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https://docs.paloaltonetworks.com/advanced-wildfire/administration/advanced-wildfire-overview
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#2: signature
#4, #5: ML-based, static analysis

#6: Dynamic analysis in 
sandbox (VMs)




3



Agenda

• ML Security


• Security Applications


• Images


• Other Applications
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Broad Classes of ML Algorithms
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• Supervised Learning 
• Labels for each data point


• Prediction


• Classification (discrete labels), Regression (real values)


• Unsupervised Learning

• No labels


• Clustering


• Semi-supervised Learning


• Reinforcement Learning


• …



Broad Overview of ML Algorithms
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Security Classifiers
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Example: Raw Content of a PDF Malware

1 0 obj <<
/OpenAction <<
    /JS 2 0 R
    /S /JavaScript
    >>
/Pages 3 0 R
/Type /Catalog
>> endobj

3 0 obj <<
/Count 1
/Kids [4 0 R]
/Type /Pages
>> endobj

2 0 obj <<
/Filter /FlateDecode
/Length 2660
>> stream
…
endstream
endobj

4 0 obj <<
/Parent 3 0 R
/Type /Page
>> endobj

trailer
<</Root 1 0 R /Size 5>>

Exploit!

8



Example: Raw Content of a PDF Malware

1 0 obj <<
/OpenAction <<
    /JS 2 0 R
    /S /JavaScript
    >>
/Pages 3 0 R
/Type /Catalog
>> endobj

3 0 obj <<
/Count 1
/Kids [4 0 R]
/Type /Pages
>> endobj

2 0 obj <<
/Filter /FlateDecode
/Length 2660
>> stream
…
endstream
endobj

4 0 obj <<
/Parent 3 0 R
/Type /Page
>> endobj

trailer
<</Root 1 0 R /Size 5>>

• When PDF is open

• Decode and Execute 

JavaScript at 2 0 obj

• “2 0 R” refers the 

object 2 0

Exploit!
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Parse PDF into a Tree Structure

/Root/OpenAction
/Root/OpenAction/JS
/Root/OpenAction/JS/Filter
/Root/OpenAction/JS/Length
/Root/OpenAction/S
/Root/Pages
/Root/Pages/Count
/Root/Pages/Kids
/Root/Pages/Kids/Type
/Root/Pages/Type
/Root/Type

Binary feature vector: whether the path exists

“Detection of malicious pdf files based on hierarchical document structure” N. Šrndic and P. Laskov, NDSS 2013

10



Training the PDF Malware Classifier

11

• Randomly split train/test

• Test accuracy: 99%



Assumption: Training Data is Representative
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• Deployment accuracy: ??



Real-world Malware Authors Bypass Detectors
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“Needles in a Haystack: Mining Information from Public Dynamic Analysis Sandboxes for Malware Intelligence” Graziano et al., USENIX Security’15

Initial Malware Add Evasion 
Functionality

Submit to
Anti-Virus Product

Malicious

Submit to
Anti-Virus Product

Malicious

Add Evasion 
Functionality

Evades
Anti-Virus Product

Benign



ML Security Threat Models
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• Knowledge and access of model/system

• White box: attacker knows internal structure, Black box: attacker doesn’t know 

internal structure


• Fine-grained: feature, architecture, model weights, training algorithm, training data


• Knows about the defense?


• How many queries can the attacker make?


• Hard label: classification label, Soft label: classification score


• Ability to influence the model/system

• Can the attacker influence the initial training data/model?


• Is data from the attacker used in model updates?



Evasion Attacks
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• Attacker tries to cause a misclassification

• Identify the key set of features to modify for evasion


• Attack strategy depends on knowledge about the classifier

• Learning algorithm, feature space, training data



Adversarial Example
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Domain Classifier Space “Reality” Space

Trojan Wars Judgement of Trojans

     = “gift”

Physical Reality

      = invading army

Malware Malware Detector

     = “benign”

Victim’s Execution

      = malicious behavior

Image Classification

f(x)

Is "Adversarial Examples" an Adversarial Example? Keynote talk at 1st Deep Learning and Security Workshop, 2018.

f(x)

f*(x)

f*(x)



Malware: Adversarial Examples

17

• Given seed sample x, x’ is an adversarial example iff:


•                     Class is t (for malware, t= “benign”)


•                     Behavior we care about is the same

f(x′￼) = t

B(x′￼) = B(x)

Malware adversarial example: evasive variant preserves malicious 
behavior of seed, but is classified as benign



Automated Evasion Approach

• Building block operations

• Feature insertion-only attacks.


• Mimicry, merging with benign features.


• Mutation operations (insert, replace, delete).


• Optimization

• Greedy


• Genetic Evolution
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Automated Evasion Approach

• Building block operations

• Feature insertion-only attacks.


• Mimicry, merging with benign features.


• Mutation operations (insert, replace, delete).


• Optimization: slowly change the input according to the prediction

• Greedy


• Genetic Evolution
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Mimicry Attack, insertion only: 
Evading Gmail’s PDF Malware Classifier

Attack worked in 2018
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Adversarial Example
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Domain Classifier Space “Reality” Space

Trojan Wars Judgement of Trojans

     = “gift”

Physical Reality

      = invading army

Malware Malware Detector

     = “benign”

Victim’s Execution

      = malicious behavior

Image Classification DNN Classifier
 Human Perception

f*(x) = cf(x) = t

f(x)

Is "Adversarial Examples" an Adversarial Example? Keynote talk at 1st Deep Learning and Security Workshop, 2018.

f(x)

f*(x)

f*(x)



Image Classification: Adversarial Example
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“Explaining and Harnessing Adversarial Examples”, Goodfellow et al, ICLR 2015.



Image Classification: Adversarial Example
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• Given seed sample x, x’ is an adversarial example iff:


•                     Class t is a wrong class, chosen t or arbitrary t


•                     Small imperceptible noise

f(x′￼) = t

B(x′￼) = B(x)

Adversarial example: looks the same to human, but classified 
differently by a neural network model



Evasion Attacks in the Physical World

Sharif, Bhagavatula, Bauer, Reiter, Accessorize to a Crime: Real and Stealthy Attacks on State-Of-The-Art Face Recognition, CCS 2016
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Evasion Attacks in the Physical World

25

Eykholt et al., Robust Physical-World Attacks on Deep Learning Models, CVPR 2018

Misclassified as Speed Limit 45 Sign



Evasion Attacks in the Physical World
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“Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors”, Zuxuan et al, ECCV 2020

Object detection: person disappears



Neural Network Model Evasion Attack Idea
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• ,    i.e.,   


• Model , parameters , input x, label y, predicted 


• The parameters  and input x are symmetric to the Neural Network model


• Training: optimize , so we have small errors between  and y


• Evasion attack: optimize x, so we have small errors between  and 
a target class

• Subject to small perturbation constraints

fθ(x) = ̂y f(x, θ) = ̂y
f θ ̂y

θ

θ ̂y

̂y
Attack needs to change x that predicts differently



Neural Network Model Evasion Attack Idea
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Evasion attacks

Training 
data Preprocessing ML 

Algorithm

Predictive 
model OutputNew 

data Preprocessing

Exploits vulnerable 
features of the 
algorithm by altering 
inputs to the model
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Threat model for attacks in ML

Training 
data Preprocessing ML 

Algorithm

Predictive 
model OutputNew 

data Preprocessing

What else can the adversary attack?
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Poisoning attacks

Training 
data Preprocessing ML 

Algorithm

Predictive 
model OutputNew 

data Preprocessing

Tampers with training 
data to manipulate 
the model
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Poisoning attack
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Poisoning attacks
• Tamper with training data to manipulate model 

• Two practical poisoning methods: 
• Inject mislabeled samples to training data  

- ➔ wrong classifier 
• Alter worker behaviors uniformly by enforcing system 

policies 
- ➔ harder to train accurate classifiers
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Model inversion attack

Training 
data Preprocessing ML 

Algorithm

Predictive 
model OutputNew 

data Preprocessing

Exploits features of 
the model to extract 
properties of the 
training data
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Takeaway

If you use AI, there are new components in the system, so they allow 
more attacks…

👩💻
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