
Mitigations and Tutorial

CMSC414 Computer and 
Network Security

Yizheng Chen | University of Maryland

surrealyz.github.io

Feb 8, 2024



Agenda

2

• Exploit mitigations

• Non-executable pages


• Stack canaries


• Pointer authentication


• Address space layout randomization (ASLR)


• Combining mitigations


• Demo related to Project 1



Pointer Authentication

3

• Stack Canaries: place some secret value below pointers (return 
instruction pointer and saved frame pointer) 

• Pointer Authentication: place some secret value in the pointers

• In a 64 bit system, 42 bits are ~4TB of memory, 22 bits are unused


• Put the secret (PAC, pointer authentication code) in unused bits


• Before using the pointer in memory, check if the PAC is still valid


• Invalid: crash the program


• Valid: restore unused bits, use the address normally 



Pointer Authentication

4

• Stack Canaries: place some secret value below pointers (return 
instruction pointer and saved frame pointer) 

• Pointer Authentication: place some secret value in the pointers

• In a 64 bit system, 42 bits are ~4TB of memory, 22 bits are unused


• Put the secret (PAC, pointer authentication code) in unused bits


• Before using the pointer in memory, check if the PAC is still valid


• Invalid: crash the program


• Valid: restore unused bits, use the address normally 



Pointer Authentication

5

• Stack Canaries: place some secret value below pointers (return 
instruction pointer and saved frame pointer) 

• Pointer Authentication: place some secret value in the pointers

• In a 64 bit system, 42 bits are ~4TB of memory, 22 bits are unused


• Put the secret (PAC, pointer authentication code) in unused bits


• Before using the pointer in memory, check if the PAC is still valid


• Invalid: crash the program


• Valid: restore unused bits, use the address normally 



Properties of PAC

• Each possible address has its own PAC


• Message Authentication Code (MAC) in the cryptography lectures


• Only someone who knows the CPU’s master secret can generate a 
PAC for an address


• The CPU’s master secret is not accessible to the program

• Leaking program memory will not leak the master secret

6



Address Space Layout Randomization

7

0xffffffff

0x00000000

0xffffffff

0x00000000



Address Space Layout Randomization

• Address space layout randomization (ASLR): Put each segment 
of memory in a different location each time the program is run

• Programs are dynamically linked at runtime, so ASLR has almost no overhead


• However…


• Within each segment of memory, relative addresses are the same 
(e.g. the RIP is always 4 bytes above the SFP)

• Leak the address of a pointer, whose address relative to your shellcode is 

known (stack pointer, RIP)


• Guess the address of your shellcode: Brute-force

8



Address Space Layout Randomization

• Address space layout randomization (ASLR): Put each segment 
of memory in a different location each time the program is run

• Programs are dynamically linked at runtime, so ASLR has almost no overhead


• However…


• Within each segment of memory, relative addresses are the same 
(e.g. the RIP is always 4 bytes above the SFP)

• Leak the address of a pointer, whose address relative to your shellcode is 

known (stack pointer, RIP)


• Guess the address of your shellcode: Brute-force

9



Combining Mitigations

• Defense in depth 

• Example: Combining ASLR and non-executable pages


• To defeat ASLR and non-executable pages, the attacker needs to 
find two vulnerabilities

• First, find a way to leak memory and reveal the address randomization (defeat 

ASLR)


• Second, find a way to write to memory and write a ROP chain (defeat non-
executable pages)

10



Agenda

11

• Exploit mitigations

• Non-executable pages


• Stack canaries


• Pointer authentication


• Address space layout randomization (ASLR)


• Combining mitigations


• Demo related to Project 1



NOP Slide

12

• NOP: no operation 
• "slide" the CPU's instruction execution flow 

to its final, desired destination 
• Return instruction pointer to anywhere in NOP 

can then execute the Shellcode

https://www.coengoedegebure.com/buffer-overflow-attacks-explained/ 

https://en.wikipedia.org/wiki/NOP_slide

https://www.coengoedegebure.com/buffer-overflow-attacks-explained/
https://en.wikipedia.org/wiki/NOP_slide


13



14





Tutorial on Computer

16


