bugs with Program analyzers

Program
Analyzer

Specifica
tions

12

Automated bug detection: main challenges

int main (int x, int y)

{
if (2*yl=x
2%y 1) What values of x and y will cause
, return -1; the program to reach here
if (x>y+10)
Return -1;

.. [* buggy code*/
}

 Too many paths (may be infinite)

 How will program analyzer find inputs that will reach different parts
of code to be tested?

13

Automated bug detection: two options

o Static analysis
* |nspect code or run automated method to
1) find errors
e or 2) gain confidence about their absence

* T[ry to aggregate the program behavior over a large number of paths without
enumerating them explicitly

 Dynamic analysis

 Run code, possibly under instrumented conditions, to see if there are likely
problems in code

 Enumerate paths but avoid redundant ones

14

Static vs dynamic analysis

e Static

 (Can consider all possible inputs
 Find bugs and vulnerabillities

 (Can prove absence of bugs, in some cases

 Dynamic
* Need to choose sample test input
* (Can find bugs and vulnerabilities

 (Cannot prove their absence

15

Soundness & Completeness

property________pefiiton

Recall: A — B is equivalentto (=B) — (—-A)

16

Sound

Unsound

Complete

Reports all errors
Reports no false alarms

Undecidable

May not report all errors
Reports no false alarms

Decidable

17

Soundness & Completeness

Incomplete

Reports all errors
May report false alarms

Decidable

May not report all errors
May report false alarms

Decidable

When to find bugs?

Development QA " Release Maintenance ‘

Cost of bug finding

Credit: Andy Chou, Coverity

18

Source code

Program

Static Analysis for Security

Analyzer

Program analyzer must be able to
understand program properties

(e.g., can a variable be NULL at a
particular program point?)

19

*

Security bugs

Must perform

—> control and data
flow analysis

Control Flow Analysis

e Control flow

 Sequence of operations
 Representations
* Control flow graph
 Control dependence

 (Call graph

e Control flow analysis

* Analyzing program to discover its control structure

20

Control Flow Graph

 CFG models flow of control in the program
* G = (N, E) as a directed graph
 Node n € N: basic blocks

* A basic block is a maximal sequence of statements with a
single entry point, single exit point, and no internal branches

e Edge e=(ni, nj € E: possible transfer of control from block n; to
block n;

21

Control Flow Graph Example

if (x== if (x==y)
hen { Y) O\
else { ...} >

Control Flow Graph Example

23

/’*\\

entry

X
y

'
o}
1.

B

(x '=1)7

X <
i

X X

| %
=<

‘//ﬁaz\\\\\\ifme

ex1lt

Control Flow Graph

CFGs are commonly used to propagate information between
nodes (basic blocks)

* e.g., For data flow analysis
Useful for dynamic analysis

* e.g., fuzzing

24

Data Flow Analysis

 Data-flow analysis is a technique for gathering information about the possible set
of values calculated at various points in a program

* Derives information about the dynamic behavior of a program by only examining
the static code

* Examples:
 Reaching definition analysis
* Live variable analysis

e Dead code detection

25

Data Flow Analysis Example

* Reaching definition analysis:

* At each program point, which assignments entry
(definitions) have been made, and not l
overwritten, when the execution reaches that
point along some path. X = 35;

y = 1;
 Example: assignment x = 5 reaches P1, l
but does not reach P2, since x = x-1 (x !'=1)7

overwrites X.
true false

* This could be useful for detecting many
security vulnerabilities.

X<

20

Do we need to implement control and data flow
analysis from scratch?

» Most modern compilers already perform several types of such
analysis for code optimization

 We can hook into different layers of analysis and customize them

e We still need to understand the details

 LLVM (http://llvm.org/) is a highly customizable and modular
compiler framework

 Users can write LLVM passes to perform different types of analysis
* (Clang static analyzer can find several types of bugs

 (Can instrument code for dynamic analysis

27

Sound

Unsound

Complete

Reports all errors
Reports no false alarms

Undecidable

May not report all errors
Reports no false alarms

Decidable

Incomplete

Reports all errors
May report false alarms

Decidable

May not report all errors
May report false alarms

Decidable

28

Soundness & Completeness

IS
very high
Static analysis: consider
all possible paths in a

program, over report
vulnerabilities

Sound

Unsound

Complete

Reports all errors
Reports no false alarms

Undecidable

May not report all errors
Reports no false alarms

Decidable

Incomplete

Reports all errors
May report false alarms

Decidable

May not report all errors
May report false alarms

Decidable

29

Soundness & Completeness

Dynamic analysis:
execute programs on
concrete input, but may
miss vulnerabilities

Sound

Unsound

Complete

Reports all errors
Reports no false alarms

Undecidable

May not report all errors
Reports no false alarms

Decidable

Incomplete

Reports all errors
May report false alarms

Decidable

May not report all errors
May report false alarms

Decidable

30

Soundness & Completeness

Implementations of
some tools may belong
here but it’'s not very
nice

Fuzzing

 Fuzzing, or fuzz testing, is an automated software testing
technique that involves providing invalid, semi-valid, unexpected,
or random data as inputs to a computer program.

31

Blackbox Fuzzing

Random ﬁ
input o -
—> O

0110 ‘
0001 0
01101

Test program

Miller et al. ‘89

32

Blackbox Fuzzing

* Given a program simply feed random inputs and see whether it
exhibits incorrect behavior (e.g., crashes)

 Advantage: easy, low programmer cost

* Disadvantage: inefficient

* |nputs often require structures, random inputs are likely to be malformed

* |nputs that trigger an incorrect behavior is a a very small fraction, probably of
getting lucky is very low

33

Fuzzing

Automatically generate test cases
Many slightly anomalous test cases are input into a target

Application is monitored for errors

 See If program crashed, e.g., SEGV vs. assert fall

* See if program locks up

Inputs are generally either file based (.pdf, .png, .wav, etc.) or
network based (http, SNMP, etc.)

Test application
I

34

Enhancement 1:
Mutation-Based fuzzing

Take a well-formed input, randomly perturb (flipping bit, etc.)
Little or no knowledge of the structure of the inputs is assumed

Anomalies are added to existing valid inputs

 Anomalies may be completely random or follow some heuristics (e.g., remove
NULL, shift character forward)

Examples: ZZUF, Taof, GPF, ProxyFuzz, FileFuzz, Filep, etc.

—> — ..~..$|°—_I—>
X -

oo - ‘
0001 Q
01101

Seed input Mutated input Run test program

35

Example: fuzzing a PDF viewer

 Google for .pdf (about 1 billion results)
 Crawl pages to build a corpus

e Use fuzzing tool (or script)
* (Collect seed PDF files
 Mutate that file
 Feed it to the program

 Record if it crashed (and input that crashed it)

36

Mutation-based fuzzing

Super easy to setup and automate
Little or no file format knowledge is required
Limited by initial corpus

May fail for protocols with checksums, those which depend on
challenge

37

Enhancement ll:
Generation-Based Fuzzing

* Test cases are generated from some description of the input
format: RFC, documentation, etc.

* Using specified protocols/file format info

 Anomalies are added to each possible spot in the inputs

 Knowledge of protocol should give better results than random
fuzzing

RFC, — —

Input spec Generated inputs Run test program

33

Example: fuzzing a PNG file parser

//png.spk
//author: Charlie Miller

// Header - fixed.
s binary("89504E470D0A1AOA") ;

// IHDRChunk

s binary block size word bigendian ("IHDR") ;

s block start ("IHDRcrc");
s string ("IHDR"); // type
s block start ("IHDR");

//size of data field

// The following becomes s int variable for variable stuff

// 1=BINARYBIGENDIAN, 3=ONEBYE

s push int (Oxla, 1); //
s push int (0x14, 1); //
s push int (0x8, 3); //
s push int (0x3, 3); //
s binary("00 00"); //
s push int (0x0, 3); //

s block end("IHDR");

s binary block crc word littleendian("IHDRcrc"); // crc of type and data

s block end("IHDRcrc");

Width
Height
Bit Depth - should be
ColorType - should be
Compression || Filter
Interlace - should be

Sample PNG Spec

o | O

N NN

6, base

e 00 00

Mutation-based vs. Generation-based

e Mutation-based fuzzer

 Pros: Easy to set up and automate, little to no knowledge of input format
required

 (Cons: Limited by initial corpus, may fail for protocols with checksums and
other hard checks

 (Generation-based fuzzers
 Pros: Completeness, can deal with complex dependencies (e.g, checksum)

 (Cons: writing generators is hard, performance depends on the quality of the
spec

40

How much fuzzing is enough?

 Mutation-based-fuzzers may generate an infinite number of test
cases. When has the fuzzer run long enough?

* (Generation-based fuzzers may generate a finite number of test
cases. What happens when they’re all run and no bugs are found?

41

Code coverage

 Some of the answers to these questions lie in code coverage

 Code coverage is a metric that can be used to determine how
much code has been executed.

 Data can be obtained using a variety of profiling tools. e.g. gcov,
lcov

42

Different Coverage Metrics

* Line/block coverage: Measures how many lines of source code
have been executed

 Branch coverage: Measures how many branches in code have
been taken (conditional jmps)

 Path coverage: Measures how many paths have been taken

43

Code coverage

 Pros:

e Can evaluate an input

e Can compare fuzzers

 Am | getting stuck somewhere?
* Cons:

* Full coverage (any metric) does not guarantee finding the bug

44

Enhancement lll:
Coverage-guided gray-box fuzzing

o Special type of mutation-based fuzzing

 Run mutated inputs on instrumented program and measure
code coverage

e Search for mutants that result in coverage increase

e Often use genetic evolution algorithms, i.e., try random
mutations on test corpus and only add mutants to the corpus if
coverage Iincreases

« Examples: AFL, libfuzzer

45

American Fuzzy Lop (AFL)

/ O N\

. + Execute

Seed RSN AN N against

inputs ™ = -> — — @ instrumented
* target

Input Next input
gueue

branch/edg

e coverage

Add mutant .
increased?

to the queue

Periodically culls the

queue without
affecting total coverage

46

