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Announcement
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• Project 2 released


• The deadline of Project 2 is 11:59pm ET on Friday Mar 8, with the 
24 hour late deadline being 11:59pm on Mar 9.


• Don’t wait!



Agenda

• UI Attacks


• CAPTCHAs


• Security Principles
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Reflected XSS vs CSRF
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• Reflected XSS and CSRF both require the victim to make a request 
to a link


• Reflected XSS: An HTTP response contains maliciously inserted 
JavaScript, executed on the client side


• CSRF: A malicious HTTP request is made (containing the user’s 
cookies), executing an effect on the server side



How to trick the users into making a HTTP request?

👩💻
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UI Attacks
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• General theme: The attacker tricks the victim into thinking they are 
taking an intended action, when they are actually taking a 
malicious action


• Two main types of UI attacks

• Clickjacking: Trick the victim into clicking on something from the attacker


• Phishing: Trick the victim into sending the attacker personal information



Clickjacking
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• Clickjacking: Trick the victim into clicking on something from the 
attacker


• The browser trusts the user’s clicks


• Why steal clicks?

• Download a malicious program


• Like a Facebook page/YouTube video


• Delete an online account



Clickjacking: Download Buttons
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• Which is the real download 
button?


• What if the user clicks the 
wrong one?



Invisible iframe Variant #1
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• Frame the legitimate site 
invisibly, over visible, enticing 
content


• Victims think they are clicking 
on the enticing site, but they 
click on the legitimate site, 
e.g., pay the attacker’s 
account



Invisible iframe Variant #2
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• Frame the legitimate site 
visibly, under invisible 
malicious content


• Victims think they are clicking 
on the visible legitimate site, 
but their click happens on the 
malicious site, e.g., fake likes, 
download malicious software



Invisible iframe Variant #3
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Invisible iframe Variant #3
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• Frame the legitimate site 
visibly, under malicious 
content partially overlaying the 
site


• The attacker can change the 
appearance of the site without 
breaking the Single-Origin 
Policy



Clickjacking: Temporal Attack
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• Attacker uses JavaScript to detect the position of the cursor and 
change the website right before the user clicks on something


• The user clicks on the malicious input (embedded iframe, 
download button, etc.) before they notice that something changed



Clickjacking: Temporal Attack
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Clickjacking: Temporal Attack
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Clickjacking: Cursorjacking

16

Fake cursor, created with 
CSS and/or JavaScript

Real cursor, hidden or less 
visible with CSS

• Arrange a fixed distance between them



Clickjacking: Cursorjacking
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• leads victims to misinterpret a click’s target



Clickjacking Defense
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• Direct the user’s attention to their click: Ensure clear visual 
separation between important dialogs and content, e.g., darken 
the background



Clickjacking Defense
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• Delay the click: Force the user to hover over the desired button 
for some amount of time before allowing the user to click the 
button.

Wait 1 second 
before allowing 
click on the OK 
button



Clickjacking Defense
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• Confirmation pop-ups: 
• The browser needs to confirm that the user’s click was intentional


• Drawbacks: Asking for confirmation annoys users 



Clickjacking Defense
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• Frame-busting: The legitimate website forbids other websites 
from embedding it in an iframe

• Defeats the invisible iframe attacks


• Can be enforced by Content Security Policy (CSP)


• Can be enforced by X-Frame-Options (an HTTP header)


• Drawbacks: relies on the end-user's browser enforcing their own security. 
This makes the method unreliable.



Phishing
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• Phishing is a form of social engineering and scam where attackers 
deceive people into revealing sensitive information or installing 
malware such as ransomware. 


• The user can’t distinguish between a legitimate website and a 
website impersonating the legitimate website
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Phishing
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Phishing



Phishing
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Is this PayPal?



Phishing
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After filling out 
the previous 
boxes



Phishing
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After filling out 
the previous 
boxes



Phishing: Homograph Attacks
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• Homograph: Two words that look the same, but have different 
meanings


• Homograph attack: Creating malicious URLs that look similar (or 
the same) to legitimate URLs



Phishing: Homograph Attacks
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Phishing: Homograph Attacks
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• Cyrllic alphabet

• Written in unicode

• Certificate under 

xn--80ak6aa92e.com

• Looks more real in 

some browsers

https://www.xudongz.com/blog/2017/idn-phishing/



Phishing: Homograph Attacks
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Phishing: Homograph Attacks
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Phishing: Homograph Attacks
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• Unicode characters 2044 (⁄) 
and 2215 (∕) are allowed in 
hostnames.


• Confusing chars



Phishing: Browser in Browser Attack
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Two-Factor Authentication
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• Problem: Phishing attacks allow attackers to learn passwords


• Idea: Require more than passwords to log in


• Two-factor authentication (2FA): The user must prove their identity in two 
different ways before successfully authenticating


• Three main ways for a user to prove their identity

• Something the user knows: Password, security question (e.g. name of your first pet)


• Something the user has: Their phone, their security key


• Something the user is: Fingerprint, face ID


• Even if the attacker steals the user’s password with phishing, they don’t have the 
second factor!



Subverting 2FA: Relay Attacks / MiTM

36



Subverting 2FA: Relay Attacks / MiTM

Be careful about the attacker’s website

In DuoMobile, check the IP address!
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2FA Example: Authentication Tokens
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• Authentication token: A device that generates secure second-factor codes (Something the 
user owns)


• Examples: RSA SecurID, Google Authenticator, DuoMobile

• The token and the server share a common secret key k


• When the user wants to log in, the token generates a code HMAC(k, time)


• The time is often truncated to the nearest 30 seconds for usability


• The code is often truncated to 6 digits for usability


• The user submits the code to the website


• The website uses its secret key to verify the HMAC


• Drawback: Vulnerable to online brute-force attacks; Possible fix: Add a timeout


• Drawback: Vulnerable to relay attacks; Fix: User needs to be more careful, read the IP 
address
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Subverting 2FA: Social Engineering
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• Some 2FA schemes text a one-time code to a phone number

• Attackers can call your phone provider (e.g. Verizon) and tell them to activate 

the attacker’s SIM card, so they receive your texts!


• 2FA via SMS is not great but better than nothing


• Some 2FA schemes can be bypassed with customer support

• Attackers can call customer support and ask them to deactivate 2FA!


• Companies should validate identity if you ask to do this (but not all do)



Subverting 2FA: Social Engineering
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• UI Attacks
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• Security Principles
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Websites are for Humans 
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• Most websites are designed for human usage, not robot usage

• Example: A login page is for users to submit their password, not for an 

attacker to automate a brute-force attack


• Robot access of websites can lead to attacks

• Example: Denial of service: Overwhelming a web server by flooding it with 

requests



CAPTCHAs: Definition
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• CAPTCHA: A challenge that is easy for a human to solve, but hard 
for a computer to solve

• “Completely Automated Public Turing test to tell Computers and Humans 

Apart”


• Sometimes called a “reverse Turing test”


• Used to distinguish web requests made by humans and web requests made 
by robots


• Usage: Administer a CAPTCHA, and if it passes, assume that the 
user is human and allow access



CAPTCHAs: Examples
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• Reading distorted text

• Identifying images

• Listening to an audio clip and 

typing out the words spoken



CAPTCHAs and Machine Learning 

• Modern CAPTCHAs have another 
purpose: Training machine learning 
algorithms

• Machine learning often requires manually-

labeled datasets


• CAPTCHAs crowdsource human power to 
help manually label these big datasets


• Example: Machine vision problems require 
manually-labeled examples: “This is a stop 
sign”
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Security Principles
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• Confidentiality, Integrity, Availability, Authentication


• Detect if you can’t prevent


• Defense in depth


• Least privilege


• Separation of responsibility / privileges


• Ensure complete mediation


• Don’t rely on security through obscurity


• Use fail-safe defaults


• Design in security from the start


• Consider human factors



Detect if you can’t prevent
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• Prevention: Stop the attack from taking place


• Detection: Learn that there was an attack

• If you can’t stop the attack from happening, you should at least be able to 

know that the attack has happened.


• Response: Do something about the attack (after it happened)

• Once you know the attack happened, you should respond


• Detection without response is pointless!



Response: Mitigation and Recovery
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• Assume that bad things will happen! You should plan security in way that lets you 
to get back to a working state.


• Example: Mitigate the Consequences from Potential Ransomware

• Keep offsite backups!


• Example: Recover your homework if the computer stops working

• Use Git version control, push frequently


• Bad Example: Bitcoin transactions are irreversible. If you are hacked, you can 
never recover your Bitcoins.

• $68M stolen from NiceHash exchange in December 2017


• Four multi-million-dollar attacks on Ethereum in July 2018


• Coinbase: One detected theft per day
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Defense in Depth

52

• Multiple types of defenses should be layered together

• An attacker should have to breach all defenses to successfully attack a 

system


• e.g., multiple defenses for buffer overflow, sql injection, XSS, CSRF


• However, consider security is economics

• Defenses are not free.


• Defenses are often less than the sum of their parts



Principle of Least Privilege
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• Consider what permissions an entity or program needs to be able 
to do its job correctly

• If you grant unnecessary permissions, a malicious or hacked program could 

use those permissions against you


• e.g., non-executable pages, same-origin policy



Separation of Responsibility / Privileges
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• If you need to have a privilege, consider requiring multiple parties 
to work together (collude) to exercise it

• It’s much more likely for a single party to be malicious than for all multiple 

parties to be malicious and collude with one another


• e.g., requires multiple keys from different people to access an important 
system



Ensure Complete Mediation
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• Ensure that every access point is monitored and protected

• Reference monitor: Single point through which all access must occur


• Example: A network firewall, airport security, the doors to the dorms


• Desired properties of reference monitors:

• Correctness


• Completeness (can’t be bypassed)


• Security (can’t be tampered with)



TOCTTOU Vulnerabilities
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• A common failure of ensuring complete mediation involving race 
conditions

procedure withdrawal(w)
// contact central server to get balance
1. let b := balance

2. if b < w, abort

// contact server to set balance
3. set balance := b - w

4. give w dollars to user



TOCTTOU Vulnerabilities
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procedure withdrawal($100)
1. let b := balance

2. if b < $100, abort

// contact server to set balance
3. set balance := b - $100

4. give w dollars to user

procedure withdrawal($100)
1. let b := balance

2. if b < $100, abort

// contact server to set balance
3. set balance := b - $100

4. give w dollars to user

Time
• If I only have $100

• Withdraw $200



Use Fail-Safe Defaults
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• Choose default settings that “fail safe,” balancing security with 
usability when a system goes down

• e.g., Content Security Policy: By default, reject JavaScript from all websites, 

use an allowlist to accept some JavaScript from trustworthy website



Design in Security from the Start
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• When building a new system, include security as part of the design 
considerations rather than patching it after the fact

• A lot of systems today were not designed with security from the start, 

resulting in patches that don’t fully fix the problem!


• Keep these security principles in mind whenever you write code!



Consider Human Factors
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• Users like convenience; if a security system is unusable and not 
user-friendly, no matter how secure it is, it will go unused


• Example:

• Pop-up box: install secure update? Users click “remind me later”


• Automatically downloads important updates by default, easy install and 
restart


• Consider factors such as developers make mistakes, users are 
susceptible to social engineering attacks…


