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Announcements
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• Project 1


• Gitlab


• Will add a makefile for part 0


• New TA



Agenda
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• Memory-safe languages


• Writing memory-safe code


• Building secure software


• Exploit mitigations

• Non-executable pages


• Stack canaries


• Pointer authentication


• Address space layout randomization (ASLR)


• Combining mitigations



Memory Safe Language
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• Programming languages that include a combination of compile-
time and runtime checks that prevent memory errors from 
occurring, e.g., check bounds, prevent undefined memory access

• By design, memory-safe languages are not vulnerable to memory safety 

vulnerabilities


• Using a memory-safe language is the only way to stop 100% of memory 
safety vulnerabilities


• Examples: Java, Python, C#, Go, Rust

• Most languages besides C, C++, and Objective C



Why Not Use Memory-Safe Languages?

• Performance


• Comparison of memory allocation performance

• C and C++ (not memory safe): malloc usually runs in (amortized) constant-

time


• Java (memory safe): The garbage collector may need to run at any arbitrary 
point in time, adding a 10–100 ms delay as it cleans up memory
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The Myth of Performance

• For most applications, the performance difference from using a 
memory-safe language is insignificant

• Possible exceptions: Operating systems, high performance games, some 

embedded systems


• C’s improved performance is not a direct result of its security 
issues

• Today, safe alternatives have comparable performance (e.g. Go and Rust)


• Secure C code (with bounds checking) ends up running as quickly as code in 
a memory-safe language anyway


• Have both security and performance
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The Real Reason: Legacy Code
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• Huge existing code bases are written in C, and building on existing 
code is easier than starting from scratch

• If old code is written in {language}, new code will be written in {language}!



Writing Memory Safe Code
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• Defensive programming: Always add checks in your code just in case

• Example: Always check a pointer is not null before dereferencing it, even if you’re 

sure the pointer is going to be valid


• Relies on programmer discipline


• Use safe libraries

• Use functions that check bounds


• Example: Use fgets instead of gets


• Example: Use strncpy or strlcpy instead of strcpy


• Example: Use snprintf instead of sprintf


• Relies on programmer discipline or tools that check your program



Building Secure Software
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• Code Review

• Hiring someone to look over your code for memory safety errors. Effective but expensive.


• Penetration testing (“pen-testing”)

• Pay someone to break into your system


• Run-time checks

• Automatic bounds-checking. Overhead.


• Crash if the check fails


• Bug-finding tools

• Static analyzers: heuristic based, e.g., some user inputs affect memory allocation over some program 

execution paths


• Fuzz testing: testing with random inputs



Agenda
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• Memory-safe languages


• Writing memory-safe code


• Building secure software


• Exploit mitigations

• Non-executable pages


• Stack canaries


• Pointer authentication


• Address space layout randomization (ASLR)


• Combining mitigations

make it harder for attackers to exploit common vulnerabilities



Exploit Mitigations
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• Compile and run code with code hardening defenses

• Compiler and runtime defenses


• Make common exploits harder


• Cause exploits to crash instead of succeeding


• Not foolproof



Recall: if shell code is only 8 bytes
High

Low

main()’s stack 
frame
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void main() {
    vulnerable();
}

void vulnerable() {
    char buf[8];
    gets(buf)
    ...
}

&buf Return 
instruction pointer 

(old eip)

AAAA Saved frame 
pointer (old ebp)

SHELLCODE

SHELLCODE

[8 bytes of SHELLCODE] + [4 bytes of garbage] + [address of buf]



Non-Executable Pages
High

Low

main()’s stack 
frame
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void main() {
    vulnerable();
}

void vulnerable() {
    char buf[8];
    gets(buf)
    ...
}

&buf Return 
instruction pointer 

(old eip)

AAAA Saved frame 
pointer (old ebp)

SHELLCODE

SHELLCODE

What if shell code cannot be executed? 
What if nothing on the stack can be executed?



Non-Executable Pages
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• Idea: Most programs don’t need memory that is both written to 
and executed, so make portions of memory either executable or 
writable but not both

• Stack, heap, and static data: Writable but not executable


• Code: Executable but not writable


• Also known as

• W^X (write XOR execute)


• DEP (Data Execution Prevention, name used by Windows)


• No-execute bit



Subverting Non-Executable Pages
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• Issue: Non-executable pages doesn’t prevent an attacker from 
leveraging existing code in memory as part of the exploit


• Most programs have many functions loaded into memory that can 
be used for malicious behavior

• Return-to-libc: An exploit technique that overwrites the RIP to jump to a 

functions in the standard C library (libc) or a common operating system 
function


• Return-oriented programming (ROP): Constructing custom shellcode using 
pieces of code that already exist in memory



How to subvert non-executable pages?
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How to subvert non-executable pages?
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Idea: return to existing code in memory

👩💻



Return into libc: a real call
Goal: system(“rm -rf /”)

High

address of “rm - rf /”

Return instruction 
pointer (old eip)

Low

caller()’s stack 
frame
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esp

ebp

eipCode for system()

Code for caller()

Code section is 
executable 

- eip is in the 
beginning address 
of system 
- callee saves ebp, 
push local vars



Return into libc: goal of a fake call

Goal: system(“rm -rf /”)

Question: can we return to a stack 

like this?

High

address of “rm - rf /”

Return instruction 
pointer (old eip)

Low

caller()’s stack 
frame
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esp

ebp

eipCode for system()

Code for caller()

fake eip

don’t care

4 bytes 
below arg



Return from a Function

• Leave: leave the stack frame of the callee 
• restore stack pointer (mov %ebp %esp) 
• restore the base pointer (pop %ebp) 

• Ret: restore the instruction pointer (pop %eip)
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Return into libc: goal of a fake call

Goal: system(“rm -rf /”)

after executing leave ret


-fake eip 
-Don’t care what the ebp is 
-esp is 4 bytes below arg

High

address of “rm - rf /”

Return instruction 
pointer (old eip)

Low

caller()’s stack 
frame
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esp

ebp

eipCode for system()

Code for caller()

• leave 
• mov %ebp %esp 
• pop %ebp 

• ret: pop %eip



Return into libc: goal of a fake call

Goal: system(“rm -rf /”)

after executing leave ret


-fake eip 
-Don’t care what the ebp is 
-esp is 4 bytes below arg

High

address of “rm - rf /”

Return instruction 
pointer (old eip)

eip in the beginning 
of system()

Low

caller()’s stack 
frame
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esp

ebp

eip

Code for system()

Code for caller()

• leave 
• mov %ebp %esp 
• pop %ebp 

• ret: pop %eip



Return into libc: goal of a fake call

Goal: system(“rm -rf /”)

after executing leave ret


-fake eip 
-Don’t care what the ebp is 
-esp is 4 bytes below arg

High

address of “rm - rf /”

Return instruction 
pointer (old eip)

eip in the beginning 
of system()

Value we don’t care

Low

caller()’s stack 
frame
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esp
ebp

eip

Code for system()

Code for caller()

• leave 
• mov %ebp %esp 
• pop %ebp 

• ret: pop %eip



Return into libc: goal of a fake call

Goal: system(“rm -rf /”)

after executing leave ret


-fake eip 
-Don’t care what the ebp is 
-esp is 4 bytes below arg

High

address of “rm - rf /”

Return instruction 
pointer (old eip)

eip in the beginning 
of system()

Value we don’t care

Low

caller()’s stack 
frame
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esp

ebp

eip

Code for system()

Code for caller()

• leave 
• mov %ebp %esp 
• pop %ebp 

• ret: pop %eip



Return into libc: before return

Goal: system(“rm -rf /”)

after executing leave ret


-fake eip 
-Don’t care what the ebp is 
-esp is 4 bytes below arg

High

address of “rm - rf /”

Return instruction 
pointer (old eip)

eip in the beginning 
of system()

Value we don’t care

Low

caller()’s stack 
frame
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esp

ebp

eip

Code for system()

Code for caller()

• If we find a buffer…  
• Set up the stack like this! 
• And return

Also don’t 
care



Return into libc: before return

Goal: system(“rm -rf /”)

after executing leave ret


-fake eip 
-Don’t care what the ebp is 
-esp is 4 bytes below arg

High

address of “rm - rf /”

????

eip in the beginning 
of system()

????

????

????

Low

caller()’s stack 
frame
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esp

ebp

eip

Code for system()

Code for caller()

• If we find a buffer…  
• Set up the stack like this! 
• And return



Exercise: Go through leave return 

Check that we care calling 
system(“rm -rf /”)


after executing leave ret

High

address of “rm - rf /”

????

eip in the beginning 
of system()

????

????

????

Low

caller()’s stack 
frame
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esp

ebp

eip

Code for system()

Code for caller()

• leave 
• mov %ebp %esp 
• pop %ebp 

• ret: pop %eip



Return Oriented Programming (ROP)
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Instead of executing an existing function, 


execute different pieces of assembly instructions.

👩💻



ROP Example

29

• Execute pieces of assembly code in a chain, among many returns

• They form the functionality that the attacker wants


• What is a Gadget


• How to chain two gadgets together


• How to start executing the first gadget



ROP Gadget

• Gadget: A small set of assembly instructions that already exist in 
memory

• Gadgets usually end in a ret instruction


• Gadgets are usually not full functions
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foo: 
         ... 
<foo+7>  addl $4, %esp 
<foo+10> xorl %eax, %ebx 
<foo+12> ret

bar: 
         ... 
<bar+22> andl $1, %edx 
<bar+25> movl $1, %eax 
<bar+30> ret



How to chain two gadgets together

• Supposed our goal is:

• movl $1, %eax 
• xorl %eax, %ebx
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foo: 
         ... 
<foo+7>  addl $4, %esp 
<foo+10> xorl %eax, %ebx 
<foo+12> ret

bar: 
         ... 
<bar+22> andl $1, %edx 
<bar+25> movl $1, %eax 
<bar+30> ret



What to do about ret?

• The following two gadgets allow us to do

• <bar+25> movl $1, %eax 
• <bar+30> ret 
• <foo+10> xorl %eax, %ebx 
• <foo+12> ret
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foo: 
         ... 
<foo+7>  addl $4, %esp 
<foo+10> xorl %eax, %ebx 
<foo+12> ret

bar: 
         ... 
<bar+22> andl $1, %edx 
<bar+25> movl $1, %eax 
<bar+30> ret



What to do about ret?
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ret: pop %eip

Put <foo+10> on the stack before we do ret

• The following two gadgets allow us to do

• <bar+25> movl $1, %eax 
• <bar+30> ret 
• <foo+10> xorl %eax, %ebx 
• <foo+12> ret



How to chain two gadgets together?

• The following two gadgets 
allow us to do

• <bar+25> movl $1, %eax 
• <bar+30> ret 
• <foo+10> xorl %eax, %ebx 
• <foo+12> ret
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????

????

????

address of <foo+10>

????

????

esp



How to start executing?

• The following two gadgets 
allow us to do

• <bar+25> movl $1, %eax 
• <bar+30> ret 
• <foo+10> xorl %eax, %ebx 
• <foo+12> ret
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????

????

????

address of <foo+10>

????

????

esp



How to start executing?

• The following two gadgets 
allow us to do

• <bar+25> movl $1, %eax 
• <bar+30> ret 
• <foo+10> xorl %eax, %ebx 
• <foo+12> ret
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????

????

????

address of <bar+30>

address of <bar+25>

????
esp

Overwrite 
saved eip



ROP

• If we have many gadgets

• <bar+25> movl $1, %eax 
• <bar+30> ret 
• <foo+10> xorl %eax, %ebx 
• <foo+12> ret 
• <…> … 
• <…> ret 
• <…> … 
• <…> ret 
• …

37

????

address of …

address of …

address of <bar+30>

address of <bar+25>

????
esp



ROP
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• Gadget: A small set of assembly instructions that already exist in 
memory

• Gadgets usually end in a ret instruction


• Gadgets are usually not full functions


• ROP strategy: We write a chain of return addresses starting at the 
RIP to achieve the behavior we want

• Each return address points to a gadget


• The gadget executes its instructions and ends with a ret instruction


• The ret instruction jumps to the address of the next gadget on the stack



ROP
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• If the code base is big enough (imports enough libraries), there are 
usually enough gadgets in memory for you to run any shellcode 
you want


• ROP compilers can automatically generate a ROP chain for you 
based on a target binary and desired malicious code!


• Non-executable pages is not a huge issue for attackers nowadays

• Having writable and executable pages makes an attacker’s life easier, but not 

that much easier



Agenda
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• Memory-safe languages


• Writing memory-safe code


• Building secure software


• Exploit mitigations

• Non-executable pages


• Stack canaries


• Pointer authentication


• Address space layout randomization (ASLR)


• Combining mitigations



Stack Canaries
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https://share.america.gov/english-idiom-canary-coal-mine/



Regular Stack Example
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High

Low

main()’s stack 
framevoid main() {

    vulnerable();
}

void vulnerable() {
    char buf[8];
    gets(buf)
    ...
}

Return instruction 
pointer (old eip)

Saved frame pointer 
(old ebp)

buf

buf



Stack Canaries
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High

Low

main()’s stack 
framevoid main() {

    vulnerable();
}

void vulnerable() {
    char buf[8];
    gets(buf)
    ...
}

Return instruction 
pointer (old eip)

Saved frame pointer 
(old ebp)

Stack Canary 
🐦🐦🐦🐦

buf

buf

The attack will have to overwrite the stack canary



Stack Canaries
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• During runtime, generate a random secret value and save it in the 
canary storage

• In the function prologue, place the canary value on the stack right below the 

SFP/RIP


• In the function epilogue, check the value on the stack and compare it against 
the value in canary storage


• If the canary value changes, somebody is probably attacking our system!



Stack Canaries
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• A canary value is unique every time the program runs but the same 
for all functions within a run


• A canary value uses a NULL byte as the first byte to mitigate 
string-based attacks (since it terminates any string before it)

• Example: A format string vulnerability with %s might try to print everything on 

the stack


• The null byte in the canary will mitigate the damage by stopping the print 
earlier.


• Overhead: compiler inserts a few extra instructions, bust mostly low overhead



Subverting Stack Canaries
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• Leak the value of the canary: Overwrite the canary with itself


• Bypass the value of the canary: Use a random write, not a 
sequential write


• Guess the value of the canary: Brute-force



Guess the Canary

47

• The first byte (8 bits) is always a NULL byte


• On 32-bit systems: 24 bits to guess

• 32 - 8 = 24


• 2^24 possibilities (~16 million), can be brute-forced, depending on the setting


• On 64-bit systems: 56 bits to guess



Pointer Authentication
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• Stack Canaries: place some secret value below pointers (return 
instruction pointer and saved frame pointer) 

• Pointer Authentication: place some secret value in the pointers

• In a 64 bit system, 42 bits are ~4TB of memory, 22 bits are unused


• Put the secret (PAC, pointer authentication code) in unused bits


• Before using the pointer in memory, check if the PAC is still valid


• Invalid: crash the program


• Valid: restore unused bits, use the address normally 



Pointer Authentication
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• Stack Canaries: place some secret value below pointers (return 
instruction pointer and saved frame pointer) 

• Pointer Authentication: place some secret value in the pointers

• In a 64 bit system, 42 bits are ~4TB of memory, 22 bits are unused


• Put the secret (PAC, pointer authentication code) in unused bits


• Before using the pointer in memory, check if the PAC is still valid


• Invalid: crash the program


• Valid: restore unused bits, use the address normally 



Pointer Authentication
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• Stack Canaries: place some secret value below pointers (return 
instruction pointer and saved frame pointer) 

• Pointer Authentication: place some secret value in the pointers

• In a 64 bit system, 42 bits are ~4TB of memory, 22 bits are unused


• Put the secret (PAC, pointer authentication code) in unused bits


• Before using the pointer in memory, check if the PAC is still valid


• Invalid: crash the program


• Valid: restore unused bits, use the address normally 



Properties of PAC

• Each possible address has its own PAC


• Message Authentication Code (MAC) in the cryptography lectures


• Only someone who knows the CPU’s master secret can generate a 
PAC for an address


• The CPU’s master secret is not accessible to the program

• Leaking program memory will not leak the master secret
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Subverting Pointer Authentication

• Find a vulnerability to trick the program to generating a PAC for 
any address


• Learn the master secret


• Vulnerability in the OS


• Guess a PAC: Brute-force


• Pointer reuse
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Address Space Layout Randomization
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• Goal: make it hard for attackers to place shell code on the stack, 
on the heap, or find out the address of the code


• Randomize the addresses of code, data, heap, stack


• Theoretically, very hard to know the addresses, so we can mitigate 
the attacks



Address Space Layout Randomization
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0xffffffff

0x00000000

0xffffffff

0x00000000



Address Space Layout Randomization

• Address space layout randomization (ASLR): Put each segment 
of memory in a different location each time the program is run

• Programs are dynamically linked at runtime, so ASLR has almost no overhead


• However…


• Within each segment of memory, relative addresses are the same 
(e.g. the RIP is always 4 bytes above the SFP)

• Leak the address of a pointer, whose address relative to your shellcode is 

known (stack pointer, RIP)


• Guess the address of your shellcode: Brute-force
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Address Space Layout Randomization

• Address space layout randomization (ASLR): Put each segment 
of memory in a different location each time the program is run

• Programs are dynamically linked at runtime, so ASLR has almost no overhead


• However…


• Within each segment of memory, relative addresses are the same 
(e.g. the RIP is always 4 bytes above the SFP)

• Leak the address of a pointer, whose address relative to your shellcode is 

known (stack pointer, RIP)


• Guess the address of your shellcode: Brute-force
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Combining Mitigations

• Defense in depth 

• Example: Combining ASLR and non-executable pages


• To defeat ASLR and non-executable pages, the attacker needs to 
find two vulnerabilities

• First, find a way to leak memory and reveal the address randomization (defeat 

ASLR)


• Second, find a way to write to memory and write a ROP chain (defeat non-
executable pages)
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