
Program Analysis for Security

CMSC414 Computer and
Network Security

Mar 5, 2024

Yizheng Chen | University of Maryland

surrealyz.github.io

Software Security is a major problem!

2

Not all bugs are equal!

3

Why security bugs are more dangerous?

Security bugs allow attackers to cause serious damages: take over
machines remotely, steal secrets, etc.

4

How do we deal with security bugs?

5

• Monitor a system at runtime to detect and prevent exploits of bugs

• Reminder: ensure complete mediation

• Accept that programs will have bugs and design the system to
minimize damages

• Example: Sandboxes, privilege separation

• Automatically find and fix bugs

5

SANDBOXES
Execution environment that restricts what

an application running in it can do

6

Example: Native Client (NaCl)

• Native Client (NaCl) is a secure sandbox for running untrusted

native machine code in the Chrome browser

• Special restrictions on the generated code

• Chrome apps can embed NaCl modules into their pages

• Chrome apps examples: meeting, chat, kindle reader, writer,

Microsoft office online, etc.

• NaCL module examples: image processing, PDF render

SANDBOXES
Execution environment that restricts what

an application running in it can do

NaCl’s
restrictions

Takes arbitrary x86, runs it in a sandbox in a browser
Restrict applications to using a narrow API

Data integrity: No reads/writes outside of sandbox

No unsafe instructions

CFI (control flow integrity): insure that all control

transfers in the program text target an instruction

Identified during disassembly

7

SANDBOXES
Execution environment that restricts what

an application running in it can do

NaCl’s
restrictions

Chromium’s
restrictions

Takes arbitrary x86, runs it in a sandbox in a browser
Restrict applications to using a narrow API

Data integrity: No reads/writes outside of sandbox

No unsafe instructions

CFI

Runs each webpage’s rendering engine in a sandbox
Restrict rendering engines to a narrow “kernel” API

Data integrity: No reads/writes outside of sandbox
(incl. the desktop and clipboard)

8

Sandbox mental model

Untrusted
code & data

Trusted
code & data

(OS)

Narrow
interface

Sandbox • Even the untrusted code needs input
and output

• The goal of the sandbox is to
constrain what the untrusted
program can do:
• What it can execute
• What data it can access
• What system calls it can make, etc.

Can access data
Can make syscalls

All data and
syscalls must

be accessed via
the narrow i/f

9

Sandbox mental model

Untrusted
code & data

Trusted
code & data

(OS)

Sandbox

Untrusted
code & data

Sandbox

Untrusted
code & data

Sandbox

Break the system up into
multiple untrusted components

Principle of least privilege
Limit each one to exactly

what it needs; nothing more

Can write to disk

Can read from network

Ensure complete mediation
Every access must go
through the mediator

How do we deal with security bugs?

11

• Monitor a system at runtime to detect and prevent exploits of bugs

• Reminder: ensure complete mediation

• Accept that programs will have bugs and design the system to
minimize damages

• Example: Sandboxes, privilege separation

• Automatically find and fix bugs

11

Finding bugs with Program analyzers

1212

Specifica
tions

Automated bug detection: main challenges

1313

• Too many paths (may be infinite)

• How will program analyzer find inputs that will reach different parts

of code to be tested?

Automated bug detection: two options

14

• Static analysis

• Inspect code or run automated method to

• 1) find errors

• or 2) gain confidence about their absence

• Try to aggregate the program behavior over a large number of paths without
enumerating them explicitly

• Dynamic analysis

• Run code, possibly under instrumented conditions, to see if there are likely

problems in code

• Enumerate paths but avoid redundant ones

14

Static vs dynamic analysis

15

• Static

• Can consider all possible inputs

• Find bugs and vulnerabilities

• Can prove absence of bugs, in some cases

• Dynamic

• Need to choose sample test input

• Can find bugs and vulnerabilities

• Cannot prove their absence

15

Soundness & Completeness

1616

Soundness & Completeness

1717

When to find bugs?

1818

Static Analysis for Security

19

Control Flow Analysis

20

• Control flow

• Sequence of operations

• Representations

• Control flow graph

• Control dependence

• Call graph

• Control flow analysis

• Analyzing program to discover its control structure

20

Control Flow Graph

21

• CFG models flow of control in the program

• G = (N, E) as a directed graph

• Node n ∈ N: basic blocks

• A basic block is a maximal sequence of statements with a
single entry point, single exit point, and no internal branches

• Edge e=(ni, nj) ∈ E: possible transfer of control from block ni to
block nj

21

Control Flow Graph Example

2222

Control Flow Graph Example

2323

x = 5;
y = 1;
while (x != 1) {
 y = x * y;
 x = x - 1;
}

x = 5;
y = 1;

entry

(x != 1)?

y = x * y;
x = x - 1;

exit
falsetrue

Control Flow Graph

24

• CFGs are commonly used to propagate information between
nodes (basic blocks)

• e.g., For data flow analysis

• Useful for dynamic analysis

• e.g., fuzzing

24

Data Flow Analysis

25

• Data-flow analysis is a technique for gathering information about the possible set
of values calculated at various points in a program

• Derives information about the dynamic behavior of a program by only examining
the static code

• Examples:

• Reaching definition analysis

• Live variable analysis

• Dead code detection

• …

25

Data Flow Analysis Example

26

• Reaching definition analysis:

• At each program point, which assignments

(definitions) have been made, and not
overwritten, when the execution reaches that
point along some path.

• Example: assignment x = 5 reaches P1,
but does not reach P2, since x = x-1
overwrites x.

• This could be useful for detecting many
security vulnerabilities.

26

x = 5;
y = 1;

entry

(x != 1)?

y = x * y;
x = x - 1;

exit
falsetrue

P1

P2

Do we need to implement control and data flow
analysis from scratch?

27

• Most modern compilers already perform several types of such
analysis for code optimization

• We can hook into different layers of analysis and customize them

• We still need to understand the details

• LLVM (http://llvm.org/) is a highly customizable and modular
compiler framework

• Users can write LLVM passes to perform different types of analysis

• Clang static analyzer can find several types of bugs

• Can instrument code for dynamic analysis

27

Soundness & Completeness

2828

False positive rate is
very high

Static analysis: consider
all possible paths in a
program, over report
vulnerabilities

Soundness & Completeness

2929

Dynamic analysis:
execute programs on
concrete input, but may
miss vulnerabilities

Soundness & Completeness

3030

Implementations of
some tools may belong
here but it’s not very
nice

Fuzzing

31

• Fuzzing, or fuzz testing, is an automated software testing
technique that involves providing invalid, semi-valid, unexpected,
or random data as inputs to a computer program.

31

Blackbox Fuzzing

3232

Blackbox Fuzzing

33

• Given a program simply feed random inputs and see whether it
exhibits incorrect behavior (e.g., crashes)

• Advantage: easy, low programmer cost

• Disadvantage: inefficient

• Inputs often require structures, random inputs are likely to be malformed

• Inputs that trigger an incorrect behavior is a a very small fraction, probably of
getting lucky is very low

33

Fuzzing

34

• Automatically generate test cases

• Many slightly anomalous test cases are input into a target

• Application is monitored for errors

• See if program crashed, e.g., SEGV vs. assert fail

• See if program locks up

• Inputs are generally either file based (.pdf, .png, .wav, etc.) or
network based (http, SNMP, etc.)

34

Enhancement 1:
Mutation-Based fuzzing

35

• Take a well-formed input, randomly perturb (flipping bit, etc.)

• Little or no knowledge of the structure of the inputs is assumed

• Anomalies are added to existing valid inputs

• Anomalies may be completely random or follow some heuristics (e.g., remove

NULL, shift character forward)

• Examples: ZZUF, Taof, GPF, ProxyFuzz, FileFuzz, Filep, etc.

35

Example: fuzzing a PDF viewer

36

• Google for .pdf (about 1 billion results)

• Crawl pages to build a corpus

• Use fuzzing tool (or script)

• Collect seed PDF files

• Mutate that file

• Feed it to the program

• Record if it crashed (and input that crashed it)

36

Mutation-based fuzzing

37

• Super easy to setup and automate

• Little or no file format knowledge is required

• Limited by initial corpus

• May fail for protocols with checksums, those which depend on
challenge

37

Enhancement II:
Generation-Based Fuzzing

38

• Test cases are generated from some description of the input
format: RFC, documentation, etc.

• Using specified protocols/file format info

• Anomalies are added to each possible spot in the inputs

• Knowledge of protocol should give better results than random
fuzzing

38

Example: fuzzing a PNG file parser

3939

Sample PNG Spec

Mutation-based vs. Generation-based

40

• Mutation-based fuzzer

• Pros: Easy to set up and automate, little to no knowledge of input format

required

• Cons: Limited by initial corpus, may fail for protocols with checksums and
other hard checks

• Generation-based fuzzers

• Pros: Completeness, can deal with complex dependencies (e.g, checksum)

• Cons: writing generators is hard, performance depends on the quality of the
spec

40

How much fuzzing is enough?

41

• Mutation-based-fuzzers may generate an infinite number of test
cases. When has the fuzzer run long enough?

• Generation-based fuzzers may generate a finite number of test
cases. What happens when they’re all run and no bugs are found?

41

Code coverage

42

• Some of the answers to these questions lie in code coverage

• Code coverage is a metric that can be used to determine how
much code has been executed.

• Data can be obtained using a variety of profiling tools. e.g. gcov,
lcov

42

Different Coverage Metrics

43

• Line/block coverage: Measures how many lines of source code
have been executed

• Branch coverage: Measures how many branches in code have
been taken (conditional jmps)

• Path coverage: Measures how many paths have been taken

43

Code coverage

44

• Pros:

• Can evaluate an input

• Can compare fuzzers

• Am I getting stuck somewhere?

• Cons:

• Full coverage (any metric) does not guarantee finding the bug

44

Enhancement III:
Coverage-guided gray-box fuzzing

45

• Special type of mutation-based fuzzing

• Run mutated inputs on instrumented program and measure
code coverage

• Search for mutants that result in coverage increase

• Often use genetic evolution algorithms, i.e., try random
mutations on test corpus and only add mutants to the corpus if
coverage increases

• Examples: AFL, libfuzzer

45

American Fuzzy Lop (AFL)

46

