CMSC414 Computer and
Network Security

Mitigations and Tutorial

Yizheng Chen | University of Maryland

Feb 8, 2024

e Pointer authentication

 Address space layout randomization (ASLR)
 Combining mitigations

 Demo related to Project 1

Pointer Authentication

 Stack Canaries: place some secret value below pointers (return
instruction pointer and saved frame pointer)

 Pointer Authentication: place some secret value in the pointers

Pointer Authentication

Stack Canaries: place some secret value below pointers (return
instruction pointer and saved frame pointer)

Pointer Authentication: place some secret value in the pointers
* |n a 64 bit system, 42 bits are ~4TB of memory, 22 bits are unused

 Put the secret (PAC, pointer authentication code) in unused bits

Pointer Authentication

Stack Canaries: place some secret value below pointers (return
instruction pointer and saved frame pointer)

Pointer Authentication: place some secret value in the pointers
* |n a 64 bit system, 42 bits are ~4TB of memory, 22 bits are unused
 Put the secret (PAC, pointer authentication code) in unused bits

 Before using the pointer in memory, check if the PAC is still valid

* |nvalid: crash the program

» Valid: restore unused bits, use the address normally

Properties of PAC

Each possible address has its own PAC
Message Authentication Code (MAC) in the cryptography lectures

Only someone who knows the CPU’s master secret can generate a
PAC for an address

The CPU’s master secret is not accessible to the program

| eaking program memory will not leak the master secret

Address Space Layout Randomization

Oxffffffff Oxffffffff
Stack
Heap
Grows downwards
Data
Grows upwards
? Code
Heap
Data Stack
Code

0x00000000 0x00000000

Address Space Layout Randomization

 Address space layout randomization (ASLR): Put each segment
of memory in a different location each time the program is run

 Programs are dynamically linked at runtime, so ASLR has almost no overhead

Address Space Layout Randomization

 Address space layout randomization (ASLR): Put each segment
of memory in a different location each time the program is run

 Programs are dynamically linked at runtime, so ASLR has almost no overhead

e However...

* Within each segment of memory, relative addresses are the same
(e.g. the RIP is always 4 bytes above the SFP)

| eak the address of a pointer, whose address relative to your shellcode is
known (stack pointer, RIP)

* Guess the address of your shellcode: Brute-force

Combining Mitigations

« Defense In depth
 Example: Combining ASLR and non-executable pages

* To defeat ASLR and non-executable pages, the attacker needs to
find two vulnerabillities

* First, find a way to leak memory and reveal the address randomization (defeat
ASLR)

 Second, find a way to write to memory and write a ROP chain (defeat non-
executable pages)

10

 Demo related to Project 1

11

NOP Slide

\x2f

NOP-sled Shellcode

® NOP: no operation
® "gslide" the CPU's instruction execution flow
to its final, desired destination
® Return instruction pointer to anywhere in NOP
can then execute the Shellcode

ttps://www.coengoedegebure.com/buffer-overflow-attacks-explained/

nttps://en.wikipedia.org/wiki/NOP slide

12

https://www.coengoedegebure.com/buffer-overflow-attacks-explained/
https://en.wikipedia.org/wiki/NOP_slide

Run the program with input as the

run <input> :
command-line arguments

print <var> Print the value of variable var
(or just “p <var>") (Can also do some operations: p &x)

b <function> Set a breakpoint at function

step through execution (into calls)
c continue execution (no more stepping)

()

13

info frame Show info about the current frame
(orjust “i £") = (prev. frame, locals/args, %ebp/%eip)

info reg Show info about registers
(orjust “i r") = (%ebp, %eip, %esp, etc.)

Examine <n> bytes of memory

<n> <addr> .
x/<n> <addr starting at address <addr>

14

gdb example

void func(char *argl) %eip %ebp

{
char buffer[4]; l buffer l

sprintf (buffer, argl);
text --- 00 00 00 00 %ebp %eip &argl ..

}

Set a breaksuoint Regding syvmbols from

at fUﬂC((gdb) b func
T Breaknoint 1 at Ox11d5: file

(gdb) run
Run the program/ Starting program: - ng
[Thread debugging using 11bthread db enabled]
Using host libthread_db library "/l1 »

Breakpoint reachec Breakpomt 1, func (argl=0x56557008 "AuthMe!") at

Print buffers' addr., Cadb) p &buffer

$1 = (char (*)[4]) Oxffffd4d8
Frame info — [DRI RIT
. Stack level @, frame at Oxffffd4fo:
Current/saved eip eip = 0x565561d5 in func (example.c:5); saved eip = 0x56556242
called by frame at Oxffffd520
source language c.

Arglist at Oxffffd4e8, args: argl=0x56557008 "AuthMe!"

Locals at Oxffffd4e8, Previous frame's sp 1s Oxffffd4fo
Whel'e on the StaCk Saved r-egister'sj

registers are saved ebx at Oxffffd4e4, ebp at Oxffffd4e8, eip at Oxffffddec

Tutorial on Computer

