
UI Attacks, CAPTCHAs, Security Principles

CMSC414 Computer and
Network Security

Feb 22, 2024

Yizheng Chen | University of Maryland

surrealyz.github.io

Announcement

2

• Project 2 released

• The deadline of Project 2 is 11:59pm ET on Friday Mar 8, with the
24 hour late deadline being 11:59pm on Mar 9.

• Don’t wait!

Agenda

• UI Attacks

• CAPTCHAs

• Security Principles

3

Reflected XSS vs CSRF

4

• Reflected XSS and CSRF both require the victim to make a request
to a link

• Reflected XSS: An HTTP response contains maliciously inserted
JavaScript, executed on the client side

• CSRF: A malicious HTTP request is made (containing the user’s
cookies), executing an effect on the server side

How to trick the users into making a HTTP request?

👩💻
5

UI Attacks

6

• General theme: The attacker tricks the victim into thinking they are
taking an intended action, when they are actually taking a
malicious action

• Two main types of UI attacks

• Clickjacking: Trick the victim into clicking on something from the attacker

• Phishing: Trick the victim into sending the attacker personal information

Clickjacking

7

• Clickjacking: Trick the victim into clicking on something from the
attacker

• The browser trusts the user’s clicks

• Why steal clicks?

• Download a malicious program

• Like a Facebook page/YouTube video

• Delete an online account

Clickjacking: Download Buttons

8

• Which is the real download
button?

• What if the user clicks the
wrong one?

Invisible iframe Variant #1

9

• Frame the legitimate site
invisibly, over visible, enticing
content

• Victims think they are clicking
on the enticing site, but they
click on the legitimate site,
e.g., pay the attacker’s
account

Invisible iframe Variant #2

10

• Frame the legitimate site
visibly, under invisible
malicious content

• Victims think they are clicking
on the visible legitimate site,
but their click happens on the
malicious site, e.g., fake likes,
download malicious software

Invisible iframe Variant #3

11

Invisible iframe Variant #3

12

• Frame the legitimate site
visibly, under malicious
content partially overlaying the
site

• The attacker can change the
appearance of the site without
breaking the Single-Origin
Policy

Clickjacking: Temporal Attack

13

• Attacker uses JavaScript to detect the position of the cursor and
change the website right before the user clicks on something

• The user clicks on the malicious input (embedded iframe,
download button, etc.) before they notice that something changed

Clickjacking: Temporal Attack

14

Clickjacking: Temporal Attack

15

Clickjacking: Cursorjacking

16

Fake cursor, created with
CSS and/or JavaScript

Real cursor, hidden or less
visible with CSS

• Arrange a fixed distance between them

Clickjacking: Cursorjacking

17

• leads victims to misinterpret a click’s target

Clickjacking Defense

18

• Direct the user’s attention to their click: Ensure clear visual
separation between important dialogs and content, e.g., darken
the background

Clickjacking Defense

19

• Delay the click: Force the user to hover over the desired button
for some amount of time before allowing the user to click the
button.

Wait 1 second
before allowing
click on the OK
button

Clickjacking Defense

20

• Confirmation pop-ups:
• The browser needs to confirm that the user’s click was intentional

• Drawbacks: Asking for confirmation annoys users

Clickjacking Defense

21

• Frame-busting: The legitimate website forbids other websites
from embedding it in an iframe

• Defeats the invisible iframe attacks

• Can be enforced by Content Security Policy (CSP)

• Can be enforced by X-Frame-Options (an HTTP header)

• Drawbacks: relies on the end-user's browser enforcing their own security.
This makes the method unreliable.

Phishing

22

• Phishing is a form of social engineering and scam where attackers
deceive people into revealing sensitive information or installing
malware such as ransomware.

• The user can’t distinguish between a legitimate website and a
website impersonating the legitimate website

23

Phishing

24

Phishing

Phishing

25

Is this PayPal?

Phishing

26

After filling out
the previous
boxes

Phishing

27

After filling out
the previous
boxes

Phishing: Homograph Attacks

28

• Homograph: Two words that look the same, but have different
meanings

• Homograph attack: Creating malicious URLs that look similar (or
the same) to legitimate URLs

Phishing: Homograph Attacks

29

Phishing: Homograph Attacks

30

• Cyrllic alphabet

• Written in unicode

• Certificate under

xn--80ak6aa92e.com

• Looks more real in

some browsers

https://www.xudongz.com/blog/2017/idn-phishing/

Phishing: Homograph Attacks

31

Phishing: Homograph Attacks

32

Phishing: Homograph Attacks

33

• Unicode characters 2044 (⁄)
and 2215 (∕) are allowed in
hostnames.

• Confusing chars

Phishing: Browser in Browser Attack

34

Two-Factor Authentication

35

• Problem: Phishing attacks allow attackers to learn passwords

• Idea: Require more than passwords to log in

• Two-factor authentication (2FA): The user must prove their identity in two
different ways before successfully authenticating

• Three main ways for a user to prove their identity

• Something the user knows: Password, security question (e.g. name of your first pet)

• Something the user has: Their phone, their security key

• Something the user is: Fingerprint, face ID

• Even if the attacker steals the user’s password with phishing, they don’t have the
second factor!

Subverting 2FA: Relay Attacks / MiTM

36

Subverting 2FA: Relay Attacks / MiTM

Be careful about the attacker’s website

In DuoMobile, check the IP address!

37

2FA Example: Authentication Tokens

38

• Authentication token: A device that generates secure second-factor codes (Something the
user owns)

• Examples: RSA SecurID, Google Authenticator, DuoMobile

• The token and the server share a common secret key k

• When the user wants to log in, the token generates a code HMAC(k, time)

• The time is often truncated to the nearest 30 seconds for usability

• The code is often truncated to 6 digits for usability

• The user submits the code to the website

• The website uses its secret key to verify the HMAC

• Drawback: Vulnerable to online brute-force attacks; Possible fix: Add a timeout

• Drawback: Vulnerable to relay attacks; Fix: User needs to be more careful, read the IP
address

2FA Example: Authentication Tokens

39

• Authentication token: A device that generates secure second-factor codes (Something the
user owns)

• Examples: RSA SecurID, Google Authenticator, DuoMobile

• The token and the server share a common secret key k

• When the user wants to log in, the token generates a code HMAC(k, time)

• The time is often truncated to the nearest 30 seconds for usability

• The code is often truncated to 6 digits for usability

• The user submits the code to the website

• The website uses its secret key to verify the HMAC

• Drawback: Vulnerable to online brute-force attacks; Possible fix: Add a timeout

• Drawback: Vulnerable to relay attacks; Fix: User needs to be more careful, read the IP
address

2FA Example: Authentication Tokens

40

• Authentication token: A device that generates secure second-factor codes (Something the
user owns)

• Examples: RSA SecurID, Google Authenticator, DuoMobile

• The token and the server share a common secret key k

• When the user wants to log in, the token generates a code HMAC(k, time)

• The time is often truncated to the nearest 30 seconds for usability

• The code is often truncated to 6 digits for usability

• The user submits the code to the website

• The website uses its secret key to verify the HMAC

• Drawback: Vulnerable to online brute-force attacks; Possible fix: Add a timeout

• Drawback: Vulnerable to relay attacks; Fix: User needs to be more careful, read the IP
address

Subverting 2FA: Social Engineering

41

• Some 2FA schemes text a one-time code to a phone number

• Attackers can call your phone provider (e.g. Verizon) and tell them to activate

the attacker’s SIM card, so they receive your texts!

• 2FA via SMS is not great but better than nothing

• Some 2FA schemes can be bypassed with customer support

• Attackers can call customer support and ask them to deactivate 2FA!

• Companies should validate identity if you ask to do this (but not all do)

Subverting 2FA: Social Engineering

42

• Some 2FA schemes text a one-time code to a phone number

• Attackers can call your phone provider (e.g. Verizon) and tell them to activate

the attacker’s SIM card, so they receive your texts!

• 2FA via SMS is not great but better than nothing

• Some 2FA schemes can be bypassed with customer support

• Attackers can call customer support and ask them to deactivate 2FA!

• Companies should validate identity if you ask to do this (but not all do)

Agenda

• UI Attacks

• CAPTCHAs

• Security Principles

43

Websites are for Humans

44

• Most websites are designed for human usage, not robot usage

• Example: A login page is for users to submit their password, not for an

attacker to automate a brute-force attack

• Robot access of websites can lead to attacks

• Example: Denial of service: Overwhelming a web server by flooding it with

requests

CAPTCHAs: Definition

45

• CAPTCHA: A challenge that is easy for a human to solve, but hard
for a computer to solve

• “Completely Automated Public Turing test to tell Computers and Humans

Apart”

• Sometimes called a “reverse Turing test”

• Used to distinguish web requests made by humans and web requests made
by robots

• Usage: Administer a CAPTCHA, and if it passes, assume that the
user is human and allow access

CAPTCHAs: Examples

46

• Reading distorted text

• Identifying images

• Listening to an audio clip and

typing out the words spoken

CAPTCHAs and Machine Learning

• Modern CAPTCHAs have another
purpose: Training machine learning
algorithms

• Machine learning often requires manually-

labeled datasets

• CAPTCHAs crowdsource human power to
help manually label these big datasets

• Example: Machine vision problems require
manually-labeled examples: “This is a stop
sign”

47

Security Principles

48

• Confidentiality, Integrity, Availability, Authentication

• Detect if you can’t prevent

• Defense in depth

• Least privilege

• Separation of responsibility / privileges

• Ensure complete mediation

• Don’t rely on security through obscurity

• Use fail-safe defaults

• Design in security from the start

• Consider human factors

Detect if you can’t prevent

49

• Prevention: Stop the attack from taking place

• Detection: Learn that there was an attack

• If you can’t stop the attack from happening, you should at least be able to

know that the attack has happened.

• Response: Do something about the attack (after it happened)

• Once you know the attack happened, you should respond

• Detection without response is pointless!

Response: Mitigation and Recovery

50

• Assume that bad things will happen! You should plan security in way that lets you
to get back to a working state.

• Example: Mitigate the Consequences from Potential Ransomware

• Keep offsite backups!

• Example: Recover your homework if the computer stops working

• Use Git version control, push frequently

• Bad Example: Bitcoin transactions are irreversible. If you are hacked, you can
never recover your Bitcoins.

• $68M stolen from NiceHash exchange in December 2017

• Four multi-million-dollar attacks on Ethereum in July 2018

• Coinbase: One detected theft per day

Response: Mitigation and Recovery

51

• Assume that bad things will happen! You should plan security in way that lets you
to get back to a working state.

• Example: Mitigate the Consequences from Potential Ransomware

• Keep offsite backups!

• Example: Recover your homework if the computer stops working

• Use Git version control, push frequently

• Bad Example: Bitcoin transactions are irreversible. If you are hacked, you can
never recover your Bitcoins.

• $68M stolen from NiceHash exchange in December 2017

• Four multi-million-dollar attacks on Ethereum in July 2018

• Coinbase: One detected theft per day

Defense in Depth

52

• Multiple types of defenses should be layered together

• An attacker should have to breach all defenses to successfully attack a

system

• e.g., multiple defenses for buffer overflow, sql injection, XSS, CSRF

• However, consider security is economics

• Defenses are not free.

• Defenses are often less than the sum of their parts

Principle of Least Privilege

53

• Consider what permissions an entity or program needs to be able
to do its job correctly

• If you grant unnecessary permissions, a malicious or hacked program could

use those permissions against you

• e.g., non-executable pages, same-origin policy

Separation of Responsibility / Privileges

54

• If you need to have a privilege, consider requiring multiple parties
to work together (collude) to exercise it

• It’s much more likely for a single party to be malicious than for all multiple

parties to be malicious and collude with one another

• e.g., requires multiple keys from different people to access an important
system

Ensure Complete Mediation

55

• Ensure that every access point is monitored and protected

• Reference monitor: Single point through which all access must occur

• Example: A network firewall, airport security, the doors to the dorms

• Desired properties of reference monitors:

• Correctness

• Completeness (can’t be bypassed)

• Security (can’t be tampered with)

TOCTTOU Vulnerabilities

56

• A common failure of ensuring complete mediation involving race
conditions

procedure withdrawal(w)
// contact central server to get balance
1. let b := balance

2. if b < w, abort

// contact server to set balance
3. set balance := b - w

4. give w dollars to user

TOCTTOU Vulnerabilities

57

procedure withdrawal($100)
1. let b := balance

2. if b < $100, abort

// contact server to set balance
3. set balance := b - $100

4. give w dollars to user

procedure withdrawal($100)
1. let b := balance

2. if b < $100, abort

// contact server to set balance
3. set balance := b - $100

4. give w dollars to user

Time
• If I only have $100

• Withdraw $200

Use Fail-Safe Defaults

58

• Choose default settings that “fail safe,” balancing security with
usability when a system goes down

• e.g., Content Security Policy: By default, reject JavaScript from all websites,

use an allowlist to accept some JavaScript from trustworthy website

Design in Security from the Start

59

• When building a new system, include security as part of the design
considerations rather than patching it after the fact

• A lot of systems today were not designed with security from the start,

resulting in patches that don’t fully fix the problem!

• Keep these security principles in mind whenever you write code!

Consider Human Factors

60

• Users like convenience; if a security system is unusable and not
user-friendly, no matter how secure it is, it will go unused

• Example:

• Pop-up box: install secure update? Users click “remind me later”

• Automatically downloads important updates by default, easy install and
restart

• Consider factors such as developers make mistakes, users are
susceptible to social engineering attacks…

